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Abstract

Trustworthy deployment of ML models requires
a proper measure of uncertainty, especially in
safety-critical applications. We focus on uncer-
tainty quantification (UQ) for classification prob-
lems via two avenues — prediction sets using
conformal prediction and calibration of probabilis-
tic predictors by post-hoc binning — since these
possess distribution-free guarantees for i.i.d. data.
Two common ways of generalizing beyond the
i.i.d. setting include handling covariate and label
shift. Within the context of distribution-free UQ,
the former has already received attention, but not
the latter. It is known that label shift hurts predic-
tion, and we first argue that it also hurts UQ, by
showing degradation in coverage and calibration.
Piggybacking on recent progress in addressing la-
bel shift (for better prediction), we examine the
right way to achieve UQ by reweighting the afore-
mentioned conformal and calibration procedures
whenever some unlabeled data from the target dis-
tribution is available. We examine these techniques
theoretically in a distribution-free framework and
demonstrate their excellent practical performance.

1 INTRODUCTION

It is common in classification to assume access to labeled
data {(Xi, Yi)}ni=1 where Xi ∈ X , Yi ∈ Y = {1, . . . ,K}
denote the covariates, or features, and the labels respectively,
and the pairs (Xi, Yi), i = 1, . . . , n are sampled i.i.d. from
some unknown joint distribution P overX×Y . Such dataset
is used to learn a predictor f , a mapping from X to rank-
ings or distributions over Y , by optimizing some loss/risk.
However, accurate point prediction alone can be insufficient
in certain applications, e.g., medical diagnosis, where trust-
worthy deployment of a model requires a valid measure of

uncertainty associated with corresponding predictions.

Common prediction models are mappings of the form
f : X → ∆K , where ∆K refers to the probability sim-
plex in RK , and a prediction on a new (test) point X ∈ X
is performed by picking the top-ranked class according to
f(X). One hopes that the output vector f(X) reflects the
true conditional probabilities of classes given the observed
input, but this won’t be true without additional distribu-
tional and modeling assumptions, that are typically strong
and unverifiable in practice. In this work, we focus on two
categories of post-processing procedures — calibration via
post-hoc binning and conformal prediction — that use held-
out data (referred to as calibration dataset) and a trained
model to construct a corresponding wrapper that provably
quantifies predictive uncertainty when no distributional as-
sumptions are made about the data generating mechanism.
(This generality comes at a certain price which we discuss
further.)

We work in the context of distribution-free uncertainty quan-
tification and, in particular, focus on producing prediction
sets (Section 2) and calibrated probabilities (Section 3),
which are complementary approaches for classifier UQ.
While the former aims to produce a set of labels that contains
the truth with high probability, the latter aims to amend the
output of a probabilistic predictor so that it has a rigorous fre-
quentist interpretation. It is useful to view the task through
the lens of how actionable the corresponding notion is in
a given setup. For example, in a binary classification setup
with only 4 possible prediction sets {∅, {1} , {2} , {1, 2}}, if
we were to observe prediction sets {1, 2} for large fraction
of data points, one might end up quite disappointed. Thus,
calibration could be a better way of quantifying uncertainty
in the binary case. However, mathematical guarantees on
calibration degrade with growing number of classes, but
the aforementioned prediction sets become an attractive op-
tion with more labels. To summarize, neither of two notions
provide a complete answer to the question of UQ for classi-
fication on their own, but together they represent two of the
more principled distribution-free approaches towards UQ
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that are practically efficient and theoretically grounded.

In real-world applications, the target distribution (gener-
ating test data) might not be the same as the source dis-
tribution (generating training data) which can both hurt a
model’s generalization and lead to violation of the assump-
tions under which even assumption-lean UQ is valid. As
meaningful reasoning about uncertainty on the target do-
main is hopeless without any additional information about
the type of distribution shift, one may hope that it is pos-
sible to make simplifying assumptions which would allow
us to perform appropriate corrections and construct proce-
dures with non-trivial guarantees. Let P,Q stand for the
source and target distributions defined on X × Y , with p, q
being the PDFs or PMFs associated with P and Q respec-
tively. Two common assumptions about the type of shift
include covariate shift [Shimodaira, 2000]: q(x) 6= p(x) but
q(y | x) = p(y | x), and label shift [Saerens et al., 2002]:
q(y) 6= p(y) but q(x | y) = p(x | y). Both assumptions
allow for a tractable interpretation when viewing the data
generating process as a causal or anti-causal model respec-
tively. For example, label shift is a reasonable assumption in
medical applications where diseases (Y ) cause symptoms
(X): it is intuitive that some sort of correction might be
required when a predictor trained in ordinary conditions is
deployed during extreme ones, e.g., during a pandemic.

Classic approaches for handling the aforementioned shifts
make an assumption that the target support is contained in
the source support, so that the covariate or label likelihood
ratios (or importance weights) q(x)/p(x) or q(y)/p(y) are
well-defined. In applications, true weights are never known
exactly, so the construction of consistent estimators has re-
ceived a lot of attention in the ML community. For label shift
dominant approaches that are still computationally feasible
in modern high-dimensional regimes, and that perform esti-
mation using labeled data only from the source distribution,
include: (a) Black Box Shift Estimation (BBSE) [Lipton
et al., 2018] and related Regularized Learning under Label
Shift (RLLS) [Azizzadenesheli et al., 2019], (b) Maximum
Likelihood Label Shift (MLLS) and its variants [Saerens
et al., 2002, Alexandari et al., 2020].

Within the context of distribution-free UQ, covariate shift
has recently received attention. Focusing on regression, Tib-
shirani et al. [2019] generalize construction of conformal
prediction intervals to handle the case of known covari-
ate likelihood ratio, and empirically demonstrate that the
modified procedure works reasonably well with a plug-in
estimator for the importance weights. For binary classifi-
cation, Gupta et al. [2020] propose a way of calibrating
probabilistic predictors under covariate shift, and quantify
miscalibration of the resulting estimator.

In this work, we close an existing gap for quantifying predic-
tive uncertainty under label shift. Building on recent results
about distribution-free calibration and (split-)conformal pre-

diction, we adapt both to handling label shift through an
appropriate form of reweighting. While typical application
of those frameworks requires labeled data from the target to
provide guarantees, we show that under reasonable assump-
tions one can still reason about uncertainty on the target even
if only unlabeled data is available. In contrast to covariate
shift where we observe X and need the covariate likelihood
ratio of X to reweight, under label shift we observe X but
need the likelihood ratio of Y to reweight. We also consider
an alternative way of addressing label shift by performing
label-conditional conformal classification [Vovk et al., 2005,
2016, Sadinle et al., 2019, Guan and Tibshirani, 2019].

2 CONFORMAL CLASSIFICATION

We begin with the notion of prediction sets as a way of
quantifying predictive uncertainty. Formally, we wish to
construct an uncertainty set function C : X → 2Y , such
that for a new (test) data point we can guarantee that:

P (Yn+1 ∈ C(Xn+1)) ≥ 1− α. (1)

Conformal prediction [Vovk et al., 2005] has received atten-
tion recently both in regression [Lei et al., 2018, Romano
et al., 2019, Barber et al., 2021] and classification [Cau-
chois et al., 2020, Romano et al., 2020, Angelopoulos et al.,
2021] settings. It does not require making any distributional
assumptions, which comes at the price of provably provid-
ing only marginal guarantees as stated in (1) which should
be contrasted with possibly the ultimate goal of obtaining
prediction sets with guarantees conditional on a given input.

Since conditional guarantees often require making restric-
tive and unverifiable assumptions, we instead focus on pro-
cedures that might provably provide marginal coverage guar-
antees but still tend to demonstrate good conditional cover-
age empirically. Being flexible, conformal prediction allows
to proceed with both probabilistic and scoring classifiers.
Within this framework, one usually defines a non-conformity
score, a higher value of which on a given data point indicates
that it is more ‘atypical’. For example, even if a classifier
outputs only the ranking of predicted classes, a rank of the
true class defines a valid non-conformity score. Keeping in
mind that our techniques extend to other types of classifiers,
we nevertheless focus on probabilistic predictors in this
work which are also dominant in modern machine learning.

2.1 EXCHANGEABLE CONFORMAL

Consider a sequence of candidate nested prediction sets
{Fτ (x)}τ∈T : Fτ1(x) ⊆ Fτ2(x) ⊆ Y for any τ1 ≤ τ2 ∈ T ,
with Finf T = ∅ and Fsup T = Y [Gupta et al., 2019]. For
any point (x, y) ∈ X × Y define

r(x, y) := inf {τ ∈ T : y ∈ Fτ (x)} , (2)



as the smallest radius of the set in a sequence {Fτ (x)}τ∈T
that captures y. Within split-conformal framework, available
dataset is split at random into two parts: the first is used to
construct a nested sequence and the second is used to select
the smallest τ? that guarantees validity.

