
GP-CONVCNP: Better Generalization for Convolutional Conditional Neural
Processes on Time Series Data — Supplementary Material

Jens Petersen1 Gregor Köhler1 David Zimmerer1 Fabian Isensee2 Paul F. Jäger3 Klaus H. Maier-Hein1

1Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
2HIP Applied Computer Vision Lab, Division of Medical Image Computing, German Cancer Research Center

3Interactive Machine Learning Group, German Cancer Research Center

A METHOD DESCRIPTIONS

Fig. A.1 shows schematic representations of the different
methods used in this work, and a description is given in
the figure caption. The MLPs in both NP and ANP have
6 hidden layers with 128 channels each, and the input and
output sizes are adjusted to match the dimensions of data
and latent representations. The latent representation in both
models has 128 dimensions, so that the encoders for the NP
and the NP path in ANP have 256 output channels to repre-
sent both the mean and the standard deviation of a Gaussian
distribution (in practice, we predict the log-variance, not
the standard deviation). The attention mechanism in ANP
also uses 128 as the embedding dimension. These configura-
tions follow Le et al. [2018], who evaluated several different
configurations for NP and ANP.

CONVCNP and GP-CONVCNP both use a Gaussian ker-
nel with a learnable length scale l to map the input to a
continuous representation, given by

k(x, x′) = exp

(
−|x− x

′|2
2l2

)
(1)

The result is discretized onto a grid, which we obtain by
taking the minimum and maximum of the target inputs as
the value range, padded by 0.1 units. The grid is constructed
over this range with a resolution of 20 points per unit. The
discretized representations are projected to 8 channels be-
fore a CNN is applied. The CNN is a 12-layer residual
network with ReLU activations. The number of channels in
the convolutional layers doubles every second layer for the
first 6 layers and is then decreased symmetrically, leading
to 8 output channels. Residual connections are implemented
via concatenation. Predictions are obtained by convolving
the CNN output with a target input, followed by a final
projection.

B OPTIMIZATION

Recall that our optimization objective is

max
θ

∑
f∈F

log pθ(yt|xt,xc,yc) (2)

which we can rewrite as

max
θ

∑
f∈F

log pθ(yt|xt, Z) (3)

where Z is given by the different E that encode the context
introduced in Section 2. For CONVCNP this is deterministic,
so we can maximize Eq. (2) directly. For the other methods
we can again rewrite the summands as

log p(yt|xt,xc,yc) = log E
z∼p(z|xc,yc)

p(yt|xt, z) (4)

where we now distinguish z as an expression of Z. In GP-
CONVCNP, p(z|xc,yc) is given by the GP posterior, so for
training we would need to integrate over the posterior. In
practice, we just draw a single sample, which is common
practice in stochastic mini-batch training. Approximating
the expectation with this sample, we can also directly maxi-
mize the log-likelihood.

In contrast to the above, p(z|xc,yc) is an unknown or in-
tractable mapping in NP and ANP, so we employ variational
inference, i.e. we approximate p(z|xc,yc) with a member
of some family Q that we can find by optimization. The
log-likelihood then becomes

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

mailto:Jens Petersen <jens.petersen@dkfz.de>?Subject=Your UAI 2021 paper

x1 y1

x2 y2

xN yN

xtarget

z

z1

z2

zN

µ σ

µ σ

MLP

MLP

ATTENTION a

a1

a2

aN

MLP

z

z1

z2

zN

µ σ

µ σ
MLPMLP

xtarget

KDE

DISCRETIZE

LIN + CNN
CONV

xtarget

LIN

GP

DISCRETIZE

LIN + CNN
CONV

xtarget

LIN

ytarget

µ σ

GP-CONVCNP

CONVCNP

ANP

NP

Figure A.1: Schematic overview of the different methods used in this work. Dotted lines indicate sampling and we use the
following acronyms: multilayer perceptron (MLP), kernel density estimate (KDE), Gaussian Process (GP), linear layer
(LIN), convolutional neural network (CNN). (First row) Neural Processes (NP) encode each context point (xc, yc) into a
representation zc. These are then averaged to form a global representation z. A sample from the global representation is
concatenated with the target input xt to predict the target output yt. (Second row) Attentive Neural Processes (ANP) contain
a NP, but have a second deterministic path. In this path, the context pairs are also encoded separately into representations ac.
These are then combined via an atttention mechanism that uses xt as the query, xc as the keys and ac as the values. The
resulting representation a is concatenated with the representation from the NP path and the target input to predict the target
output. (Third row) CONVCNP performs a kernel density estimate on the context observations (xc,yc), thus mapping to a
continuous representation. This representation is evaluated on a grid, i.e. discretized, and a projection and CNN operate on
the discretized representation. The result is evaluated at a target input xt by performing a convolution with the discretized
representation and finally projected to predict the target output. (Fourth row) GP-CONVCNP works similar to CONVCNP,
but instead of a deterministic kernel density estimate a Gaussian Process is applied to the context. We sample from the GP
posterior and discretize the result, continuing with the same operations as in CONVCNP. Note that for visual purposes, the
KDE and GP outputs are one-dimensional, but in reality the output space can have any number of dimensions.

