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Abstract

The principle of optimism in the face of uncertainty is
prevalent throughout sequential decision making prob-
lems such as multi-armed bandits and reinforcement
learning (RL). To be successful, an optimistic RL algo-
rithm must over-estimate the true value function (opti-
mism) but not by so much that it is inaccurate (estima-
tion error). In the tabular setting, many state-of-the-art
methods produce the required optimism through ap-
proaches which are intractable when scaling to deep RL.
We re-interpret these scalable optimistic model-based
algorithms as solving a tractable noise augmented MDP.
This formulation achieves a competitive regret bound:
Õ(∣S∣H

√
∣A∣T ) when augmenting using Gaussian

noise, where T is the total number of environment steps.
We also explore how this trade-off changes in the deep
RL setting, where we show empirically that estima-
tion error is significantly more troublesome. However,
we also show that if this error is reduced, optimistic
model-based RL algorithms can match state-of-the-art
performance in continuous control problems.

1 INTRODUCTION

Reinforcement Learning (RL, Sutton and Barto [1998]) con-
siders the problem of an agent taking sequential actions
in an uncertain environment to maximize some notion of
reward. Model-based reinforcement learning (MBRL) algo-
rithms typically approach this problem by building a “world
model” [Sutton, 1991], which can be used to simulate the
true environment. This facilitates efficient learning, since
the agent no longer needs to query to true environment for
experience, and instead plans in the world model. In or-
der to learn a world model that accurately represents the
dynamics of the environment, the agent must collect data
that is rich in experiences [Sekar et al., 2020]. However, for
faster convergence, data collection must also be performed
efficiently, wasting as few samples as possible [Ball et al.,
2020]. Thus, the effectiveness of MBRL algorithms hinges
on the exploration-exploitation dilemma.

This dilemma has been studied extensively in the tabular
RL setting, which considers Markov Decision Processes
(MDPs) with finite states and actions. Optimism in the face
of uncertainty (OFU) [Audibert et al., 2007, Kocsis and
Szepesvári, 2006] is a principle that emerged first from
the Multi-Arm Bandit literature, where actions having both
large expected rewards (exploitation) and high uncertainty
(exploration) are prioritized. OFU is a crucial component
of several state-of-the-art algorithms in this setting [Silver
et al., 2016], although its success has thus far failed to scale
to larger settings.

However, in the field of deep RL, many of these theoret-
ical advances have been overlooked in favor of heuristics
[Burda et al., 2019a], or simple dithering based approaches
for exploration [Mnih et al., 2013]. There are two potential
reasons for this. First, many of the theoretically motivated
OFU algorithms are intractable in larger settings. For ex-
ample, UCRL2 [Jaksch et al., 2010] a canonical optimistic
RL algorithm, requires the computation of an analytic un-
certainty envelope around the MDP, which is infeasible
for continuous MDPs. Despite its many extensions [Filippi
et al., 2010, Jaksch et al., 2010, Fruit et al., 2018, Azar et al.,
2017b, Bartlett and Tewari, 2012, Tossou et al., 2019], none
address generalizing the techniques to continuous (or even
large discrete) MDPs.

Second, OFU algorithms must strike a fine balance in what
we call the Optimism Decomposition. That is, they need to
be optimistic enough to upper bound the true value function,
while maintaining low estimation error. Theoretically mo-
tivated OFU algorithms predominantly focus on the prior.
However, when moving to the deep RL setting, several
sources of noise make estimation error a thorn in the side of
optimistic approaches. We show that an optimistic algorithm
can fixate on exploiting the least accurate models, which
causes the majority of experience the agent learns from to
be worthless, or even harmful for performance.

In this paper we seek to address both of these issues, paving
the way for OFU-inspired algorithms to gain prominence in
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the deep RL setting. We make two contributions:

Making provably efficient algorithms tractable Our first
contribution is to introduce a new perspective on existing
tabular RL algorithms such as UCRL2. We show that a com-
parable regret bound can be achieved by being optimistic
with respect to a noise augmented MDP, where the noise is
proportional to the amount of data collected during learning.
We propose several mechanisms to inject noise, including
count-scaled Gaussian noise and the variance from a boot-
strap mechanism. Since the latter technique is used in many
prominent state-of-the-art deep MBRL algorithms [Kuru-
tach et al., 2018, Janner et al., 2019, Chua et al., 2018, Ball
et al., 2020], we have all the ingredients we need to scale to
that paradigm.

Addressing model estimation error in the deep RL
paradigm We empirically explore the Optimism Decompo-
sition in the deep RL setting, and introduce a new approach
to reduce the likelihood that the weakest models will be
exploited. We show that we can indeed produce optimism
with low model error, and thus match state of the art MBRL
performance.