If the true class-posterior distribution πy(x) =
P [Y = y | X = x] is known, the optimal prediction
set for any x ∈ X with conditional coverage guarantee is
based on the corresponding density level sets [Vovk et al.,
2005, Lei et al., 2013, Gupta et al., 2019, Sadinle et al.,
2019]: one should pick the largest τα(x) and include all
labels with probabilities πy(x) exceeding τα(x) so that the
corresponding total probability mass is at least 1−α. When
ties are present, such procedure can yield conservative sets,
e.g., if for some x ∈ X all classes are equally probable in
a 10-class problem, then τα(x) = 0.1 and the proposed
set would simply be Y . For the discussion that follows we
assume that there are no ties or that they are broken as
formally discussed in Appendix B.1. Then, to construct the
optimal prediction set, one should start with an empty one
and keep including labels as long as the total probability
mass of labels included before is less than 1− α. Formally,

Coracle
α (x) := {y ∈ Y : ρy(x;π) < 1− α} , (3)

where ρy(x;π) :=

K∑
y′=1

πy′(x)1 {πy′(x) > πy(x)}

is the total probability mass of labels that are more likely
than y ∈ Y . Notice that for any x ∈ X and the correspond-
ing most likely label y? it holds that ρy?(x;π) = 0. When
an estimator π̂ of the true conditional distribution is used,
split-conformal framework provides a way of updating the
threshold 1−α in (3) in order to retain coverage guarantees.
However, naive conformalization of the nested sequence
suggested by the form (3) yields prediction sets with cor-
rect marginal coverage but typically inferior conditional
coverage in practice. Due to that reason and a desire of con-
sistency, i.e., recovering the oracle prediction sets from the
conformal ones in the limit, we instead use a randomized
version of (3) defined as

C̃oracle
α (x) = {y : ρy(x;π) + u · πy(x) ≤ 1− α} , (4)

where u is a realization of Unif ([0, 1]), sampled indepen-
dently of anything else [Vovk et al., 2005, Romano et al.,
2020]. Note that replacing strict inequality by a non-strict
does not expand the prediction set as equality happens with
zero probability and that induced randomization can result
in exclusion only of a single label from the set Coracle

α (x).
The form of the optimal prediction sets (4) suggests to con-
sider the following nested sequence:

Fτ (x, u; π̂) = {y ∈ Y : ρy(x; π̂) + u · π̂y(x) ≤ τ} , (5)

for τ ∈ T = [0, 1]. Then for any triple (X,Y, U) the corre-
sponding radius (2), or score, is given by

r(X,Y, U ; π̂) = inf {τ ∈ T : ρY (X; π̂) + U · π̂Y (X) ≤ τ}

= ρY (X; π̂) + U · π̂Y (X). (6)

Adapting to label shift can be performed with other non-
conformity scores proposed recently for conformal classi-
fication [Cauchois et al., 2020, Angelopoulos et al., 2021],
and we further discuss the subtleties behind our choice
in Appendix B.2. Assume that the dataset is split at ran-
dom into two parts: training {(Xi, Yi)}i∈I1 and calibra-
tion {(Xi, Yi)}i∈I2 , where for simplicity the calibration
data points are indexed as I2 = {1, . . . , n}. When the
data are exchangeable, the non-conformity scores ri =
r(Xi, Yi, Ui; π̂) ∈ [0, 1], i ∈ I2∪{n+ 1} are exchangeable
as well, which in turn implies that the prediction set

Fτ? (x, u; π̂) = {y ∈ Y : ρy(x; π̂) + u · π̂y(x) ≤ τ?} ,
τ? = Q1−α

(
{ri}i∈I2 ∪ {1}

)
, (7)

does attain the right coverage guarantee1. This is a classic
result in conformal prediction and represents a simple fact
about quantiles of exchangeable random variables, stated
next for completeness.

Theorem 1. If {(Xi, Yi)}n+1
i=1 are exchangeable, then:

P(Yn+1 ∈ Fτ? (Xn+1, Un+1; π̂) | {(Xi, Yi)}i∈I1) ≥ 1−α.

Further, if the non-conformity scores are almost surely
distinct, then the above probability is upper bounded by
1− α+ 1/(n+ 1).

The proof is given in Appendix B.3. Notice that the ran-
domized sequence (5) might yield empty, and thus non-
actionable prediction sets, which is the consequence of de-
ploying randomization only. Substituting the condition in (7)
with 1 {ρy(x; π̂) > 0} · (ρy(x; π̂) + u · π̂y(x)) ensures that
the prediction set always includes the most likely label. Such
a construction trivially inherits the coverage guarantee stated
in Theorem 1, and we refer the reader to Appendix B.2 for
further details.

2.2 LABEL-SHIFTED CONFORMAL

To illustrate the necessity of accounting for label shift we
consider the following toy classification task with 3 classes
Y = {1, 2, 3} where class proportions are given as p =
(0.1, 0.6, 0.3) and q = (0.3, 0.2, 0.5), and for each data
point the covariates are sampled according to X | Y =

y ∼ N (µy,Σ) where µ1 = (−2; 0)
>, µ2 = (2; 0)

>, µ3 =(
0; 2
√

3
)>

, Σ = diag(4, 4). First, we perform the standard
routine for constructing split-conformal prediction sets for a

1Qβ (F ) := inf {z : F (z) ≥ β} is β-quantile of a
distribution F . For a multiset {z1, . . . , zm} we write
Qβ ({z1, . . . , zm}) := Qβ

(
1
m

∑m
i=1 δzi

)
, where δa is a

point-mass distribution at a, to denote quantiles of the correspond-
ing empirical distribution.



single draw of data from the source and target distributions
using the Bayes-optimal rule as an underlying predictor. We
illustrate a single draw of the test data on Figure 1a and the
resulting prediction sets on Figure 1b. Next, we repeat the
simulation 1000 times and track empirical coverage on the
test set. Results on Figure 1c demonstrate the necessity of
correcting for label shift as the classic conformal prediction
sets introduced in Section 2.1 fail to achieve the correct
marginal coverage.

Assume that the true likelihood ratios w(y) = q(y)/p(y)
are known for all y ∈ Y . In order to obtain provably valid
prediction sets, we consider instead:

F (w)
τ? (x, u; π̂) = {y ∈ Y : ρy (x; π̂) + u · π̂y(x) ≤ τ?w(y)} ,

τ?w(y) = Q1−α

(
n∑
i=1

p̃wi (y)δri + p̃wn+1(y)δ1

)
,

(8)

where p̃wi (y) =
w(Yi)∑n

j=1 w(Yj) + w(y)
, i = 1, . . . , n,

p̃wn+1(y) =
w(y)∑n

j=1 w(Yj) + w(y)
. (9)

In addition to the fact that the empirical distribution used
to calibrate the threshold in (8) is different from the one
used in exchangeable setting (7), notice that the thresholds
themselves now vary depending on the class label. The
formal guarantee for the prediction set (8) is stated next.

Theorem 2. For any α ∈ (0, 1), if the true likelihood ratios
w(y) = q(y)/p(y) are known for all y ∈ Y , it holds that

P(Yn+1 ∈ F (w)
τ? (Xn+1, Un+1; π̂) | {(Xi, Yi)}i∈I1) ≥ 1−α.

The proof is given in Appendix B.3. It relies on the concept
of weighted exchangeability introduced by Tibshirani et al.
[2019] to handle covariate shift in regression, and we adapt
those ideas here to correct for label shift in classification.
Returning to the example considered in the beginning of this
section, Figure 1c illustrates that calibrating the threshold τ
as in (8) with either oracle or estimated importance weights
allows to achieve the target marginal coverage. Here we
use BBSE [Lipton et al., 2018] to estimate the importance
weights; more details are provided in Appendix A.

Next, we perform a similar experiment with the wine
quality dataset [Cortez et al., 2009]. We refer the reader
to Appendix B.4 for details regarding data pre-processing
and modeling steps. The source and target class proportions
are taken to be p = (0.1, 0.4, 0.5) and q = (0.4, 0.5, 0.1)
and the data are resampled accordingly. Using a shallow mul-
tilayer perceptron as an underlying predictor and BBSE for
importance weights estimation, at each iteration we repeat
the routine for random splits of the original dataset and com-
pare empirical coverage for different conformal prediction

sets. Marginal coverage results given in Figure 1d support
the idea that both shift-corrected conformal prediction sets
demonstrate superior coverage performance compared with
uncorrected ones. While conformal sets with oracle impor-
tance weights closely match the nominal coverage level,
sets that proceed with estimated ones have a slightly down-
graded performance. Arising basically due to an imperfect
classification model and an imperfect importance weight
estimation procedure, it highlights an important issue we
discuss next.

While (weighted) exchangeability arguments yield a cov-
erage guarantee in case of known importance weights, in
practice one only has access to a corresponding estimator.
Dominant methods, which we briefly touch upon in Ap-
pendix A, estimate importance weights using a separate
labeled dataset from the source distribution and unlabeled
dataset from the target. Under reasonable assumptions, such
as identifiability and boundedness of the true importance
weights, these estimators are known to be consistent as
the size of both samples grows. For succinctness, we write
k = |Dest| to denote the total size of the datasets used for
constructing an estimator ŵk of the importance weights w.

Corollary 1. Fix α ∈ (0, 1). Assume that ŵk is a consistent
estimator of w. Further, assume that for the true w and all
y ∈ Y , the discrete distribution in (8) does not have a jump
at level 1− α. Then:

lim
k→∞

P
(
Yn+1 ∈ F (ŵk)

τ? (Xn+1, Un+1; π̂)
)
≥ 1− α.

