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1 TOY DATASET DESCRIPTION

Figure 1 provides a visualization of the toy dataset used in
comparing the relaxations in Figure 1 in the main paper.

Figure 1: A visualization of the toy dataset used in Figure
1 in the main paper. The class labels are (+) and (−). The
color represents group membership for a binary sensitive
attribute, so the two groups are red and blue. So the goal is
to separate the class labels, and remain fair with respect to
the colors. The dataset contains 600 points, but only 400 are
shown for clarity.

Dataset construction: The dataset is taken directly
from (Lohaus et al., 2020). The points are drawn from vari-
ous Gaussian distributions.

• Protected sensitive attribute. We draw 150 points with
a negative label from a Gaussian with mean µ1 =
[2,−1] and covariance Σ1 = [[1, 0], [0, 1]]. For the pos-
itive label we draw 150 points from a mixture of two
Gaussians, with µ2 = [3,−1] and Σ2 = [[1, 0], [0, 1]]
and µ3 = [1, 4] and Σ3 = [[0.5, 0], [0, 0.5]].

• Unprotected sensitive attribute: For the unprotected
sensitive attribute, we draw 150 points with a posi-
tive label from a Gaussian with mean µ4 = [2.5, 2.5]

*Work done while at EPFL and Swisscom.

and covariance Σ4 = [[1, 0], [0, 1]]. For the nega-
tive label we draw 150 points from a Gaussian with
µ5 = [4.5,−1.5] and Σ5 = [[1, 0], [0, 1]].

2 MAMO-FAIR ALGORITHM

Here we provide some further details on the multi-objective
algorithm described in Section 5 of the main paper.

Figure 2: The figure gives an intuitive visualization of the
common descent vector for two objectives. The two sur-
faces can be interpreted as loss functions for two objectives.
The arrow points to the direction that minimizes both loss
functions simultaneously.

Figure 2 gives an intuition for a key ingredient of the multi-
objective algorithm, the common descent vector. Algorithm
1 provides the pseudocode for the algorithm.

3 SUPPORTED METRICS

Since the method is based on relaxing the indicator function,
it supports all error-rate based metrics. We formally define
some of them here. Table 1 in (Celis et al., 2019) provides an
even more complete list. The Figure 3 defines metrics based
on mis-classification rates of the prediction. We formally
define some of the supported metrics next to give a general
picture.

Definition 1 (False Positive Rate). Parity of false positive
rate

P[ŷ = 1 | a = −1, y = −1] = P[ŷ = 1 | a = 1, y = −1]
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Table 1: Results Table: MF1 is the MAMO-fair algorithm optimizing separately for DEO and DDP, and MF2 is the
algorithm optimizing simultaneously for DDP and DEO. SFa is the SearchFair algorith, Zaf is Zafar, Cot is Cotter, Unc is
the unconstrained model and Con is the constant model

Adult Compas

Demographic parity Equality of opportunity Demographic parity Equality of opportunity

|DDP| Error |DEO| Error |DDP| Error |DEO| Error

MF1 0.09 ± 0.03 0.18 ± 0.01 0.05 ± 0.03 0.18 ± 0.01 0.04 ± 0.01 0.32 ± 0.01 0.08 ± 0.04 0.33 ± 0.01
MF2 0.08 ± 0.03 0.19 ± 0.02 0.04 ± 0.02 0.19 ± 0.02 0.11 ± 0.06 0.33 ± 0.01 0.11 ± 0.07 0.33 ± 0.01

SFa 0.00 ± 0.00 0.24 ± 0.00 0.05 ± 0.03 0.20 ± 0.01 0.03 ± 0.01 0.45 ± 0.02 0.01 ± 0.01 0.45 ± 0.01
Zaf 0.20 ± 0.01 0.18 ± 0.00 0.09 ± 0.06 0.20 ± 0.02 0.03 ± 0.01 0.42 ± 0.01 0.21 ± 0.06 0.33 ± 0.02
Cot 0.00 ± 0.00 0.24 ± 0.00 0.06 ± 0.04 0.20 ± 0.01 0.04 ± 0.02 0.40 ± 0.01 0.01 ± 0.01 0.45 ± 0.02
Unc 0.19 ± 0.01 0.17 ± 0.00 0.18 ± 0.03 0.17 ± 0.00 0.20 ± 0.02 0.32 ± 0.01 0.23 ± 0.05 0.32 ± 0.03
Con 0.00 ± 0.00 0.24 ± 0.00 0.00 ± 0.00 0.24 ± 0.00 0.00 ± 0.00 0.46 ± 0.01 0.00 ± 0.00 0.46 ± 0.01