The rest of the paper is structured as follows: 1) We begin
with background and related work, where we formally in-
troduce the Optimism Decomposition; 2) In Section 3 we
introduce noise augmented MDPs, and draw connections
with existing algorithms; 3) We next provide our main the-
oretical results, followed by empirical verification in the
tabular setting; 4) We rigorously evaluate the Optimism
Decomposition in the deep RL setting, demonstrating the
scalability of our approach; 5) We conclude and discuss
some of the exciting future directions we hope to explore.

2 BACKGROUND AND RELATED WORK

In this paper we study a sequential interaction between a
learner and a finite horizon MDP M = (S,A, P,H, r, P0),
where S denotes the state space, A the actions, P its dynam-
ics, H its episode horizon, r ∈ R∣S∣×∣A∣ the rewards and P0

the initial state distribution. For any state action pair (s, a),
we call r(s, a) their true reward, which we assume to be a
random variable in [0, 1]. P represents the dynamics and de-
fines the distribution over the next states, i.e., s′ ∼ P (s, a)
with probability P (s, a, s′). At the beginning of each round
k, the learner computes a policy πk which it uses to collect
rewards and transition tuples in M, for a total of H steps.
We use k to denote the episode number and h to index a
timestep within an episode.

Since we do not know the true reward nor dynamics, we
must instead approximate these through estimators. For state
action pair (s, a), we denote the average reward estima-
tor as r̂k(s, a) ∈ R and the average dynamics estimator1

1We write ∆d to denote the d−dimensional simplex.

as P̂k(s, a) ∈ ∆∣S∣, where index k refers to the episode.
When training, the learner collects dynamics tuples during
its interactions with M, which in turn it uses during each
round t to produce a policy πk and an approximate MDP
Mk = (S,A, P̃ ,H, r̃, P0). In our theoretical results we
will allow P̃ (s, a) to be a signed measure whose entries
do not sum to one. This is purely a semantic devise, ren-
dering the exposition of our work easier and more general,
and in no way affects the feasibility of our algorithms and
arguments.

For any policy π, let V (π) be the (scalar) value of π and let
Ṽk(π) be the value of π operating in the approximate MDP
Mk. We define Eπ as the expectation under the dynamics
of the true MDP M and using policy π (analogously Ẽπ as
the expectation under Mk). The true and approximate value
function for a policy π are defined as follows:

V (π) = Eπ [
H−1

∑
h=0

r(sh, ah)] , Ṽk(π) = Ẽπ [
H−1

∑
h=0

r̃k(sh, ah)] .

We will evaluate our method using regret, the difference
between the value of the optimal policy and the value from
the policies it executed. Formally, in the episodic RL setting
the regret of an agent using policies {πk}Kk=1 is (where K is
number of episodes and T = KH):

R(T ) =
K

∑
k=1

V (π∗) − V (πk),

where π∗ denotes the optimal policy for M, and V (πk)
is πk true value function. Furthermore, for each h ∈

{1,⋯, H} we call V
h(π) ∈ R∣S∣ the value vector

satisfying V
h(π)[s] = Eπ [∑H−1

h′=h r(sh′ , ah′)∣sh = s],

similarly we define Ṽ
h
k(π) ∈ R∣S∣ as Ṽ

h
k(π)[s] =

Ẽπ [∑H−1
h′=h r̃(sh′ , ah′)∣sh = s] where V

H(π)[s] = 0.
Bold represents a vector-valued quantity.

The principle of optimism in the face of uncertainty (OFU)
is used to address the exploration-exploitation dilemma in
sequential decision making processes by performing both
simultaneously. In RL, “model based" OFU algorithms
[Jaksch et al., 2010, Fruit et al., 2018, Tossou et al., 2019]
proceed as follows: at the beginning of each episode k a
learner selects an approximate MDP Mk from a model
cloud Mk and a policy πk whose approximate value func-
tion Ṽk(πk) is optimistic, that is, it overestimates the op-
timal policy’s true value function V (π∗). Our approach
follows the same paradigm, but instead of using a contin-
uum of models as in [Jaksch et al., 2010, Azar et al., 2017a]
we allow Mk to be a discrete set (i.e. an ensemble). For
OFU inspired algorithms we re-write R(T ) as:

R(T ) =
K

∑
k=1

V (π∗) − Ṽk(πk)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

Optimism

+
K

∑
k=1

Ṽk(πk) − V (πk)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

EstimationError

. (1)

We refer to this as the Optimism Decomposition, since it
breaks down the regret into its’ two major components. OFU
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Table 1: Prominent tabular RL algorithms and their noise augmented equivalents.