The proof is given in Appendix B.3. To demonstrate why
presence of a jump might cause problems, consider a sim-
plified example. Let Z ∼ Ber(p) for which the quantile
corresponding to any given level α is given by

Qα ((1− p) · δ0 + p · δ1) = 1 {p > 1− α} ,

Assume that we are given a sample of coin tosses Z1, . . . ,
Zn with the same bias parameter p. Even though the sample
averageZn is a consistent estimator of p, it nonetheless does
not imply that the corresponding plug-in quantile estimator
is consistent as the continuous mapping theorem cannot be
invoked due to a discontinuity at p = 1− α. Indeed, let

q̂n := Qα
((

1− Zn
)
· δ0 + Zn · δ1

)
= 1

{
Zn > 1− α

}
,

and observe that q̂n ∼ Ber
(
P
(
Zn > 1− α

))
. Then by the

normal approximation it follows that:

P
(
Zn > 1− α

)
≈ 1− Φ

(
√
n

(1− α)− p√
p(1− p)

)
.

If p > 1− α, we can conclude that q̂n converges in proba-
bility to 1, and thus the estimator is consistent (similarly for
p < 1− α). In case of equality, q̂n converges to Ber(1/2),
and thus the estimator will not be consistent. Still, for a
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Figure 1: (a) Test data sample for the toy simulation in Section 2.2. (b) Corresponding conformal prediction sets when
label shift is accounted for with oracle importance weights. (c) Empirical coverage on shifted data for the toy simulation in
Section 2.2. (d): Empirical coverage on the wine quality dataset. Dashed vertical lines describe the median coverage
values, which are significantly worse when label shift is not accounted for, while using estimated weights mimics the oracle
reasonably well.

more general setting of the distribution defined in (8) it is
reasonable to expect the assumption regarding absence of
jumps to be satisfied as also confirmed by our conducted
empirical study.

Label-conditional conformal prediction. Observing
multiple points sharing the same label in a dataset makes it
possible to apply the split-conformal framework in a way
that makes the resulting prediction sets inherently robust
to label shift [Vovk et al., 2005, 2016, Sadinle et al., 2019,
Guan and Tibshirani, 2019]. Assume that a set of signifi-
cance levels for each class {αy}y∈Y has been chosen (e.g.,
αy = α for all y). By further splitting the calibration set I2
into |Y| = K groups depending on the corresponding labels,
I2,y := {i ∈ I2 : Yi = y}, one can consider prediction sets
of the following form:

Fcτ?
c

(x, u; π̂) = {y ∈ Y : ρy(x; π̂) + u · π̂y(x) ≤ τ?c (y)} ,

τ?c (y) = Q1−αy

(
{ri}i∈I2,y ∪ {1}

)
. (10)

In other words, we separately apply split-conformal predic-
tion framework for each label; this is like performing a sepa-
rate hypothesis test for each label to determine whether there
is sufficient evidence to exclude the label from the prediction
set. To elaborate, the label shift assumption states that condi-
tional distribution of X given Y = y for all y ∈ Y does not

change between source and target distributions. Thus for a
test point (Xn+1, Yn+1) the corresponding non-conformity
score r(Xn+1, Yn+1, Un+1; π̂) together with {ri}i∈I2,Yn+1

forms a collection of exchangeable random variables, which
implies label-conditional validity, that is:

P
(
Yn+1 /∈ Fcτ?

c
(Xn+1, Un+1; π̂) | Yn+1 = y

)
≤ αy,

for all y ∈ Y . When αy = α for all y, one can marginal-
ize over y using any distribution (shifted or not), to yield
P
(
Yn+1 /∈ Fcτ?

c
(Xn+1, Un+1; π̂)

)
≤ α. Thus, the label-

conditional conformal framework yields a stronger guaran-
tee than the standard (marginal) conformal and, it is auto-
matically robust to changes in class proportions, retaining
validity under label shift. The price to pay for the stronger
conditional guarantee is larger prediction sets: for example,
when the classes are not well-separated, label-conditional
conformal can be expected to yield larger prediction sets;
see Appendix B.5 for a careful empirical study. It should
also be noted that the label-conditional conformal frame-
work requires splitting available calibration data into K
parts that could result in large losses of statistical efficiency
when the number of classes K is large. On the other hand,
such construction allows to tackle label shift in a way that
does not require importance weights estimation, and thus get
exact finite-sample guarantee instead of asymptotic one es-



tablished in Corollary 1. Thus, we view the label-conditional
conformal framework as a complementary approach, per-
haps worth utilizing when the amount of calibration data is
larger relative to the number of labels.

3 CALIBRATION

While prediction sets describe a construction on top of the
output of a predictor, calibration quantifies whether the out-
put itself admits a rigorous frequentist interpretation. In
contrast to the binary setting where there is usually no con-
fusion about a definition of a calibrated predictor, there is
one in the multiclass setting. First, we state a definition of a
canonically calibrated predictor.

Definition 1 (Calibration). A probabilistic predictor f :
X → ∆K is said to be calibrated if

P (Y = y | f(X)) = fy(X), y ∈ Y,

where fy(x) denotes the y-th coordinate of f(x).

Observe that canonical calibration requires the whole output
vector to reflect the true conditional probabilities. Two ex-
treme examples of canonically calibrated predictors include:
(a) fMarg: fMarg

y (x) = p(y), (b) fBayes: fBayes
y (x) = πy(x).

In words, the former predictor outputs marginal probabili-
ties of classes and the latter outputs the true class-posterior
probabilities. In terms of classification efficiency, however,
the first one is useless, while the second minimizes the clas-
sification risk, or the probability of incorrectly classifying
a new point. Minimizing classification risk with respect to
zero-one loss is computationally infeasible, and thus one
refers instead to minimizing so-called surrogate losses, e.g.,
cross-entropy loss, with possibly added regularization terms.
As a result, one obtains prediction models that are not cali-
brated out-of-the-box without making strong distributional
and modeling assumptions, and thus aims to achieve it by
performing post-processing using held-out data. While this
topic has attracted a lot attention from practitioners recently,
less results have been established on the theoretical side pro-
viding formal guarantees for common procedures that target
improving model’s calibration. Recognized approaches in-
clude Platt scaling [Platt, 1999], temperature scaling [Guo
et al., 2017], histogram binning [Zadrozny and Elkan, 2001],
isotonic regression [Zadrozny and Elkan, 2002] and others.

Model miscalibration is usually assessed using either relia-
bility curves or related one-dimensional summary statistics.
It is known that popular metrics, such as Expected Calibra-
tion Error (ECE), are not reliable since plug-in estimates
can be biased if binning, or discretization, of the output of
the resulting model is not performed [Kumar et al., 2019,
Vaicenavicius et al., 2019]. Gupta et al. [2020] establish the
necessity of binning for obtaining distribution-free calibra-
tion guarantees in a binary classification setup. Binning rep-
resents coarsening of the sample space and is defined as the

partitioning of the probability simplex into non-overlapping
bins: ∆K = B1 ∪ · · · ∪ BM , Bi ∩ Bj = ∅, i 6= j. Then a
predictor f induces a partition of the sample space:

Xm := {x ∈ X : f(x) ∈ Bm} , m ∈M := {1, . . . ,M} .

Since provable guarantees for canonical calibration require
binning of the probability simplex, it is clear that the task
becomes prohibitive with growing number of classes as each
bin has to be supplied with sufficiently many data points
during the calibration step for the resulting guarantees to
be meaningful. One solution is given by either referring
to other notions of UQ, such as the aforementioned pre-
diction sets, or by relaxing the notion of calibration in the
multiclass setting. One of well-known relaxations is class-
wise, or marginal, calibration [Zadrozny and Elkan, 2002,
Vaicenavicius et al., 2019, Kull et al., 2019].

Definition 2 (Class-wise calibration). A probabilistic pre-
dictor f : X → ∆K is said to be class-wise calibrated if

P (Y = y | fy(X)) = fy(X), y ∈ Y. (11)

Vaicenavicius et al. [2019] illustrate the difference with the
canonical calibration through useful examples. In the binary
setting, the two notions are equivalent with class-wise cal-
ibration being a weaker requirement for larger number of
classes. It is achieved by reducing the original multiclass
problem to K one-vs-all binary problems with the standard
post-processing routine applied consequently to each one.
We focus on canonical calibration for multiclass problems
as per Definition 1 and explicitly mention important impli-
cations for the binary setting, and thus marginal calibration.

3.1 CALIBRATION FOR I.I.D. DATA

First, we assume that the binning scheme has been chosen
and use g : X → M to denote the bin-mapping function:
g(x) = m if and only if f(x) ∈ Bm. The calibration set
Dcal = {(Xi, Yi)}ni=1 is used for estimating

πPy,m := P (Y = y | f(X) ∈ Bm) , y ∈ Y, (12)

for all bins m ∈ M. The superscript here highlights that
probabilities correspond to the source distribution P and the
notation will become convenient when we talk about label
shift setting. With finite data one can only estimate (12) with
quantifiable measures of error, and thus provably satisfy the
calibration requirement only approximately:

P
(
Y = y | π̂Py,g(X)

)
≈ π̂Py,g(X). (13)

Let Nm = |{(Xi, Yi) ∈ Dcal : f(Xi) ∈ Bm}| denote the
number of calibration points that fall into bin m ∈M. Note
that {Nm}m∈M are random and satisfy

∑M
m=1Nm = n.



Empirical frequencies of class labels y ∈ Y in each bin
m ∈M:

π̂Py,m :=
1

Nm

n∑
i=1

1 {Yi = y, f(Xi) ∈ Bm} , (14)

are natural candidates to satisfy the approximate cal-
ibration condition (13). For convenience, let πPm :=
(πP1,m, . . . , π

P
K,m)> denote a vector with coordinates repre-

senting bin-conditional class probabilities and let h : X →
∆K denote the recalibrated predictor, i.e., the function that
maps any feature vector to the corresponding vector of cali-
brated probability estimates: h(x) = π̂g(x).