log p(yt|xt,xc,yc) ≥ E
z∼q(z|xt,yt)

log p(yt|xt, z)

−DKL (q(z|xt,yt)||p(z|xc,yc))
(5)

≈ E
z∼q(z|xt,yt)

log p(yt|xt, z)

−DKL (q(z|xt,yt)||q(z|xc,yc))
(6)

where the inequality follows from Jensen’s inequality. To
maximize the LHS it is sufficient to maximize the RHS,
and Eq. (6) is what is being optimized in NP and ANP. q
corresponds to what we designated as E in Section 2. Like
for GP-CONVCNP, we approximate the expectation with a
single sample during training.

In our implementation, we use Adam with an initial learning
rate of 0.001. We train each model for 600 000 batches with
a batch size of 256. We repeatedly multiply the learning rate
by γ = 0.995 after training for 1000 batches.

C DATA & EVALUATION DETAILS

C.1 SYNTHETIC DATA

For all synthetic time series draws we define the x-axis to
cover the interval [−3, 3]. As outlined in Section 3.2, we
draw N context points randomly from this interval, with N
a random integer from the range [3, 100). We then draw M
target points in the same manner, with M a random integer
from [N, 100). During training, we add the context points
to the target set so that the methods learn to reconstruct the
context. These are the different types we evaluate:

1. Samples from a Gaussian Process with a Matern-5/2
kernel with lengthscale parameter l = 0.5. The kernel
is given by

k(x, x′) =

(
1 +

√
5|x− x′|
l

+
5|x− x′|2

3l2

)

· exp
(
−5|x− x′|

l

)
(7)

2. Samples from a Gaussian Process with a weakly peri-
odic kernel that is given by

k(x, x′) = exp

(
−|x− x

′|2
8

)
· exp

(
(cos(8πx)− cos(8πx′))2

)
· exp

(
(sin(8πx)− sin(8πx′))2

)
(8)

3. Fourier series that are given by

f(x) = a0 +

K∑
k=1

ak cos(kx− φk) (9)

where K is a random integer from [10, 20) and ak
(including a0) as well as φk are random real numbers
drawn from [−1, 1].

4. Step functions, where we draw S stepping points along
the x-axis, with S a random integer from [3, 10). The
interval between two stepping points is assigned a con-
stant value that is drawn from [−3, 3]. We ensure that
each interval is at least 0.1 units wide and that the step
difference is also at least 0.1 units in magnitude.

C.2 TEMPERATURE TIME SERIES

The temperature dataset we work with is taken
from https://www.kaggle.com/selfishgene/
historical-hourly-weather-data. It consists of
hourly temperature measurements in 30 US and Canadian
cities as well as 6 Israeli cities, taken continuously over
the course of ∼5 years. Occasionally there are NaN values
reported in the dataset, we either crop those when at the beg-
ging/end of a sequence or fill them via linear interpolation.
We use the US/Canadian cities as our training and validation
set and the Israeli cities as our test set. For both training and
testing we draw random sequences of length 720 (i.e. 30
days) from the corresponding set, and then draw N context
points and M target points from the sequence, with N from
the interval [20, 100) and M from [N, 100). The tempera-
tures for each city are normalized by their respective means
and standard deviations, and we define the time range for a
given sequence to be [0, 3], so that one time unit is equiva-
lent to 10 days. We evaluate each seed for a model with 100
random samples and report the mean and standard deviation
over 5 seeds for each model. For convenience, we include
the data with our implementation.

C.3 POPULATION DYNAMICS

We simulate population dynamics of a predator-prey popu-
lation with a Lotka-Volterra model. Let X be the number of
predators at a given time and Y the number of prey. We draw
initial numbers X from [50, 100) and Y from [100, 150).
We then draw time increments from an exponential distri-
bution and after each time increment one of the following
events occurs:

1. A single predator is born with probability proportional
to the rate θ0 ·X · Y

2. A single predator dies with probability proportional to
the rate θ1 ·X

https://www.kaggle.com/selfishgene/historical-hourly-weather-data
https://www.kaggle.com/selfishgene/historical-hourly-weather-data