Algorithm Scalable? Model/Value Based Regret Bound

UCRL [Jaksch et al., 2010] No Model Based Õ(∣S∣H
√
∣A∣T )

UCBVI [Azar et al., 2017a] No Model Based Õ(
√
H∣S∣∣A∣T )

RLSVI [Osband et al., 2016b, Russo, 2019] Yes Value Based Õ(∣S∣H5/2√∣S∣∣A∣T )
Posterior Sampling [Osband et al., 2013] Yes Model Based Õ(∣S∣H

√
∣A∣T )

Noise Augmented UCRL Yes Model Based Õ(∣S∣H
√
∣S∣∣A∣T )

Noise Augmented UCBVI Yes Model Based Õ(∣S∣H
√
∣A∣T )

algorithms must ensure that: the approximate value func-
tion is sufficiently optimistic (Optimism); and the estimated
value function is not be too far from the true value func-
tion (Estimation Error). Balancing these two requirements
forms the basis of all optimism based algorithms that satisfy
provable regret guarantees.

In this paper we aim to shed light on how to transfer the
principle of optimism into the realm of model based deep
RL with deep function approximation. To our knowledge
we are the first to propose algorithms for the deep RL setting
inspired by the optimism principle prevalent throughout the
theoretical RL literature.

Two of the most prominent model-based OFU algorithms
are UCRL2 and UCBVI. In the case of UCRL2, optimism is
produced by analytically optimizing over the entire dynam-
ics uncertainty set. It is easy to see that this is intractable
beyond the tabular setting. In the case of UCBVI, optimism
is produced by adding a bonus directly at the value function
level. This is also intractable in the deep RL setting as it
requires a count model over the visited states and actions.

Optimism beyond tabular models has been theoretically
studied in Du et al. [2020], Jin et al. [2019] that showed
the value of OFU where the MDP satisfies certain linearity
properties but their practical impact has been limited.

Other methods which have successfully scaled from the tab-
ular setting to deep RL are Posterior Sampling and RLSVI
[Osband et al., 2016b, Russo, 2019]. First we note that
RLSVI is not model based in spirit and it certainly does not
use a model ensemble. While RLSVI is a philosophically
different algorithm to ours, they also propose the use of
Gaussian noise perturbations and so it is closely related to
our work.

Our approach is also inspired by Agrawal and Jia [2017]
and Xu and Tewari. The parametric approach to posterior
sampling studied in Agrawal and Jia [2017] can be easily
analyzed under our framework, which can be seen as a gener-
alization of the their posterior sampling algorithm. Crucially
however, our method is simple to implement in the deep RL
setting, opening the door to new scalable algorithms.

Next we show that optimism can be achieved by a simple

noise augmentation procedure. This gives rise to provably
efficient algorithms for tabular RL problems. We discuss
variants of both UCRL and UCBVI which make use of this
to simultaneously scale to deep RL while maintaining their
theoretical guarantees.

3 ALGORITHMS

The aim of this section is to show that we can produce new
versions of two popular OFU algorithms solely making use
of noise augmentation. First, we focus on showing these
noise augmented algorithms are theoretically competitive,
before discussing practical implementations of our approach
in the deep RL context.

Algorithm 1 Noise Augmented RL (NARL)
Input: Finite horizon MDP M = (S,A, P,H, r, P0), Episodes
K, Initial reward and dynamics augmentation noise distributions
{Pr1(s, a)}s,a∈S×A and {PP1 (s, a)}s,a∈S×A, sampling frequen-
cies Mr,MP .
Initialize: the transition and rewards data buffer D(s, a) = ∅ for
each s, a ∈ S ×A.
for k = 1, . . . ,K − 1 do

(1) ∀s, a sample MP noise vectors ξ(m)
k,P (s, a) ∼ PPk (s, a).

UCRL2:
(2) For each s, a sample Mr noise values ξ(m)

k (s, a) ∼

Prk(s, a).
(3) Compute policy πk by running Noise Augmented
Extended Value iteration as in Equation 2.
UCBVI:
(2) Compute policy πk by running Noise Augmented Value
iteration as in Equation 4.

(*) Execute policy πk for a length H episode and up-
date D. Produce {Prk+1(s, a)}s,a∈S×A and (if UCRL)
{PPk+1(s, a)}s,a∈S×A.

Although we present our results for the case of undiscounted
episodic reinforcement learning problems, our results extend
to the average reward setting with bounded diameter MDPs
as in [Jaksch et al., 2010, Agrawal and Jia, 2017]. We are
inspired by UCRL, but shift towards noise augmentation
rather than an intractable model cloud. We thus call our
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approach Noise Augmented Reinforcemennt Learning or
NARL.

NARL initializes an empty data buffer of rewards and tran-
sitions D. We denote by Nk(s) the number of times state
s has been encountered in the algorithm’s run up to the
beginning of episode k (before πk is executed). Similarly
we call Nk(s, a) the number of times the pair (s, a) has
been encountered up to the beginning of episode k, and let
Nk(s) = ∑a∈ANk(s, a). We make the following assump-
tion:

Assumption 1 (Rewards). We assume the rewards are
1−sub Gaussian with mean values in [0, 1].