Theorem 3. Fix α ∈ (0, 1). With probability at least 1− α,∥∥π̂Pm − πPm∥∥1 ≤ εm, simultaneously for all m ∈M, where

εm :=
2√
Nm

√
1

2
ln

(
M2K

α

)
.

As a consequence, with probability at least 1− α,

K∑
y=1

|P (Y = y | h(X) = z)− zy| ≤ max
m∈M

εm,

simultaneously for all z in the range of h.

The proof is given in Appendix C.1. In words, Theorem 3
states that as long as the least-populated bin contains suffi-
ciently many points, the output of the recalibrated predictor
will approximately satisfy condition (13). The first part of
Theorem 3 justifies use of empirical frequencies in place
of unknown population quantities using the language of the
confidence intervals. In the binary setting, the fact that it
yields the desired calibration guarantee, has been formally
established by Gupta et al. [2020], and the second part of
the theorem states a corresponding result for canonical cali-
bration in the multiclass setting.

A natural question is whether one can guarantee that each
bin is supplied with a sufficient number of calibration data
points in order to obtain meaningful bounds. We note that in
the binary setting, one way to provably spread the calibration
data evenly across bins is uniform-mass, or equal frequency,
binning [Kumar et al., 2019, Gupta et al., 2020, Gupta and
Ramdas, 2021].

3.2 LABEL-SHIFTED CALIBRATION

For illustrating the necessity of accounting for label shift
we consider the following binary classification problem:
Y = {0, 1} with class probabilities given as p(0) = p(1) =
1/2 and q(0) = 0.2, q(1) = 0.8, i.e., while on the source
domain classes are equally balanced, on the target class 1
becomes dominant. For each data point, conditionally on the

corresponding label, the covariates are sampled according
to X | Y = y ∼ N (µy,Σ), where

µ0 =

(
−1
0

)
, µ1 =

(
1
0

)
, Σ =

(
0.75 0.25
0.25 0.75

)
.

Similarly to the toy example from Section 2.2, here the
class-posterior probabilities, and thus the Bayes-optimal
rules have a closed form for both source and target domains.
Not only do they minimize the probability of misclassify-
ing a new point from the corresponding domain but also
they are calibrated2. For the source distribution a perfect
probabilistic predictor is given by

πP1 (x) =
p(1) · ϕ(x;µ1,Σ)

p(0) · ϕ(x;µ0,Σ) + p(1) · ϕ(x;µ1,Σ)
, (15)

where ϕ(x;µi,Σ), i = 0, 1 denotes the PDF of a Gaus-
sian random vector with the corresponding parameters. As
illustrated on Figure 2a, even though the Bayes-optimal
rule is calibrated on the source, a correction is required
to obtain a calibrated classifier under label shift. We sam-
ple points from the target distribution and highlight those
that fall inside the area S =

{
x ∈ R2 : πP1 (x) ∈ [0.4; 0.6]

}
with boundary given by the black dashed lines. When the
shift is present, predictor (15) is no longer calibrated, since
otherwise one should expect roughly half of the test data
points inside S to be labeled as class 1 (red squares) and
half as class 0 (blue circles), which clearly does not happen.

If both the true class-posterior distribution πPy (x) and the
true label likelihood ratiosw are known, then the form of the
adjustment of the probabilistic classifier under label shift is
a simple implication of the Bayes rule [Saerens et al., 2002]:

πQy (x) =
w(y) · πPy (x)∑K
k=1 w(k) · πPk (x)

. (16)

While in the oracle setting predictor (16) is indeed calibrated
on the target, in practice neither πPy (x) nor w are known.
Using corresponding plug-in estimators in (16) would guar-
antee calibration of the resulting predictor only asymptoti-
cally and under restricting modeling assumptions, and thus
to obtain the distribution-free guarantees the output of the
original predictor has to be discretized, or binned as in the
i.i.d. setting. Relationship (16) does clearly continue to hold
as formally stated next.

Proposition 1. Under label shift, for any class label y ∈ Y
and any bin Bm, m ∈M it holds that:

πQy,m =
w(y) · πPy,m∑K
k=1 w(k) · πPk,m

.

2Recall that in the binary setting, canonical and class-wise
calibration are equivalent.
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Figure 2: (a) Sampled points from the target distribution plotted against the true source class-posterior probabilities. (b)
Reliability curves for Fisher’s LDA calibrated via binning with/without taking label shift into account. The deviation of
uncorrected probabilities from the diagonal line (perfect calibration) reflects the need to correct for label shift; recalibration
based on estimated weights is almost identical to using oracle weights, both of which result in near-perfect calibration.

In Section 3.1 we justified the use of empirical frequencies
of class labels

{
π̂Pm
}
m∈M for achieving canonical calibra-

tion of a predictor on the source domain and, as it has been
noted in Section 2.2, there are estimators of the importance
weights which are known to be provably consistent under
reasonable assumptions. Thus, with an estimator ŵ at hand,
Proposition 1 suggests an appropriate correction to provably
obtain asymptotically calibrated predictors on the target:

π̂(ŵ)
y,m =

ŵ(y) · π̂Py,m∑K
k=1 ŵ(k) · π̂Pk,m

, y ∈ Y, (17)

for all bins m ∈ M. Theorem 3 quantifies the error when
the empirical label frequencies are used as estimators for
the true unknown bin-conditional class probabilities on the
source domain. However, different bounds on εm could be
available depending on chosen binning scheme, and thus
we instead quantify how this estimation error on the source
domain translates into the estimation error on the target for
the cases when the importance weights are known and when
they are rather estimated. As we shall see, the performance
depends on the ratio of the largest to the smallest nonzero
importance weight. Define the condition number:

κ :=
supk w(k)

infk:w(k) 6=0 w(k)
,

with κ = 1 corresponding to label shift not being present.
Next, we quantify the miscalibration of the predictor (17).

Theorem 4. Let ŵ be an estimator of w and let π̂(ŵ)
y,m denote

the reweighted empirical frequencies (17) for all labels y ∈

Y and bins m ∈M. For any bin m ∈M, it holds that:∥∥∥π̂(ŵ)
m − πQm

∥∥∥
1
≤ 2κ ·

∥∥π̂Pm − πPm∥∥1︸ ︷︷ ︸
(a)

+
2 ‖ŵ − w‖∞

inf l:w(l) 6=0 w(l)︸ ︷︷ ︸
(b)

.

(18)

The proof is given in Appendix C.1. In words, the calibra-
tion error on the target decomposes into two terms where
(a) is controlled by the calibration error on the source and
(b) is controlled by the importance weights estimation error.
Further, under reasonable assumptions common procedures,
such as BBSE and RLLS, construct estimators of the impor-
tance weights which are not only known to be consistent but
also have quantifiable error [Lipton et al., 2018, Azizzade-
nesheli et al., 2019]. Similarly, any proper binning scheme
that provably controls number of calibration points in each
bin, e.g., uniform-mass binning in the binary setting [Ku-
mar et al., 2019], yields finite-sample guarantees for the
calibration error on the source [Gupta et al., 2020]. Thus,
finite-sample guarantees for the miscalibration of the result-
ing predictor on the target domain trivially follow by virtue
of Theorem 4 via invoking simple probabilistic arguments.

Within the same binary classification setup from the be-
ginning of Section 3.2, we also compare calibration via
uniform-mass binning with and without accounting for label
shift but this time we use Fisher’s LDA as an underlying
classifier, which differs from the Bayes-optimal rule by us-
ing estimators of the corresponding means and covariance
matrices in (15). Results illustrated on Figure 2b via the
reliability curves indicate that shift-corrected binning with
either true or estimated importance weights yields a cal-
ibrated predictor on the target domain while uncorrected



fails to do so as expected. To complete the empirical study,
Appendix C.2 further examines calibration with and without
accounting for label shift on the wine quality dataset
from Section 2.2.

4 DISCUSSION

For safety-critical applications model’s prediction must be
supported with a proper measure of uncertainty. As vari-
ous ad-hoc procedures provide valid inference only under
assumptions that are either unrealistic or unverifiable, it is
essential to understand whether non-trivial guarantees can
be obtained in an assumption-lean manner. Guided by this
principle, we analyzed distribution-free uncertainty quan-
tification for classification via two complementary notions:
prediction sets and calibration.

We focused on a less studied — but still highly relevant
to real-world scenarios — setting of label shift. While it is
evident that label shift does hurt model’s calibration, the
corresponding impact on prediction sets is less obvious. In
the extreme example of almost perfectly separable data, pre-
diction sets are usually expected to contain the most likely
label only, and thus coverage is not expected to suffer much
no matter how the class proportions change for the test data.
Still, as we illustrated, in less idealized settings, a correction
for label shift is necessary. By adapting conformal prediction
sets and calibration via binning to label shift, we close an
existing gap for distribution-free uncertainty quantification
under two standard ways of generalizing beyond the classic
i.i.d. setting. Importantly, those adaptations do not require
labeled data from the target domain which can be useful in
applications where the labeling process is expensive. We
note that handling label shift should be expected to be an
easier task rather than handling another common setting —
covariate shift — as the latter typically involves estimating a
high-dimensional, and usually continuous, likelihood ratio.