3. A single prey is born with probability proportional to
the rate θ2 · Y

4. A single prey dies with probability proportional to the
rate θ3 ·X · Y

The rate of the exponential distribution we draw time incre-
ments from is the sum of the above rates. Each population
is simulated for 10000 events, and we reject populations
that have died out, populations that exceed a total number
of 500 individuals at any given point, as well as those where
the accumulated time is larger than 100 units. To get value
ranges that are better suitable for training, we rescale the
time axis by a factor 0.1 and the population axis by a factor
0.01. For each population we draw θ0 from [0.005, 0.01], θ1
from [0.5, 0.8], θ2 from [0.5, 0.8] and θ3 from [0.005, 0.01].
These parameters result in roughly 2/3 of the simulated pop-
ulations matching our criteria. We also tried the parameters
reported in Gordon et al. [2020], but found that we had to
reject more than 90% of populations, which meant an unrea-
sonably long training time, as the simulation process for the
populations is difficult to parallelize and thus rather slow.
The N context points and M target points are again drawn
randomly from a population, with N from [20, 100) and M
from [max(70, N), 150).

We evaluate models trained on simulated data on real
world measurements of a lynx-hare population. The
data were recorded at the end of the 19th and the
start of the 20th century by the Hudson’s Bay Com-
pany. To the best of our knowledge, the data represent
recorded trades of pelts from the two animals and not
direct measurements of the populations. There is no
unique source for the data in a tabular format, but
we used https://github.com/stan-dev/
example-models/blob/master/knitr/
lotka-volterra/hudson-bay-lynx-hare
and include the data with our code for convenience. For
evaluation, we normalize the data so that the mean popu-
lation matches the mean of populations in the simulated
data and the time interval matches the mean duration of a
simulated population.

C.4 WASSERSTEIN DISTANCE

As outlined in Section 3, we seek to compare the distribu-
tion of samples from a model with a reference distribution,
which we have access to for the synthetic examples sam-
pled from a GP in the form of the prediction from the same
GP. Comparing distributions is usually done with either
some form of f -divergence (e.g. the Kullback-Leibler di-
vergence) or with an Integral Probability Measure (IPM)
f-divergences require evaluations of likelihoods in both dis-
tributions, while we can only evaluate those under the GP
posterior but not in our models. IPM only compare samples
from the distributions and are thus suited for our scenario.

Table A.1: This table corresponds to the rightmost column
in Table 2, i.e. it shows results on the real world population
dynamics data. In Table 2, the evaluation was performed as
seen in Fig. 3, meaning one contiguous interval on the data
was selected as the target region and the rest of the data is
provided as context, following Gordon et al. [2020]. Here
we instead sample the context and target points randomly
from the entire interval, like we do in the other experiments
as well. For each seed, we average over 100 random draws
and report the standard deviation over 5 seeds as errors.
While CONVCNP maintains leading performance in terms
of reconstruction error, GP-CONVCNP significantly outper-
forms the other methods in predictive performance, similar
to what we found in Table 2. All methods perform worse
compared to the evaluation method used in Table 2.

Predictive LL↑ Recon. Error↓
NP −36.735± 4.137 0.952± 0.024
ANP −38.717± 3.572 0.718± 0.018
CONVCNP −28.762± 1.958 0.272 ± 0.008
GP-CONVCNP −19.252 ± 1.846 0.343± 0.020

One of the more well-known measures from this group is
the Wasserstein distance given by:

Wp(P,Q) = min
π

 |P |∑
i=1

||xi − yπ(i)||p
1/p

(10)

where P = {xi}i and Q = {yi}i are collections of samples
from the two distributions. In colloquial terms, the Wasser-
stein distance is the minimum overall distance between sam-
ple pairs, taken over all possible pairings between samples
from the two distributions. For this reason the Wasserstein-1
distance is also called the Earth Mover Distance. p is the
only hyperparameter we need to select, making this mea-
sure a very convenient choice. We set p = 2 so that the
underlying distance metric becomes the Euclidean distance.

D ADDITIONAL RESULTS

In this section we show some additional results, specifically
we show the performance as a function of the number of
context points (Fig. A.2) as well as examples for NP and
ANP on the temperature time series dataset in Fig. A.3
and on the population dynamics dataset in Fig. A.4. We
also show results on the population dynamics dataset in
Table A.1, using a different evaluation method compared to
the main manuscript.

https://github.com/stan-dev/example-models/blob/master/knitr/lotka-volterra/hudson-bay-lynx-hare
https://github.com/stan-dev/example-models/blob/master/knitr/lotka-volterra/hudson-bay-lynx-hare
https://github.com/stan-dev/example-models/blob/master/knitr/lotka-volterra/hudson-bay-lynx-hare

10 20 30 40 50 60 70 80 90 100

Number of context points

−2

−1

0

1

2

3

P
re

d
ic

ti
ve

L
L

Matern-5/2 GP

10 20 30 40 50 60 70 80 90 100

Number of context points

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

Weakly Periodic GP

NP

ANP

ConvCNP

GP-ConvCNP

Figure A.2: Performance as a function of the number of context points for the two synthetic GP examples. For sparse context
points, our model and CONVCNP are on par, while an increasing number of context points leads to an advantage for our
model.