3.1 CONCENTRATION

We start by recalling the mean estimators
{r̂k(s, a)}(s,a)∈S×A and {P̂k(s, a)}(s,a)∈S×A concen-
trate around their true values. We make use of a time
uniform concentration bound that leverages the theory of
self normalization [Peña et al., 2008, Abbasi-Yadkori et al.,
2011] to obtain the following:

Lemma 1 (Lemma 1 of Maillard and Asadi [2018]). For
all (s, a) ∈ S ×A:

P(∀t ∈ N ∣r(s, a) − r̂k(s, a)∣ ≥ βr(Nk(s, a), δ′)) ≤ δ,

P (∀t ∈ N ∥P (s, a) − P̂k(s, a)∥1 ≥ βP (Nk(s, a), δ′)) ≤ δ,

s.t. βr(n, δ′) ∶≈
√

log (n/δ′)
n , βP (n, δ′) ∶≈

√
∣S∣ log(n/δ′)

n .

A more precise version of these bounds is stated in the
Appendix. Equipped with these bounds, for the rest of the
paper we condition on the event:

E ∶= {∀k ∈ N,∀(s, a) ∈ S ×A,

∣ r(s, a) − r̂k(s, a)∣ ≤ βr(Nk(s, a), δ′),
∥P (s, a) − P̂k(s, a)∥1 ≤ βP (Nk(s, a), δ′)}.

If δ′ = δ
2∣S∣∣A∣ , Lemma 1 implies P(E) ≥ 1 − δ.

At the beginning of the k−th episode the learner produces
Mr reward augmentation noise scalars ξmk (s, a) ∼ Prk(s, a)
and possibly MP dynamics augmentation ∣S∣-dimensional
noise vectors ξ

m(s, a) ∼ PPk (s, a), for each state action
pair (s, a) ∈ S ×A. This notation will become clearer in
the subsequent discussion.

3.2 NOISE AUGMENTED UCRL

We start by showing that an appropriate choice for the noise
variables {Prk(s, a)}s,a∈S×A and {PPk (s, a)}s,a∈S×A yields
an algorithm akin to UCRL2 and with provable regret guar-
antees.

Our main theoretical results of this section (Theorem 1)
states that in the tabular setting, if we set Prk(s, a) =

N (0, σ2
t,r(s, a)) and PPk (s, a) = N (0, I∣S∣σ

2
t,P (s, a)), for

appropriate values of σ2
t,r(s, a) and σ2

t,P (s, a) we can ob-
tain a regret guarantee of order Õ(∣S∣H

√
∣S∣∣A∣T ), which

is competitive w.r.t. UCRL2 that achieves Õ(∣S∣H
√
∣A∣T ).

These results can be extended beyond Gaussian noise aug-
mentation provided the noise distributions satisfy quantifi-
able anticoncentration properties. For example, when using
the dynamics noise given by posterior sampling of dynamics
vectors, we recover the results of Agrawal and Jia [2017] in
the episodic setting. Our results can be easily extended to
the bounded diameter, average reward setting.

Noise Augmented Extended Value Iteration (NAEVI) pro-
ceeds as follows: at the beginning of episode k we compute
a value function Ṽk as:

Ṽ
h
k(πk)[s] = max

a∈A
(r̂k(s, a) + Es′∼P̂k(s,a) [Ṽ

h+1
k (s′)]

+max
m

ξ
m
k (s, a) +max

m
⟨ξ(m)
k (s, a), Ṽh+1

k ⟩)
(2)

where A ∶= maxm ξ
m
k (s, a) and B ∶=

maxm⟨ξ(m)
k (s, a), Ṽh+1

k ⟩ represent the optimism bonuses
for the present and future respectively. Many existing deep
RL methods such as Bellemare et al. [2016], Tang et al.
[2017], Burda et al. [2019b] focus on adding bonuses that
act like term A. By adding term B, Algorithm 1 is able to
take into account not only present but future rewards, and
act optimistically according to them. In what follows, and
for all states (s, a) ∈ S × A, we will combine the noise
values ξ(m)

k (s, a) and vectors ξ(m)
k (s, a) with the average

empirical reward r̂k(s, a) and empirical dynamics P̂k(s, a)
and think of them as forming sample rewards and sample
dynamics vectors:

r̃
(m)
k (s, a) = r̂k(s, a) + ξ

(m)
k (s, a)

P̃
(m)
k (s, a) = P̂ (m)

k (s, a) + ξ
(m)
k (s, a).