With theoretical results available for calibration in the binary
setting, and thus class-wise (coordinatewise) calibration in
a more general multiclass setting, establishing meaningful
guarantees for “full” canonical calibration in the latter set-
ting remains an intriguing future research direction. One
particular example is related to the question of the impor-
tance weights estimation under label shift. While approaches
based on confusion matrices, e.g., BBSE and RLLS, prov-
ably yield consistent estimators under relatively mild as-
sumptions, alternative approaches, such as MLLS with pre-
ceding ad-hoc calibration on the source domain, tend to
perform better empirically [Alexandari et al., 2020]. Theo-
retical foundations for MLLS developed recently by Garg
et al. [2020] require the underlying predictor to be canoni-
cally calibrated which is itself, unfortunately, hard to guar-
antee provably which creates a (somewhat circular) gap
between theory and practice.
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A IMPORTANCE WEIGHTS
ESTIMATION UNDER LABEL SHIFT

Below we provide details about importance weights estima-
tion procedures which are relevant mainly to Sections 2.2
and 3.2 of the paper. Estimation of the importance weights
is performed using a held-out labeled set from the source
distribution and an unlabeled set from the target distribu-
tion. Procedures, such as BBSE [Lipton et al., 2018] or
RLLS [Azizzadenesheli et al., 2019], are based on estima-
tion of the confusion matrix and yield consistent importance
weights estimators with quantifiable estimation error under
relatively mild assumptions. First, given a black-box pre-
dictor f : X → ∆K , define the corresponding expected
confusion matrix CP (f) ∈ R|Y|×|Y|:

[CP (f)]ij := EP
[
1

{
arg max

k
fk(X) = i

}
· 1 {Y = j}

]
.

We assume that

(A1) for every label y ∈ Y , it holds that q(y) > 0 =⇒
p(y) > 0,
(A2) expected confusion matrix CP (f) is full-rank.

Assumption (A1) states that target label distribution is ab-
solutely continuous with respect to the source. Indeed, rea-
soning properly about a class in the target domain which
is not represented in the source domain is not possible. As-
sumption (A2) simply represents an identifiability condi-
tion. Lipton et al. [2018] show that under label shift as-
sumption: PQ (f(X) = i) =

∑
j∈Y [CP (f)]ij w(j), or in

matrix-vector notation:

µ = CP (f)w.

where µ ∈ R|Y| : µi = PQ (f(X) = i). BBSE is a simple
plug-in procedure, which yields the following estimator of
the importance weights:

ŵ = Ĉ−1 µ̂,

where Ĉij =
1

m

m∑
p=1

1
{
f(Xs

p) = i and Y sp = j
}
,

µ̂i =
1

l

l∑
p=1

1
{
f(Xt

p) = i
}
,

where {(Xs
i , Y

s
i )}mi=1 is a labeled dataset from the source

distribution and {(Xt
i )}

l
i=1 is unlabeled data from the target

distribution. BBSE-hard described above can be trivially
modified to the whole probability distribution output of f
which is referred to as BBSE-soft procedure. Under afore-
mentioned assumptions, Lipton et al. [2018] establish results
with respect to consistency of BBSE and corresponding con-
vergence rates.

A well-known alternative approach to directly estimate
the importance weights which performs well in practice
is MLLS [Saerens et al., 2002] and its recent variations
that combine it with preceding calibration on the source do-
main [Alexandari et al., 2020]. We refer the reader to Garg
et al. [2020] for the theoretical analysis of MLLS and a
detailed overview of the results for the importance weights
estimation under label shift. For all simulations in this work
we use BBSE-soft procedure motivated simply by its satis-
factory empirical performance throughout all of the simula-
tions we performed. Our modular approach to UQ allows to
replace BBSE with any alternative choice.

B CONFORMAL CLASSIFICATION

Below, Section B.1 includes details about the tie-breaking
rules for the oracle prediction sets, Section B.2 includes a
discussion regarding the role of randomization for confor-
mal classification, Section B.3 includes all necessary proofs
for Sections 2.1 and 2.2 and Section B.4 includes details
about the simulation on a real dataset mentioned in Sec-
tion 2.2.

B.1 TIE-BREAKING RULES FOR THE ORACLE
PREDICTION SET

In practice, when an estimator π̂y(x) is used in place of
πy(x), one does not expect ties to be present but for com-
pleteness it is important to consider such scenario in the ora-
cle setting. First, note that for any α ∈ (0, 1), the oracle pre-
diction set clearly never include labels y ∈ Y : πy(x) = 0.
Now, presence of ties can lead to a conservative predic-
tion set for some x ∈ X if there is a subset of class
labels S(x) ⊆ Y of size L = |S(x)| > 1, such that
∀y, y′ ∈ S(x) : πy(x) = πy′(x) > 0 and{

P
(
Y ∈ Coracle

α (X)\S(X) | X = x
)
< 1− α,

P
(
Y ∈ Coracle

α (X) | X = x
)
≥ (1− α).

In the oracle case ties can be broken arbitrarily in order to
preserve the conditional coverage. One option is to break ties
randomly, i.e. one can fix a random permutation of labels
in S(x): ỹi1 , . . . , ỹil , and output a smaller oracle prediction
set:

Coracle,new
α (X) :=

(
Coracle
α (X)\S(X)

)
∪{ỹi1 , . . . , ỹil? } ,

where l? is the smallest index in {1, . . . , l} such that

P
(
Y ∈ Coracle

α (X)\S(X) | X = x
)

+

l?∑
k=1

πik(x) ≥ 1− α.



B.2 NOTE ON RANDOMIZATION AND
CONDITIONAL COVERAGE

As the number of works on conformal classification has seen
a recent spurt, it is important to understand what exactly
might be the benefits of using one nested sequence over
another. For example, Angelopoulos et al. [2021] state in
their Appendix B that “randomization is of little practical
importance, since... output by the randomized procedure
will differ from that of the non-randomized procedure by at
most one element”. However, we do not quite agree with
their sentiment about it being of little practical importance
for the following reason. While their observation is indeed
accurate in the oracle setting, there is a noticeable difference
in the empirical conditional coverage when the nested se-
quences are conformalized in practice (non-oracle setting).
Roughly speaking, randomized scores better handle the het-
erogeneity of the conditional distribution of the response
variable across the sample space. Note that this type of ran-
domization has a different role from that of a randomized
conformal p-value Vovk et al. [2005] which aims to improve
possibly conservative marginal coverage. We believe that
the reasoning below complements the one given in Romano
et al. [2020] and, in particular, might help an unfamiliar
reader to gain some useful insights (as well as arguably hav-
ing simpler notation). For completeness, we start with an
example of randomization in action. Consider a binary clas-
sification problem: Y = {0, 1}, and fix target miscoverage
level α = 0.05. Now, assume that for some x ∈ X :

• π0(x) = 0.99, π1(x) = 0.01. Then with prob-
ability 95/99, we have C̃oracle

α (x, u) = {0} and
C̃oracle
α (x, u) = {∅} otherwise.

• π0(x) = 0.9, π1(x) = 0.1. Then with probability
1/2, C̃oracle(x, u) = {0, 1} and C̃oracle(x, u) = {0}
otherwise.

First, consider the marginal coverage of conformal predic-
tion sets in the “null” case when π̂ ≡ π. The marginal
coverage guarantee of conformal prediction sets is due to
Lemma 6 which states a classic result for quantiles of ex-
changeable random variables and is tight when these vari-
ables are almost surely distinct. In the non-randomized set-
ting for any point (X,Y ), the corresponding non-conformity
score are given by ρY (X;π). Such form might suggest that
the marginal coverage could be conservative due to possible
ties as whenever the predicted most likely label appears
to be the correct one, it holds that ρY (X;π) = 0. How-
ever, if ties among non-conformity scores are present, they
would typically occur only between zero-valued scores, and
thus in a reasonable classification setup one should expect
the marginal coverage to be tight even for non-randomized
nested sequence as the calibrated threshold would typically
be nonzero.

Next, before reasoning about conditional coverage of con-

formal sets, recall that the conditional distribution of the
response is discrete in classification setting, and thus even
in the null case it is hard to reason meaningfully about the
distribution of non-conformity scores ρY (X;π). However,
Romano et al. [2020] noticed that if randomization (4) is
used, then it becomes possible to do at least in the null case.
If π̂ ≡ π, it is trivial to see the distribution of corresponding
non-conformity scores ρY (X;π) + U · π(X) is uniform
conditional on X . Then, as the authors conjecture, it is intu-
itive that conformal prediction sets would recover the oracle
ones under some consistency assumptions for π̂.

However, randomization is also performed when the predic-
tion set is a singleton containing the most likely label only,
and thus might yield non-interpretable and non-actionable
empty prediction sets being purely the consequence of de-
ploying randomization. Thus one might consider abstaining
from dropping a label from the prediction set whenever it
forms a singleton and perform randomization if and only
if the oracle prediction set contains more than one label.
While that decision can be embedded into either predic-
tion step only or calibration step as well, we state explicitly
that it should be done at the prediction step only for the
aforementioned reasons.

Consider the binary toy example from Section 3.2 with
focus on the source distribution only. As the true class-
posterior probability πP1 (x) is known, we construct the non-
randomized oracle prediction set Coracle and compare it
visually with the randomized version C̃oracle on Figures 3a
and 3b where randomization demonstrates desired behavior.

