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Abstract

A core challenge in policy optimization in com-
petitive Markov decision processes is the design
of efficient optimization methods with desirable
convergence and stability properties. We propose
competitive policy optimization (COPO), a novel
policy gradient approach that exploits the game-
theoretic nature of competitive games to derive pol-
icy updates. Motivated by the competitive gradient
optimization method, we derive a bilinear approxi-
mation of the game objective. In contrast, off-the-
shelf policy gradient methods utilize only linear
approximations, and hence do not capture players’
interactions. We instantiate COPO in two ways: (i)
competitive policy gradient, and (ii) trust-region
competitive policy optimization. We theoretically
study these methods, and empirically investigate
their behavior on a set of comprehensive, yet chal-
lenging, competitive games. We observe that they
provide stable optimization, convergence to sophis-
ticated strategies, and higher scores when played
against baseline policy gradient methods.

1 INTRODUCTION

Reinforcement learning (RL) in competitive Markov deci-
sion processes COMDP [Filar and Vrieze, 2012] is the study
of competitive players, sequentially making decisions in an
environment. In COMDPs, the competing agents (players)
interact with each other within the environment, and through
their interactions, learn how to develop their behavior and
improve their policy. In this paper, we consider the rich and
fundamental class of zero-sum two-player games.

A core challenge in COMDP is to design optimization pro-
cedures with desirable convergence and stability properties.
Policy gradient (PG) is a prominent RL approach that is
widely used in single agent optimization and derives policy

update using the first order (linear) approximation of the
objective function [Robbins and Monro, 1951, Aleksandrov
et al., 1968, Sutton et al., 2000]. A straightforward extension
of conventional single-agent PG approaches to two-player
min-max games results in the gradient descent ascent (GDA)
PG algorithm. This approximation is linear in agents’ pa-
rameters and does not take their interaction into account.
Therefore, GDA directly optimizes the policy of each agent,
assuming the policy of the opponent is fixed which some
times leads to divergence even in simple scenarios and hence
considered undesirable in competitive optimization.

We propose a new paradigm, competitive policy opti-
mization (COPO) for solving two-player COMDPs. COPO
exploits the game-theoretic and competitive nature of
COMDPs, and, inspired by the competitive gradient descent
approach [Schaefer and Anandkumar, 2019], deploys a lo-
cal bilinear approximation of the game objective to derive
policy updates. This local bilinear approximation can be
viewed as the simultaneous two-player generalization of
the local linear approximation used in single-agent policy
gradient approaches (holding the other agent’s policy fixed).
To compute the policy updates, COPO computes the Nash
equilibrium of the local bilinear approximation of the game
objective. In COPO, each agent derives its update with the
consideration of what the other agent’s current move and
moves in the future time steps might be. In addition, each
agent considers how the environment, as the result of the
agents’ current and future moves, evolves in favor of each
agent. Therefore, each agent hypothesizes about what the
other agent’s and the environment’s responses would be,
resulting in the recursive reasoning in game theory [Keynes,
2018] and temporal recursion in COMDPs.

We instantiate COPO in two ways to arrive at practical al-
gorithms. We propose competitive policy gradient (COPG),
a novel PG algorithm that exploits value functions and the
structure of COMDPs to efficiently obtain policy updates.
We further extend our approach to the case where each agent
does not have direct access to the opponent’s policy parame-
ters, and must (approximate) it. We also propose trust region
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competitive policy optimization (TRCOPO), a novel trust
region based PG method [Schulman et al., 2015]. TRCOPO
updates agents’ parameters simultaneously by deriving the
Nash equilibrium of a bilinear (in contrast to linear approxi-
mation in off-the-shelf trust region methods) approximation
to the surrogate objective within a defined trust region in the
parameter space.

We empirically validate our approach in several settings. We
construct the main empirically study on competitive games,
such as Markov soccer, Linear dynamical systems, and Rac-
ing cars. We show in all these environments that COPO leads
to superior policies. We observe many cases where standard
policy gradient approaches do not exhibit stable learning
behavior and can diverge. In our case studies, we show that
COPO can be applied to self-play setting, where an agent
is playing against itself. We further show that COPO can
be applied to improve performance in other competitive al-
gorithms such as generative adversarial imitation learning
(GAIL) (where one player is the policy and the other is the
discriminator) [Ho and Ermon, 2016]. We further extend
our case study and show that COPO remains effective even
when one needs to learn a model of the opponent’s policy
rather than having direct access.