Although P̃
(m)
k (s, a) may not be a probability measure,

for convenience we still treat it as a signed measure and
write E

s′∼P̃
(m)
k (s,a) [⋅] ∶= ⟨P̂k(s, a) + ξ

(m)
k (s, a), ⋅⟩. Let

Mk = (S,A, P̃ ,H, r̃, P0) be the approximate MDP re-
sulting from collecting the maximizing rewards r̃(m)

k and
dynamics vectors P̃ (m)

k while executing NAEVI. In other
words, for any state action pair (s, a) ∈ S ×A:

r̃k(s, a) = max
m=1,⋯,Mr

r̃
m
k (s, a) (3)

P̃k(s, a) = arg max
{P̃ (m)
k (s,a)}MPk=1

⟨P̃ (m)
k (s, a), Ṽh+1

k ⟩.

Our main result in this section is the following theorem:
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Theorem 1. Let ε ∈ (0, 1), δ = ε
4T

,Mr ≥
log( 2∣S∣∣A∣H

δ
)

3
and

MP ≥ 3+
log( 2∣A∣H

δ
)

3
. The regret R(T ) of UCRL Algorithm

1 with Gaussian noise augmentation satisfies the following
bound with probability at least 1 − ε:

R(T ) ≤ Õ(∣S∣H
√
∣S∣∣A∣T )

Õ hides logarithmic factors in ∣A∣, ∣S∣, ε and T and:

ξ
(m)
k,r ∼ N (0, σ2

r), s.t σr = 2βr(Nk(s, a),
δ

2∣S∣∣A∣)

ξ
(m)
k,P ∼ N (0, σ2

P I), s.t σP = 2βP (Nk(s, a),
δ

∣S∣∣A∣)

We remark these bounds are not optimal in H and S, never-
theless, Theorem 1 shows this simple (and computationally
scalable) noise augmented algorithm satisfies a regret guar-
antee. Our proof techniques are inspired but not the same
as those of Agrawal and Jia [2017]. Our proofs proceed in
two parts; returning to the Optimism Decomposition (Equa-
tion 1), we deal with the Optimism and Estimation Error
separately. The details of all proofs are in the Appendix.

3.3 NOISE AUGMENTED UCBVI

In this section we show that a simple modification of the
previous algorithm can yield an even stronger regret guar-
antee. The chief insight is to note that under Assumption 1,
the scale of the value function is at most H and therefore in-
stead of adding dynamics noise vectors ξ(m)

k it is enough to
simply scale up the variance of the reward noise components
to ensure optimism at the value function level.

Noise Augmented Value Iteration (NAVI) proceeds as
follows: at the beginning of episode k we compute a
Q−function Q̃k as:

Q̃k,h(s, a) = min (Q̃k−1,h(s, a),H, r̃k(s, a)+

Es′∼P̂k(s,a) [Ṽk,h+1(s, a)] )

Ṽk,h(s, a) = max
a∈A

Q̃k,h(s, a). (4)

Where r̃k(s, a) is defined as in equation 3. The policy exe-
cuted at time k by Noise Augmented UCBVI is the greedy
policy w.r.t. Q̃k,h(s, a).

Our main result in this section is the following theorem:

Theorem 2. Let ε ∈ (0, 1), δ = ε
4T

and Mr ≥
log( 2∣S∣∣A∣H

δ
)

3
.

The regretR(T ) of UCBVI Algorithm 1 with Gaussian noise
augmentation satisfies the following bound with probability
at least 1 − ε:

R(T ) ≤ Õ(∣S∣H
√
∣A∣T )

Õ hides logarithmic factors in ∣A∣, ∣S∣, ε and T and:

ξ
(m)
k,r ∼ N (0, σ2

r), s.t. σr = 2Hβr(Nk(s, a),
δ

2∣S∣∣A∣).

3.3.1 Boostrap Noise Augmentation

Drawing inspiration from [Vaswani et al., 2018, Kveton
et al., 2019], we introduce the following algorithm:

1. Initialize D by adding 2MB tuples
{(s, a,−1), (s, a, 1)}Wi=1 to each state action pair
(s, a) ∈ S ×A.

Build Prk(s, a) via the following procedure:

2 For each {(s(k)h , a
(k)
h )}Hh=1 encountered during step (*)

of Algorithm 1, add (s(k)h , a
(k)
h , r

(k)
h ) and 2MB ex-

tra tuples {(s(k)h , a
(k)
h ,−1), (s(k)h , a

(k)
h , 1)}2MB

i=1 to the
data buffer D.

3 For all (s, a) ∈ S ×A, compute the empirical rewards
{r̂(m)
k (s, a)}Mr

m=1 by boostrap sampling with replace-
ment from the data buffer D(s, a) with probability
parameter 1/2:

r̂
(m)
k (s, a) = 1

∑∣Dk(s,a)∣
i=1 xi

∣Dk(s,a)∣
∑
i=1

xiri(s, a).