0 5 10 15 20 25 30

Time [days]

275

280

285

290

295

300

T
em

p
er

at
u

re
[K

]

NP

0 5 10 15 20 25 30

Time [days]

ANP

0 5 10 15 20 25 30

Time [days]

NP

0 5 10 15 20 25 30

Time [days]

ANP

Figure A.3: Examples from the temperature time series test set for NP and ANP. For the interpolation task (left) we provide
context points from the full sequence, for the extrapolation task (right) we provide context points in the first half of the
sequence and evaluate the second. Both methods are unable to fit the context points, likely because the frequency is too high
to be represented in the models.

0 5 10 15 20 25 30 35 40

0

50

100

150

200

250

300

350

P
op

u
la

ti
o
n

[t
h

o
u

sa
n

d
s]

NP

0 5 10 15 20 25 30 35 40

ANP

Context Predator

Context Prey

Target Predator

Target Prey

1850 1860 1870 1880 1890 1900 1910 1920 1930

Time [years]

0

20

40

60

80

100

120

140

P
o
p

u
la

ti
o
n

[t
h

o
u

sa
n

d
s]

1850 1860 1870 1880 1890 1900 1910 1920 1930

Time [years]

Figure A.4: Example of NP and ANP applied to the simulated Lotka-Volterra population dynamics (top) and to the real
Hudson Bay Company lynx-hare dataset (bottom). Similar to CONVCNP and GP-CONVCNP, seen in Fig. 3, both work
well on simulated data. On the real data, however, both struggle to fit the context points and produce a poor prediction for
the test interval.

E IMAGE EXPERIMENTS

For a more complete comparison of our model with CON-
VCNP, we include image experiments, specifically MNIST,
CIFAR10 and CelebA. For the latter two, we work with re-
sampled images at 322 resolution. The context set has a size
drawn from [20, 400) ([20, 300) for MNIST), the target set
a size drawn from [50, 400), and we reconstruct both target
and context points during training. We evaluate the aver-
age log-likehood of the model predictions on the respective
test sets, as seen in Table 3. The implementation of CON-
VCNP is again taken directly from the official repository,
and we leave the architecture unchanged with the exception
of swapping the kernel interpolation for a GP to make the
comparison fair. All other hyper parameters are the same as
in the time series experiments.

Examples for both CONVCNP and GP-CONVCNP can be
seen in Fig. A.5, Fig. A.6 and Fig. A.7, with each exam-
ple taken from the test sets. There is not noticeable visual
difference between the two model, so we assume that the im-
proved performance is due to better estimates of the predic-
tive uncertainty (i.e. the standard deviation of the predicted
Gaussian). In terms of performance, we found that inference
takes roughly 1.5x as long for GP-CONVCNP as it does for
CONVCNP, which we believe is still an acceptable tradeoff.

ConvCNP

GP-ConvCNP

500 200 150 100 50 20

ConvCNP

GP-ConvCNP

500 200 150 100 50 20

ConvCNP

GP-ConvCNP

500 200 150 100 50 20

Figure A.5: Examples for CONVCNP and GP-CONVCNP applied on MNIST test data. Models were trained on the training
set. Numbers indicate the number of context points and the top left panel shows the reference image for each case.

ConvCNP

GP-ConvCNP

500 200 150 100 50 20

ConvCNP

GP-ConvCNP

500 200 150 100 50 20

ConvCNP

GP-ConvCNP

500 200 150 100 50 20

Figure A.6: Examples for CONVCNP and GP-CONVCNP applied on CIFAR10 test data. Models were trained on the
training set. Numbers indicate the number of context points and the top left panel shows the reference image for each case.

ConvCNP

GP-ConvCNP

500 200 150 100 50 20

ConvCNP

GP-ConvCNP

500 200 150 100 50 20

ConvCNP

GP-ConvCNP

500 200 150 100 50 20

Figure A.7: Examples for CONVCNP and GP-CONVCNP applied on CelebA test data, resized to 32x32 resolution. Models
were trained on the training set. Numbers indicate the number of context points and the top left panel shows the reference
image for each case.

	Method Descriptions
	Optimization
	Data & Evaluation Details
	Synthetic Data
	Temperature Time Series
	Population Dynamics
	Wasserstein Distance

	Additional Results
	Image Experiments