Table 2: Results Table: MF1 is the MAMO-fair algorithm optimizing separately for DEO and DDP, and MF2 is the
algorithm optimizing simultaneously for DDP and DEO. SFa is the SearchFair algorith, Zaf is Zafar, Cot is Cotter, Unc is
the unconstrained model and Con is the constant model

Dutch CelebA

Demographic parity Equality of opportunity Demographic parity Equality of opportunity

|DDP| Error |DEO| Error |DDP| Error |DEO| Error

MF1 0.08 ± 0.03 0.19 ± 0.01 0.03 ± 0.01 0.18 ± 0.00 0.06 ± 0.02 0.16 ± 0.01 0.06 ± 0.02 0.15 ± 0.03
MF2 0.14 ± 0.01 0.19 ± 0.00 0.08 ± 0.02 0.19 ± 0.00 0.04 ± 0.01 0.16 ± 0.00 0.01 ± 0.01 0.16 ± 0.00

SFa 0.02 ± 0.01 0.23 ± 0.00 0.01 ± 0.00 0.18 ± 0.00 0.01 ± 0.01 0.17 ± 0.00 0.01 ± 0.01 0.17 ± 0.00
Zaf 0.03 ± 0.01 0.23 ± 0.00 0.01 ± 0.01 0.18 ± 0.00 0.17 ± 0.01 0.15 ± 0.00 0.16 ± 0.01 0.15 ± 0.00
Cot 0.01 ± 0.01 0.25 ± 0.01 0.00 ± 0.00 0.19 ± 0.00 0.01 ± 0.01 0.18 ± 0.00 0.03 ± 0.01 0.16 ± 0.00
Unc 0.16 ± 0.01 0.18 ± 0.01 0.08 ± 0.01 0.18 ± 0.01 0.20 ± 0.01 0.15 ± 0.00 0.16 ± 0.01 0.15 ± 0.00
Con 0.00 ± 0.00 0.48 ± 0.00 0.00 ± 0.00 0.48 ± 0.00 0.00 ± 0.00 0.48 ± 0.00 0.00 ± 0.00 0.48 ± 0.00

Figure 3: Table from Zafar et al. (2017) on disparate mis-
treatment based measures. The table defines the rates, the
measure of fairness corresponding to each rate is the parity
of that rate across groups

Definition 2 (False Negative Rate). Parity of false negative
rate across groups

P[ŷ = −1 | a = −1, y = 1] = P[ŷ = −1 | a = 1, y = 1]

Definition 3 (True Positive Rate). Parity of true positive

rates across groups

P[ŷ = 1 | a = −1, y = 1] = P[ŷ = 1 | a = 1, y = 1]

Definition 4 (True Negative Rate). Parity of true positive
rate across groups

P[ŷ = −1 | a = −1, y = −1] = P[ŷ = −1 | a = 1, y = −1]

The relaxation procedure follows the same principle as de-
scribed in the main content, where each fairness notion is
written as a difference of expectation, further relaxed to an
empirical estimate of the expectation. As a last step 1x>0

is relaxed to tanh(c ∗ max(0, x)) and 1x<0 is relaxed to
tanh(c ∗min(0, x)).