Where xi are all i.i.d. Bernoulli random variables with
parameter 1

2
and ri(s, a) are the reward samples in

the data buffer D(s, a). The value of r̃k(s, a) is again
computed via equation 3.

Similar to RLSVI this algorithm doesn’t need to maintain
visitation counts. The following theorem holds:

Theorem 3. Let ε ∈ (0, 1) and δ = ε
4T

, MB = H log(T )

and Mr ≥
log( 2∣S∣∣A∣H

δ
)

3
. The regret R(T ) of Algorithm 1

with Boostrap noise augmentation satisfies the following
bound with probability at least 1 − ε:

R(T ) ≤ Õ(∣S∣H
√
∣A∣T )

Õ hides logarithmic factors in ∣A∣, ∣S∣, ε and T

4 ANTI-CONCENTRATION AND
OPTIMISM

The fundamental principle behind our bounds is that noise
injection gives rise to optimism. In order to show this we
rely on anti-concentration properties of the noise augmen-
tation distributions. For the sake of simplicity we present
simple results regarding Gaussian noise variables, their anti-
concentration properties and one-step optimism. More nu-
anced results extending the discussion to Bootstrap sampling
are in the Appendix.
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Benign variance. We start by showing that whenever the
noise is Gaussian and has an appropriate variance, with a
constant probability each of the noise perturbed reward esti-
mators r̃(m)

k is at least as large as the empirical mean, plus
the confidence radius βr(Nk(s, a), δ

∣S∣∣A∣). We can boost
this probability by setting Mr to be sufficiently large. The
main ingredient behind this proof is the following Gaussian
anti-concentration result:

Lemma 2. Lower bound on Gaussian density N (µ, σ2):

P (X − µ > t) ≥ 1√
2π

σt

t2 + σ2
e
− t

2

2σ2 . (5)

Using Lemma 2 we can show that as long as the standard
deviation of ξ(m)

k (s, a) is set to the right value, r̃(m)
k (s, a)

overestimates the true reward r(s, a) with constant proba-
bility.

Lemma 3. Let (s, a) ∈ S ×A. If r̃(m)
k (s, a) ∼ r̂k(s, a) +

N (0, σ2) for σ = 2βr(Nk(s, a), δ
2∣S∣∣A∣) then:

P(r̃(m)
k (s, a) ≥ r(s, a)∣E) ≥ 1

10
. (6)

Lemma 3 implies that with constant probability the values
r̃
(m)
k (s, a) are an overestimate of the true rewards. It is also

possible to show that despite this property, r̃k(s, a) remain
very close to r̂k(s, a) and therefore to r(s, a). In summary:

Corollary 1. The sampled rewards r̃k(s, a) are optimistic:

P (r̃k(s, a) = max
m=1,⋯,Mr

r̃
(m)
k (s, a) ≥ r(s, a)»»»»»»E) ≥ 1−( 1

10
)
Mr

(7)
while at the same time not being too far from the true

rewards:

P (∣r̃k(s, a) − r(s, a)∣ ≥ Lβr (Nk(s, a),
δ

2∣S∣∣A∣ )
»»»»»»E) ≤

δ

∣S∣∣A∣ .
(8)

Where L = (2
√

log ( 4∣S∣∣A∣Mr

δ
) + 1).

Corollary 1 shows the trade-offs when increasing the num-
ber of models in an ensemble: it increases the amount of
optimism, at the expense of greater estimation error of the
sample rewards. A similar statement can be made of the dy-
namics in UCRL, but we defer the details to the appendix.

Boostrap optimism The necessary anti-concentration prop-
erties of the sampling distribution corresponding to Theo-
rem 3 are explored in the Appendix.

RLSVI Comparison RLSVI’s regret bound is of the or-
der of O(H3

S
3/2√

AK) while NARL-UCRL2 is of the
order of O(HS3/2√

AK) and NARL-UCBVI is of the or-
der of O(HS

√
AK). Removing an additional

√
S factor

may prove more challenging since it is akin to the extra
√
d

factor present in the worst case regret bounds for Thomspon
sampling in Linear bandits. Our rates for noise augmented
NARL-UCBVI are superior to RLSVI, and even better in its
H dependence than the latest regret bounds for the RLSVI
setting (see Agrawal et al. [2020]). NARL and RLSVI are
incomparable when moving into the function approximation
regime since in this setting RLSVI will not be a model based
algorithm. We also want to remark that the existing works
on RLSVI are purely theoretical works and therefore there is
no empirical evidence in neither Russo [2019] nor Agrawal
et al. [2020] regarding its usefulness in a deep RL setting.