Consequently, we consider conformal prediction sets based
on non-randomized sequence:

Fτ? (x, u; π̂) = {y ∈ Y : r′(x, y) ≤ τ?} ,
τ? = Q1−α

(
{r′i}i∈I2 ∪ {1}

)
,

r′(x, y) = ρy(x; π̂),

(19)

and two randomized sequences where Scheme 1 performs
randomization for all labels and was introduced before for
conformal prediction sets (7) and Scheme 2 (added for com-
pleteness of comparison) performs randomization for all
labels except the most likely one:

Fτ? (x, u; π̂) = {y ∈ Y : r′′(x, y) ≤ τ?} ,
τ? = Q1−α

(
{r′′i }i∈I2 ∪ {1}

)
,

(20)

where

r′′(x, y) = 1 {ρy(x; π̂) > 0} · (ρy(x; π̂) + u · π̂y(x)) .

We again use the Bayes-optimal classifier πy(x), and thus
ignore the results that are due to estimation and focus purely
on effects that are due to conformalization. For a single data
draw we illustrate the resulting conformal prediction sets
on Figures 3c, 3d and 3e. While at first sight it might seem
that non-randomized nested sequences is superior in terms



of yielding prediction sets with smaller cardinality, it should
be taken with a grain of salt. We repeatedly draw calibration
and test data and track marginal characteristics for those sets.
As expected, all three resulting prediction sets inherit 1− α
(marginal) coverage guarantee as confirmed on Figure 4a.
Moreover, Figure 4b indeed confirms that randomization
could yield larger prediction sets for not perfectly separable
data. But Figure 4c confirms that randomization proposed
by Romano et al. [2020] (Scheme 1) demonstrates superior
conditional coverage since for this example the true πy(x)
is used, and thus the oracle prediction sets are recovered if
τ? = 1− α. Figure 4d confirms that oracle prediction sets
are not recovered even when the size of the calibration set
is increased.

B.3 PROOFS

Proof of Theorem 1. By the definition of the conformal pre-
diction set, Yn+1 ∈ Fτ?(Xn+1, Un+1; π̂) if and only if:

r(Xn+1, Yn+1, Un+1; π̂) ≤ Q1−α
(
{ri}i∈I2 ∪ {1}

)
.

As the non-conformity scores {ri}n+1
i=1 are exchangeable ran-

dom variables for any fixed π̂, Lemma 6 implies the desired
result conditional on {(Xi, Yi)}i∈I1 . Finally, when random-
ization is performed, the scores are uniformly distributed,
and thus Lemma 6 implies that the marginal coverage is
nearly tight.

Proof of Theorem 2. First, recall the definition of weighted
exchangeability [Tibshirani et al., 2019].

Definition 3 (Weighted exchangeability). Random vari-
ables Z1, . . . , Zn are said to be weighted exchangeable,
with weight functions ω1, . . . , ωn, if the density f of their
joint distribution can be factorized as:

f(z1, . . . , zn) =

n∏
i=1

ωi(zi) · g(z1, . . . , zn),

where g is any function that that invariant to permutations of
its arguments, i.e., g(zσ(1), . . . , zσ(n)) for any permutation
σ of 1, . . . , n.

Independent draws are always weighted exchangeable and it
is easy to see that under label shift setting Zi = (Xi, Yi, Ui),
i = 1, . . . , n + 1 are weighted exchangeable with ωi ≡ 1,
i = 1, . . . , n and ωn+1((x, y)) = q(y)/p(y), for any pair
(x, y) ∈ X ×Y . Let rn+1 := r (Xn+1, Yn+1, Un+1; π̂). By
construction Yn+1 ∈ F (w)

τ? (Xn+1, Un+1; π̂) if and only if:

rn+1 ≤ Q1−α

(
n∑
i=1

p̃wi (Yn+1)δri + p̃wn+1(Yn+1)δ1

)
.

Under label shift assumption, weights (26) do simplify as

pwi (Z1, . . . , Zn+1) =

∑
σ:σ(n+1)=i wn+1(Zi)∑
σ wn+1(Zσ(n+1))

=
w(Yi)∑n

j=1 w(Yj) + w(Yn+1)

= p̃wi (Yn+1),

for i = 1, . . . , n + 1 matching the ones stated in (9). The
result follows by invoking Lemma 7. As π̂ is fixed at the
calibration step being pre-computed on a separate part of the
dataset split, the result is conditional on {(Xi, Yi)}i∈I1 .

Proof of Corollary 1. As for the other results, here it is also
conditional on the training data, and thus we omit writ-
ing {(Xi, Yi)}i∈I1 for succinctness and we use rn+1 =
r (Xn+1, Yn+1, Un+1; π̂) to denote the radius for the test
point. Choose an arbitrary ε > 0. We have:

P
(
Yn+1 /∈ F (ŵk)

τ? (Xn+1, Un+1; π̂)
)

= P
(
rn+1 > τ?ŵk

(Yn+1)
)

(21)

= P
({
rn+1 > τ?ŵk

(Yn+1)
}
∩ {rn+1 + ε > τ?w(Yn+1)}

)
+ P

({
rn+1 > τ?ŵk

(Yn+1

}
) ∩ {rn+1 + ε ≤ τ?w(Yn+1)}

)
.

We have that:

P (rn+1 ≥ τ?w(Yn+1)) = P (rn+1 > τ?w(Yn+1)) < α,

where equality is due to the fact that rn+1 in the randomized
scheme has a continuous distribution and inequality is due
to Theorem 2. For the first term in (21) we have:

P
({
rn+1 > τ?ŵk

(Yn+1

}
) ∩ {rn+1 + ε > τ?w(Yn+1)}

)
= P

({
rn+1 > τ?ŵk

(Yn+1

}
) ∩ {rn+1 > τ?w(Yn+1)− ε}

)
≤ P (rn+1 > τ?w(Yn+1)− ε) ,

and for the second term we have that:

P
({
rn+1 > τ?ŵk

(Yn+1)
}
∩ {rn+1 ≤ τ?w(Yn+1)− ε}

)
≤ P

(∣∣τ?ŵk
(Yn+1)− τ?w(Yn+1)

∣∣ ≥ ε) .
Note that ε was chosen arbitrarily, so we can let ε→ 0. By
the continuous mapping theorem, consistency of ŵk implies
that of τ?ŵk

(y), y ∈ Y . Thus,

lim
k→∞

P
(
Yn+1 ∈ F (ŵk)

τ? (Xn+1, Un+1; π̂)
)
≥ 1− α,

which concludes the proof of the Corollary.

B.4 SIMULATION ON REAL DATA

For the simulation in Section 2.2 we use wine quality
dataset [Cortez et al., 2009] to illustrate the performance
of the conformal prediction sets when label shift is (not)
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Figure 3: Prediction sets corresponding to (a) the non-randomized oracle from (3); (b) the randomized oracle from (4); (c)
the non-randomized conformal method (19); (d) the randomized conformal (scheme 1) method (7); (e) the randomized
conformal (scheme 2) method (20). Notice that randomization acts differently in the oracle and conformal settings. While for
the oracle setting randomization as per scheme 2 corresponds to recoloring the purple points to either green (leftmost color,
class 0) or blue (rightmost color, class 1) depending on the most likely label, for the conformal setting two schemes yield
conceptually different prediction sets. Presented visualizations might be misleading regarding the role of randomization
for conformal classification as they suggest the non-randomized conformal method is the optimal one. See Figure 4 and
Section B.2 for more details.
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Figure 4: Characteristics of conformal prediction sets for the simulation in Section B.2: (a) average marginal coverage, (b)
average cardinality, (c) learned cut-off thresholds in each setting (appending empty prediction sets with the most-likely label
does not impact the threshold), (d) learned cut-off thresholds in each setting when increasing the size of the calibration
set. Key takeaways include: (i) marginal coverage requirement is met irrespective of whether conformal method performs
randomization or not, (ii) the fact that randomization yields larger prediction sets, and thus is inferior is misleading, (iii)
as in considered the example the conformal method recovers the oracle if learned threshold τ? = 0.95, only randomized
(scheme 1) one does it, (iv) the cut-off thresholds do not depend much on the size of the calibration dataset.



taken into account. We focus on white wine dataset only,
which has 4898 instances with 11 features and construct a
3-class classification problem by keeping classes 5,6,7 only
to avoid complications arising due to high imbalance in the
dataset (less than 10% of the data points were removed).
Other important aspects include

1. Data Split: First, the original dataset D is split into
two disjoint and approximately equal sets D1 and D2.
Then label shift is simulated via resampling according
to considered class proportions yielding D̃1 and D̃2

of the same size. Finally, the former dataset is split
at random into sets for training (≈ 1000 instances),
calibration (≈ 100 instances) and importance weights
estimation (≈ 700 instances) and the latter is split
is split at random into importance weight estimation
(≈ 1000 instances; recall that only labels from the
target are used) and test (≈ 1600 instances) sets.

2. Model: We use a standard Feed Forward Neural Net-
work with 3 hidden layers with (128,64,32) neurons
and `2-regularization in each as an underlying model.
We use Adam optimizer with default parameters, set
the maximum number of training epochs to 500 and
deploy Early Stopping with patience for 25 epochs.