4 RESULT TABLES

Table 1 and Table 2 provide full tables for the results de-
scribed in Figure 2 in the main paper. We note that in a few
cases both the error and fairness value are identical for more



Algorithm 1 Final algorithm with gradient normalization

1: for i ∈ 1, ..., k do
2: ELi = `i(w)
3: end for
4: for epoch ∈ 1, ...,M do
5: for batch ∈ 1, ..., B do
6: forward_pass()
7: evaluate_model()
8: for i ∈ 1, ..., n do
9: loss = `i(w)

10: loss_gradient = ∇`i(w)

11: ∇`i(w) = ∇w`i(w)
ELi

12: end for
13: α1, ..., αk =

QCOPSolver
(
∇w`1(w), ...,∇w`k(w)

)
14: ∇wL(w) =

∑k
i=1 αi∇w`i(w)

15: w = w − η∇wL(w)
16: end for
17: end for

than one baseline method. In this case we slightly perturb
one of the values to ensure that all points are visible in the
figure in the main paper. The tables in this appendix provide
the values without this perturbation.

5 PROOF OF THEOREM 1

Here we provide the proof of Theorem 1 from the main
paper. First we give a reminder of the definition of the sign
function

sign(x) =


1 if x > 0

−1 if x < 0

0 if x = 0

(1)

Observation 1. The hyperbolic tangent is an odd function,
which is to say that

tanh(−x) = − tanh(x)

Observation 2 (The quotient law of convergent series). Let
(an) and (bn) be convergent series such that limn→∞ an =
A and limn→∞ bn = B. Then we have

lim
n→∞

an
bn

=
limn→∞ an
limn→∞ bn

=
A

B

provided that B 6= 0.

Observation 2 is a commonly used result in real analysis.
See Theorem C in (Freiwald, 2014) for a proof.

Theorem 1. The hyperbolic tangent of n ∗ x converges to
the sign of x for every fixed x ∈ R as n goes to infinity.

Formally,

lim
n→∞

tanh(nx) = sign(x)∀x ∈ R (2)

Proof. We know from the definition of the hyperbolic tan-
gent function that

tanh(nx) =
1− e−2nx

1 + e−2nx
(3)

The theorem requires pointwise convergence, meaning that
the convergence in n should hold for each value of x. There-
fore x can be though of as a constant for the purpose of the
proof. Assuming x to be a constant let an = 1− e−2nx and
bn = 1 + e−2nx. Then we have

tanh(nx) =
an
bn

(4)

We divide into cases by the value of x.

Case 1: x > 0. In this case we have limn→∞ e−2nx =
0. Therefore it follows that limn→∞ an = 1 and
limn→∞ bn = 1. From Equation 4 we know that tanh(nx)
is a ratio of an and bn. Therefore it follows from Observa-
tion 2 that

lim
n→∞

tanh(nx) =
limn→∞ an
limn→∞ bn

= 1

Case 2: x < 0. Since x < 0, we have −x > 0. There-
fore from case 1 we know limn→∞ tanh(n(−x)) = 1. We
have from Observation 1 that tanh(−nx) = − tanh(nx).
Therefore,

lim
n→∞

tanh(nx) = − lim
n→∞

tanh(n(−x)) = −1

Case 3: tanh(nx) = 0 for x = 0. Therefore

lim
n→∞

tanh(nx) = 0

Putting the three cases together we have

tanh(nx) =


1 if x > 0

−1 if x < 0

0 if x = 0

This is identical to the definition of the sign function (Equa-
tion 1. Therefore,

lim
n→∞

tanh(nx) = sign(x)∀x ∈ R



6 PROOF OF LEMMA 1

Lemma 1. tanh(n ∗max(0, x)) converges to the indicator
function of x > 0 as n goes to infinity. Formally,

lim
n→∞

tanh(n ∗max(0, x)) = 1x>0 ∀x ∈ R (5)

Proof. We know from Theorem 1 that

lim
n→∞

tanh(n ∗max(0, x)) = sign(max(0, x)) (6)

Case 1: x > 0. When x > 0, max(0, x) = x.
Therefore we have sign(max(0, x)) = sign(x) = 1. So
sign(max(0, x)) = 1 when x > 0.

Case 2: x ≤ 0. When x ≤ 0, max(0, x) = 0 and there-
fore sign(max(0, x)) = 0.

So we have that sign(max(0, x)) = 0 for x ≤ 0 and
sign(max(0, x)) = 1 for x > 0. But this is by def-
inition the indicator function of x > 0, 1x>0. Hence,
sign(max(0, x)) = 1x>0 and we can conclude that
limn→∞ tanh(n ∗max(0, x)) = 1x>0.
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