Comparison to Thompson Sampling using Dirichlet
prior: As explained above, the objective of this work is
not to be state of the art and get the optimal regret guaran-
tees. Our dependence on S should be compared not with this
approach but with RLSVI. Although the use of a Dirichlet
prior allows the authors to get a better dependence on S, the
resulting algorithm is infeasible in the Deep RL paradigm.
It is unclear what would the equivalent of maintaining such
a prior be when making use of function approximation.

5 TABULAR EXPLORATION
EXPERIMENTS

In this section we evaluate Noise Augmented UCRL (re-
ferred to as NARL) in the tabular setting, as is common for
work in theoretical RL. We consider two implementations
of NARL: (1) Gaussian, where we use use one model, but
sample M = 10 noise vectors from a Gaussian distribution,
with variance c

Nk(s,a)
for a constant c, which we set to 1,

and (2) Bootstrap, where we maintainM = 10 models, each
having access to 50% of the data. We compare these against
UCRL2 [Jaksch et al., 2010] and Optimistic Posterior Sam-
pling (OPSRL), using an open source implementation.2

We begin with the RiverSwim environment [Strehl and
Littman, 2008], with 6 states and en episode length of 20.
We repeat each experiment for 20 seeds, to produce a median
and IQR. In Fig. 1(a) we see that both versions of NARL
exhibit strong computational performance, while UCRL2
performs poorly. In Fig. 1(b) we explore why this is the
case, and plot the approximate value function for UCRL2
and NARL. We see that the weak performance for UCRL2
likely comes from over-estimation, i.e. being overly opti-
mistic, and it takes much longer to converge to the true value
function. See the following link to run these experiments in
a notebook: https://bit.ly/3gVwsQF.

We also explore the choice of noise augmentation, using the
Deep Sea environment [Osband et al., 2018] from bsuite
[Osband et al., 2020]. This experiment shows the ability
to scale with increasing problem dimension. We used ten

2https://github.com/iosband/TabulaRL

1418

https://bit.ly/3gVwsQF
https://github.com/iosband/TabulaRL


(a) RiverSwim (b) Q-Values (c) Deep Sea

Figure 1: Tabular RL experiments: a) RiverSwim b) Stochastic Chain c) Number of episodes to solve the Deep Sea
task, the x-axis corresponds to increasing dimensionality.

environments with N = {10, . . . , 28}. As we see in Fig.
1(c) NARL solves all ten tasks. Interestingly, the Gaussian
method is best, indicating promise for this approach.

Now we see NARL can compete empirically in the tabu-
lar setting, we next seek to demonstrate its’ scalability in
the deep RL paradigm. Note that other methods, such as
UCRL2, are intractable beyond tabular environments. Mean-
while, the noise augmentation we propose uses ingredients
commonly found in state-of-the-art deep MBRL methods,
such as bootstrap ensembles.

6 OPTIMISM IN DEEP RL

Despite being a popular theoretical approach, optimism is
not prevalent in the deep RL literature. The most prominent
theoretically motivated deep RL algorithm is Bootstrapped
DQN [Osband et al., 2016a] which is inspired by PSRL.
However, it is well-known that Q-functions generally over-
estimate the true Q-values [Thrun and Schwartz, 1993],
therefore, many methods not using a lower bound (as used
in TD3, Fujimoto et al. [2018]) may in fact be using an
optimistic estimate. In recent times [Ciosek et al., 2019,
Rashid et al., 2020] present model-free approaches using
optimistic policies to explore by shifting Q-values optimisti-
cally based on epistemic uncertainty. However, as far as we
are aware, optimism is not widely used w.r.t the dynamics
in deep model based RL.

We know from our theoretical insights that an effective
optimistic algorithm needs to balance the Optimism Decom-
position. In the tabular setting we sought to add noise to
boost the Optimism term, which led to too much variance
in the case of UCRL2. For deep RL, the dynamics are very
different, as we add significant noise from function approxi-
mation with neural networks. In this section we introduce a
scalable implementation of NARL, which builds on top of
the state-of-the art continuous control (from states) MBRL
algorithm. We also discuss the key factors influencing the
Optimism Decomposition.

6.1 NOISE VIA BOOTSTRAPPED ENSEMBLES

We implement our algorithm in by using an ensemble, as is
common in existing state-of-the-art methods [Janner et al.,
2019, Clavera et al., 2018, Kurutach et al., 2018, Chua et al.,
2018, Ball et al., 2020]. For our implementation, we focus
on Janner et al. [2019], using probabilistic dynamics models
[Nix and Weigend, 1994] and a Soft Actor Critic (SAC,
Haarnoja et al. [2018a,b]) agent learning inside the model.