3. Estimating label shift: We use BBSE-soft [Lipton
et al., 2018] for estimating importance weights.

B.5 MARGINAL (STANDARD) CONFORMAL
VERSUS LABEL-CONDITIONAL
CONFORMAL

Various procedures of performing label-conditional con-
formal prediction have been proposed in a series of
works [Vovk et al., 2005, 2016, Sadinle et al., 2019, Guan
and Tibshirani, 2019]. Those are based on a slight modifi-
cation of the standard conformal p-value used to determine
whether there is enough evidence to exclude given label
from the prediction set. Roughly speaking, for each candi-
date label y instead of looking whether a pair (Xn+1, y)

conforms well to the whole collection of points D̃ =
{(Xi, Yi)}i∈I , one considers only the subcollection that
shares the same label y. Since the standard exchange-
ability argument immediately implies validity, the differ-
ence then lies in a particular choice for the underlying
(non-)conformity score. For example, one could design a
score that aims to minimize expected size of the prediction
set Sadinle et al. [2019], Guan and Tibshirani [2019].

We now apply label-conditional split-conformal framework
to the setting discussed in this work and focus on the case
of not well-separated data. Consider, for example, the data
simulation pipeline from Section 2.2. First, we fix αy =
α = 0.1 for all y ∈ Y and illustrate the difference between
label-conditional conformal (10) and standard conformal (7)
prediction sets with the same randomized non-conformity

scores (6) for a fair comparison on Figure 5. In both cases a
shallow MLP (two layers with 100 hidden units in each) is
used as an underlying predictor. In this particular example
a stronger requirement of conditional validity forces many
prediction sets to be larger and to contain the least populated
class 1.

Then we perform 1000 simulations and compare label-
conditional conformal against marginal conformal in two
settings (in all cases prediction sets are forced to contain
the most likely label for a fair comparison). First, we set the
calibration set size to be ≈ 350 data points and compare
two procedures depending on whether class proportions
change, and in the former case we perform reweighting
of the non-conformity scores as described in Section 2.2.
On Figure 6b we observe that when class proportions do
not change label-conditional conformal yields larger predic-
tion sets as opposed to standard marginal conformal due to a
stronger coverage requirement. However, when class propor-
tions change, after performing the reweighting with the true
label likelihood ratios, both procedures output prediction
sets of similar size on average as illustrated on Figure 6d.
Motivated by reasons related to the practical limits of data
resources when keeping a sufficiently large held-out set per
label could become prohibitive, we also consider a setting
when the calibration set contains ≈ 100 data points (total).
Smaller calibration set size results in losses of statistical
power when testing whether a given label should be in-
cluded into the prediction set, and thus, might yield larger
prediction sets as observed on Figure 6f.

To summarize, label-conditional conformal is a complemen-
tary (and a powerful) technique to label-shifted conformal
that is inherently robust to changes in class proportions. It
does not require importance weights, and thus can yield ex-
act finite-sample guarantees. Still, it has certain limitations:
(a) it might be potentially a bit conservative in certain areas
of the sample space where classes overlap, (b) it requires
further splitting of the calibration set that could have neg-
ative impact, especially when the number of classes K is
large, a common setting for the modern datasets.

C CALIBRATION

Section C.1 includes all proofs for Sections 3.1 and 3.2 and
Section C.2 includes details about the simulation on a real
dataset mentioned in Section 3.2.

C.1 PROOFS

Proof of Theorem 3. Recall that g : X → M de-
notes the bin-mapping function. Let E be the event
that (g(X1), . . . , g(Xn)) = (g(x1), . . . , g(xn)). On this
event, the number of calibration points Nm within each
bin Bm is known and for each bin labels are i.i.d.
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Figure 5: (a) Conformal prediction sets with marginal coverage guarantee, (b) Conformal prediction sets with class-specific
coverage guarantee. Stronger coverage comes at the price of larger the prediction sets in certain areas.
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Figure 6: Empirical coverage and average cardinality of conformal prediction sets: (a-b) source distribution and ≈ 350
calibration data points total, (c-d) target distribution and ≈ 350 calibration data points total, (e-f) target distribution and
≈ 100 calibration data points total. Complete comparison of the results is given in Section B.5.



with corresponding class probabilities given by πPy,m =
P (Y = y | f(X) ∈ Bm) for all y ∈ Y . Thus, a vector cor-
responding of label frequencies has multinomial distribution
with parametersNm and

{
πPy,m

}
y∈Y . Theorem 5 yields that

conditional on E

K∑
y=1

∣∣π̂Py,m − πPy,m∣∣ ≥ 2√
Nm

√
1

2
ln

(
M2K

α

)
,

with probability at most α/M . Invoking union bound, we
get that, conditional on E, with probability at least 1− α,

K∑
y=1

∣∣π̂Py,m − πPy,m∣∣ ≤ 2√
Nm

√
1

2
ln

(
M2K

α

)
,

simultaneously for all m ∈ M. Since it is true for any
E, we can marginalize to obtain the first assertion of the
Proposition. The second assertion simply represents a con-
sideration of the case when multiple bins happen to have the
same calibrated output which is needed to state the desired
calibration guarantee. Let

ε? = sup
m∈M

εm

denote the worst-case bound. Note that ε? is in fact random
and to be fully rigorous we, first, perform next steps con-
ditional on E and then marginalize to obtain the assertion.
Now, for any y ∈ Y:

|P (Y = y | h(X))− hy(X)|
= |E [1 {Y = y} | h(X)]− hy(X)| (22)
(a)
= |E [1 {Y = y} | h(X)]− E [hy(X) | h(X)]|
(b)
= |E [E [1 {Y = y} | g(X)] | h(X)]− E [hy(X) | h(X)]|
(c)
=

∣∣∣E [[πPy,g(X) − hy(X)
]
| h(X)

]∣∣∣
(d)

≤ E
[∣∣∣πPy,g(X) − π̂y,g(X)

∣∣∣ | h(X)
]
,

where (a), (b) are due to the tower rule (h is a function of
g), (c) is due to linearity of conditional expectation and
due to definition of πPy,m and, finally, (d) is due to Jensen’s
inequality. Consider the event:

E1 :
∥∥π̂Pm − πPm∥∥1 ≤ εm,

simultaneously for all m ∈M. Note that the first assertion
of the Proposition states event E1 happens with probability
at least 1−α for chosen εm: P(E1) ≥ 1−α. Let E2 be the
following event:

E2 :

K∑
y=1

|P (Y = y | h(X))− hy(X)| ≤ ε?.

Summing up over labels y ∈ Y , (22) yields that on E1 it
holds with probability 1:

K∑
y=1

|P (Y = y | h(X))− hy(X)|

≤ E
[∥∥∥πPg(X) − π̂g(X)

∥∥∥
1
| h(X)

]
≤ E [ε? | h(X)] = ε?,

since ε? is a constant. We get that E1 ⊆ E2, and thus
P(E2) ≥ P(E1), and the assertion of the Proposition fol-
lows.

Proof of Proposition 1. The Proposition is a straightfor-
ward combination of the Bayes rule and label shift assump-
tion. Given a predictor f , for any class label y ∈ Y and
any bin Bm, m ∈ M = {1, . . . ,M} one can equivalently
represent conditional probabilities with respect to the target
distribution as:

PQ (Y = y | f(X) ∈ Bm)

(a)
= PQ (f(X) ∈ Bm | Y = y) · PQ (Y = y)

PQ (f(X) ∈ Bm)

(b)
= PP (f(X) ∈ Bm | Y = y) · PQ (Y = y)

PQ (f(X) ∈ Bm)

(c)
= PP (Y = y | f(X) ∈ Bm)

· PQ (Y = y)

PP (Y = y)
· PP (f(X) ∈ Bm)

PQ (f(X) ∈ Bm)

= PP (Y = y | X ∈ Bm) · w(y) · Vm,

where w(y) is the importance weight of label y and Vm is
the ‘relative volume’ of bin Bm. Steps (a), (c) are due to
the Bayes rule, (b) is due to label shift assumption. Nor-
malization:

∑K
k=1 PQ (Y = k | f(X) ∈ Bm) = 1, implies

that:
Vm =

1∑K
k=1 π

P
k,m · w(k)

.

Thus for all bins m ∈M and labels y ∈ Y it holds:

πQy,m =
πPy,m · w(y)∑K
k=1 π

P
k,m · w(k)

,

which concludes the proof of the Proposition.

Proof of Theorem 4. By triangle inequality, one obtains that
for any bin m ∈M:

K∑
y=1

∣∣∣π̂(ŵ)
y,m − πQy,m

∣∣∣ (23)

≤
K∑
y=1

∣∣∣π̂(w)
y,m − πQy,m

∣∣∣+

K∑
y=1

∣∣∣π̂(ŵ)
y,m − π̂(w)

y,m

∣∣∣ .