Dyna-style approaches [Sutton, 1991], are particularly sensi-
tive to model bias [Deisenroth and Rasmussen, 2011], which
often leads to catastrophic failure when policies are trained
on inaccurate synthetic data. To prevent this, state-of-the-
art methods such as MBPO randomly sample models from
the ensemble to prevent the policy exploiting an individual
(potentially biased) model. Rather than randomly sampling,
we follow the Noise Augmented UCRL approach (Equa-
tion 2) and pass the same state-action tuple through each
model, and select the highest predicted reward, and and as-
sess which ‘hallucinated’ next state has the highest expected
return according to the critic of the policy thus providing us
with an optimistic estimate of the transition dynamics.
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Figure 2: Ensemble member selection frequency under opti-
mism.

You’re only as good as your worst model: However, in the
deep RL setting, we introduce a significant amount of noise
due to function approximation with neural networks. It has
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Figure 3: Curves show the mean ± one std for InvertedPendulum (left) and Hopper (right).

been observed in practice that this variance is sufficient to
induce optimism [Osband et al., 2016a]. A key considera-
tion is the tendency for optimism to select the individual
model with highest variance, resulting in over-exploitation
of the least accurate models. In Fig. 2 we demonstrate this
phenomenon, by training an ensemble of models (ordered
here in increasing validation accuracy) and comparing the
proportion each model was selected (red) against the av-
erage distance from the mean of the next state estimates
(grey); we observe that these quantities are positively corre-
lated. Thus, the optimistic approach selects (and exploits)
the least accurate models.

Reducing Estimation Error To balance the Optimism De-
composition in deep RL, we must focus on Estimation Error.
We introduce a “Model Radius Constraint" εM : we calculate
the empirical mean (µM ) of the expected returns, and ex-
clude models that fall outside the permissible model sphere
(defined as µM ± εM ) as being overly optimistic. Interest-
ingly, an undocumented feature in MBPO [Janner et al.,
2019] that mirrors this is the idea of maintaining a subset of
“elite" models. Briefly, even though K models are trained
and maintained, in reality the top E models are used for
rollouts, where E ≤ K. Even though models are sampled
randomly in this approach, there is still a chance that “ex-
ploitable" samples are generated by these poorer performing
models.

The introduction of εM allows us to reduce Estimation Error
from optimism. We see in Fig. 2 that a wide radius (εM = 5,
blue) has a small impact on reducing usage of the worst
model. However, when we set a small radius (εM = 0.1,
green), the models are selected almost uniformly. Details
are in the Appendix.

6.2 DEEP RL FOR CONTINUOUS CONTROL

Now we evaluate the deep RL implementation of NARL.
We focus on the InvertedPendulum task, as it is the sim-
plest continuous environment and thus allows us to perform
rigorous ablation studies. We run ten seeds for a variety

of configurations, selecting the number of models M from
{3, 5, 10} and εM from {0.1, 5,None}. These two parame-
ters trade-off the amount of variance in the ensemble. Hav-
ing more models means more noise. In addition, having a
smaller εM will reduce variance. The results are presented
in Table 2.

Interestingly, we see strong evidence for our hypothesis that
too much variance is a problem in the deep RL setting. This
results in the phenomenon whereby having fewer models
(e.g. M = 3) actually gives better performance, which has
an added benefit of reduced computational cost. This is in
contrast to methods based on random ensemble sampling
[Kurutach et al., 2018, Osband et al., 2016a], where per-
formance typically increases with the number of models.
When using more models, the smaller model radius (εM ) is
crucial.

Table 2: The mean number of timesteps to solve the
InvertedPendulum task, with standard deviations.

εM 3 5 10

0.1 1850 ±166 2350 ±300 3300 ± 953
5 2000±274 2575 ±251 3225 ±675
None 2000 ±353 2775 ±467 5850 ±2037

In Fig. 3 we compare NARL against the publicly re-
leased data from MBPO [Janner et al., 2019] on the
InvertedPendulum, Hopper and HalfCheetah environ-
ments. For InvertedPendulum we show the results with
M = 3 and εM = 0.1, the strongest result from Table 2.
With these parameters selected appropriately, we get mean-
ingful gains against a very strong baseline, using an almost
identical implementation aside from the model selection and
εM . For the larger Hopper and HalfCheetah tasks, we also
usedM = 3 and selected εM from {0.1, 0.5}. Again, we are
able to perform favorably vs. MBPO, demonstrating the po-
tential for our approach to scale to larger environments. This
performance comes despite using over 50% fewer models
than MBPO (3 models vs. 7).
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We do not claim these results are state of the art, but high-
light the design choices considered when using optimism
for deep MBRL. In these settings we have been able to
show that if variance can be controlled (e.g. by using εM )
then optimism can perform comparably well with the best
random-sampling method.

Author Contributions

Aldo Pacchiano, Philip Ball, and Jack Parker-Holder pro-
vided an equal contribution to this paper.
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