Consider the first term in (23). For any y ∈ Y:∣∣∣π̂(w)
y,m − πQy,m

∣∣∣
=

∣∣∣∣∣ w(y) · π̂Py,m∑K
k=1 w(k) · π̂Pk,m

− w(y) · πPy,m∑K
l=1 w(l) · πPl,m

∣∣∣∣∣
=

∣∣∣∣∣ π̂Py,m∑K
k=1 w(k) · π̂Pk,m

− πPy,m∑K
l=1 w(l) · πPl,m

∣∣∣∣∣ · w(y)

=

∣∣∣∣∣ π̂Py,m∑K
k=1 w(k) · π̂Pk,m

− πPy,m − π̂Py,m + π̂Py,m∑K
l=1 w(l) · πPl,m

∣∣∣∣∣ · w(y)

(a)

≤
∣∣∣∣∣ 1∑K

k=1 w(k) · π̂Pk,m
− 1∑K

l=1 w(l) · πPl,m

∣∣∣∣∣ · π̂Py,m · w(y)

+ w(y) ·
∣∣∣∣∣ πPy,m − π̂Py,m∑K

l=1 w(l) · πPl,m

∣∣∣∣∣ ,
where (a) is due to triangle inequality. We infer that:

K∑
y=1

∣∣∣π̂(w)
y,m − πQy,m

∣∣∣
≤

∣∣∣∣∣1−
∑K
k=1 w(k) · π̂Pk,m∑K
l=1 w(l) · πPl,m

∣∣∣∣∣
+

∑K
y=1 w(y)

∣∣πPy,m − π̂Py,m∣∣∑K
l=1 w(l) · πPl,m

=

∣∣∣∑K
k=1 w(k) ·

(
π̂Pk,m − πPl,m

)∣∣∣∑K
l=1 w(l) · πPl,m

+

∑K
y=1 w(y)

∣∣πPy,m − π̂Py,m∣∣∑K
l=1 w(l) · πPl,m

(a)

≤ 2 ·
∑K
y=1 w(y)

∣∣πPy,m − π̂Py,m∣∣∑K
l=1 w(l) · πPl,m

(b)

≤ 2 ·
(supk w(k)) ·∑K

y=1

∣∣πPy,m − π̂Py,m∣∣∑K
l=1 w(l) · πPl,m

,

where (a) is due to triangle inequality and (b) is due to
Hölder’s inequality. Observe that for any m ∈M:

1∑K
k=1 w(k) · πPk,m

≤ 1(
inf

k:w(k)6=0
w(k)

)
·∑K

l=1 π
P
l,m

=
1

inf
k:w(k) 6=0

w(k)
,

as
∑K
l=1 π

P
l,m = 1, ∀m ∈M. Hence, for any m ∈M,

K∑
y=1

∣∣∣π̂(w)
y,m − πQy,m

∣∣∣ (24)

≤ 2 · supk w(k)

inf
k:w(k)6=0

w(k)
·
K∑
y=1

∣∣πPy,m − π̂Py,m∣∣ .
Now, consider the second term in (23). Observe that:∣∣∣π̂(ŵ)

y,m − π̂(w)
y,m

∣∣∣
=

∣∣∣∣∣ ŵ(y) · π̂Py,m∑K
k=1 ŵ(k) · π̂Pk,m

− w(y) · π̂Py,m∑K
l=1 w(l) · π̂Pl,m

∣∣∣∣∣
=

∣∣∣∣∣ ŵ(y)∑K
k=1 ŵ(k) · π̂Pk,m

− w(y)∑K
l=1 w(l) · π̂Pl,m

∣∣∣∣∣ · π̂Py,m
=

∣∣∣∣∣ ŵ(y)∑K
k=1 ŵ(k) · π̂Pk,m

− w(y)− ŵ(y) + ŵ(y)∑K
l=1 w(l) · π̂Pl,m

∣∣∣∣∣ · π̂Py,m
(a)

≤
∣∣∣∣∣ 1∑K

k=1 ŵ(k) · π̂Pk,m
− 1∑K

l=1 w(l) · π̂Pl,m

∣∣∣∣∣ · π̂Py,m · ŵ(y)

+
π̂Py,m · |w(y)− ŵ(y)|∑K

l=1 w(l) · π̂Pl,m
,

where (a) is due to triangle inequality. Thus,

K∑
y=1

∣∣∣π̂(ŵ)
y,m − π̂(w)

y,m

∣∣∣
≤

∣∣∣∣∣ 1∑K
k=1 ŵ(k) · π̂Pk,m

− 1∑K
l=1 w(l) · π̂Pl,m

∣∣∣∣∣ ·
K∑
y=1

π̂Py,m · ŵ(y)

+

∑K
y=1 π̂

P
y,m · |w(y)− ŵ(y)|∑K
l=1 w(l) · π̂Pl,m

=

∣∣∣∣∣1−
∑K
y=1 ŵ(y) · π̂Py,m∑K
l=1 w(l) · π̂Pl,m

∣∣∣∣∣
+

∑K
y=1 π̂

P
y,m · |w(y)− ŵ(y)|∑K
l=1 w(l) · π̂Pl,m

=

∣∣∣∑K
y=1 (w(y)− ŵ(y)) · π̂Py,m

∣∣∣∑K
l=1 w(l) · π̂Pl,m

+

∑K
y=1 π̂

P
y,m · |w(y)− ŵ(y)|∑K
l=1 w(l) · π̂Pl,m

≤ 2 ‖ŵ − w‖∞∑K
l=1 w(l) · π̂Pl,m

,

since
∑K
k=1 π̂

P
k,m = 1, ∀m ∈ M. Similarly, for any m ∈

M:
1∑K

k=1 w(k) · π̂Pk,m
≤ 1(

inf l:w(l)6=0 w(l)
)
·∑K

k=1 π̂
P
k,m

=
1

inf l:w(l)6=0 w(l)
.



Thus, we get that for any m ∈M:

K∑
y=1

∣∣∣π̂(ŵ)
y,m − π̂(w)

y,m

∣∣∣ ≤ 2 ‖ŵ − w‖∞
inf l:w(l)6=0 w(l)

. (25)

Combining bounds (24) and (25) with the bound (23), we
obtain that for any m ∈M:

K∑
y=1

∣∣∣π̂(ŵ)
y,m − πQy,m

∣∣∣
≤ 2κ ·

K∑
y=1

∣∣π̂Py,m − πPy,m∣∣+
2 ‖ŵ − w‖∞

inf l:w(l) 6=0 w(l)
,

which concludes the proof of the Theorem.

C.2 SIMULATION ON REAL DATA

For the simulation mentioned in Section 3.2 we use wine
quality dataset [Cortez et al., 2009]. The original dataset
contains ratings for white wines and we reduce it to a bi-
nary classification problem by treating wine as good if the
corresponding rating is at least 7 on a 10-point scale. Lo-
gistic regression is used as an underlying predictor and for
each pass the original dataset D is, first, split into two dis-
joint and approximately equal sets D1 and D2. Label shift
is simulated via resampling of D̃1 with class proportions
p = (0.8, 0.2) and D̃2 with class proportions (0.5, 0.5). Fi-
nal splitting resulted in ≈ 1350 instances used for both
training and calibration, ≈ 700 and ≈ 400 instances used
for importance weights estimation on the source and the
target respectively and ≈ 1100 instances used for the test.
Uniform-mass binning with 10 bins was used for calibration
purposes. For 4 random data splits the resulting reliability
curves are presented on Figure 7 illustrating that calibration
with proper reweighting leads to approximate calibration on
the target domain and uncorrected fails to do so.

D AUXILIARY RESULTS

Note Lemma 6 and Lemma 7 were originally formulated
for possibly unbounded non-conformity scores. It is easy to
see that we can safely replace point masses δ∞ by δ1 in the
conformal classification setting considered in this work.

Theorem 5 (Bretagnolle-Huber-Carol inequality [van der
Vaart and Wellner, 1996]). If the random vector
(N1, . . . , Nk) is multinomially distributed with parameters
n and (p1, . . . , pk), then

P

(
k∑
i=1

|Ni − npi| ≥ 2
√
nλ

)
≤ 2ke−2λ

2

, λ > 0.

Lemma 6 (Lemma 1 [Tibshirani et al., 2019]). Assume
Z1, . . . , Zm+1 are exchangeable random variables sup-
ported on [0, 1]. Then for any β ∈ (0, 1),

P (Zm+1 ≤ Qβ (Z1:m ∪ {1})) ≥ β.3

Moreover, if Zi, i = 1, . . . ,m+ 1 are almost surely distinct,
then the above probability is upper bounded by β + 1

m+1 .

Lemma 7 (Lemma 3 [Tibshirani et al., 2019]). Let Zi, i =
1, . . . , n+ 1 be weighted exchangeable random variables
with weight functionsw1, . . . ,wn+1 and supported on [0, 1].
Let Vi = S (Zi, Z−i), where Z−i = Z1:(n+1)\{Zi}, i =
1, . . . , n+ 1 and S is an arbitrary score function. Define

pwi (z1, . . . , zn+1) =

∑
σ:σ(n+1)=i

∏n+1
j=1 wj(zσ(j))∑

σ

∏n+1
j=1 wj(zσ(j))

,

(26)
for i = 1, . . . , n + 1, where summations are taken over
permutations σ of 1, . . . , n+ 1. Then for any β ∈ (0, 1),

P (Vn+1 ≤ Qβ (Gn)) ≥ 1− β,

where the distribution Gn is defined as

Gn :=

n∑
i=1

pwi (Z1, . . . , Zn+1)δVi
+pwn+1(Z1, . . . , Zn+1)δ1.

3In this case, Qβ (Z1:m ∪ {1}) can be equivalently defined as
the dβ(m + 1)e-th smallest element of the set {Zi}mi=1 if β ≤
m
m+1

, and as 1 otherwise.
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Figure 7: Reliability curves for the simulation on the wine quality dataset obtained for several data splits. Notice that
the bars indicating calibration using oracle and estimated importance weights are quite similar to each other, but most
importantly that both are very close to the ideal diagonal line (perfect calibration). In contrast, the uncorrected bars are
poorly calibrated, demonstrating both the need for handling label shift and the relative success of our procedures in doing so.
See Section C.2 for details.
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