2 PRELIMINARIES

A two player COMDP is a tuple of 〈S,A1,A2,R, T ,P, γ〉,
where S is the state space, s ∈ S is a state, for player
i ∈ {1, 2}, Ai is the player i’s action space with ai ∈
Ai. R is the reward kernel with probability distribution
R(·|s, a1, a2) and mean function r(s, a1, a2) on R. For
a probability measure P , p denotes the probability dis-
tribution of initial state, and for the transition kernel T ,
T (s′|s, a1, a2) is the distribution of successive state s′ after
taking actions a1, a2 simultaneously at state s, with discount
factor γ ∈ [0, 1]. We consider episodic environments with
reachable absorbing state sT almost surely in finite time. An
episode starts at s0 ∼ p, and at each time step k ≥ 0 at state
sk, each player i draws its action aik according to policy
π(aik|sk; θi) parameterized by θi ∈ Θi, where Θi ⊂ Rl is
a compact metric space. Players 1, 2 receive (rk,−rk) with
rk ∼ R(sk, a

1
k, a

2
k), and the environment evolves to a new

state sk+1. A realization of this stochastic process is a trajec-
tory τ =

(
(sk, a

1
k, a

2
k, rk)

|τ |−1
k=0 , s|τ |

)
, an ordered sequence

with random length |τ |, where |τ | is determined by episode
termination time and state s|τ | = sT . Let f(τ ; θ1, θ2) de-
note the probability distribution of the trajectory τ following
players’ policies π(θi),

f(τ ; θ1, θ2) = p(s0)

|τ |−1∏
k=0

π(a1
k|sk; θ1)π(a2

k|sk; θ2)

R(rk|sk, a1
k, a

2
k)T (sk+1|sk, a1

k, a
2
k). (1)

For R(τ) =
∑|τ |
k=0 γ

kr(sk, a
1
k, a

2
k), the Q-function, V -

functions, and game objective are defined,

Q(sk,a
1
k,a

2
k;θ1,θ2)=Eτ∼f(·;θ1,θ2)

[|τ |−1∑
j=k

γj−kr(sj ,a
1
j ,a

2
j )|sk,a1

k,a
2
k

]
,

V (sk; θ1, θ2)=Eτ∼f(·;θ1,θ2)

[ |τ |−1∑
j=k

γj−kr(sj , a
1
j , a

2
j )|sk

]
,

η(θ1, θ2) =

∫
τ

f(τ ; θ1, θ2)R(τ)dτ (2)

We assume V , Q, and η are differentiable and
bounded in (Θ1,Θ2) and for f on (Θ1,Θ2), Dθif =
∂
∂θ′i

f(θ′
1
,θ′

2
)
∣∣
(θ′1,θ′2)=(θ1,θ2)

, and Dθiθjf =
∂
∂θ′i

(
∂
∂θ′j

f(θ′
1
,θ′

2
)
)∣∣

(θ′1,θ′2)=(θ1,θ2)
, for i, j ∈ {1, 2}.

3 COMPETITIVE POLICY OPTIMIZATION

Player 1 aims to maximize the game objective η Eq. (2), and
player 2 aims to minimize it, i.e., simultaneously solving
for maxθ1 η(θ1, θ2) and minθ2 η(θ1, θ2) respectively with,

θ1∗ ∈ argmax
θ1∈Θ1

η(θ1, θ2), and θ2∗ ∈ argmin
θ2∈Θ2

η(θ1, θ2). (3)

As discussed in the introduction, a straightforward general-
ization of PG methods to COMDP, results in GDA (Alg.1).
Given players’ parameters (θ1, θ2), GDA prescribes to op-
timize a linear approximation of the game objective in the
presence of a regularization for the policy updates,

θ1←θ1+ argmax
∆θ1:∆θ1+θ1∈Θ1

∆θ1>Dθ1η −
1

2α
||∆θ1||2, and

θ2 ← θ2+ argmin
∆θ2:∆θ2+θ2∈Θ2

∆θ2>Dθ2η +
1

2α
||∆θ2||2, (4)

where α represent the step size. The parameter updates in
Eq. 4 result in greedy updates along the directions of max-
imum change, assuming the other player stays constant.
These updates are myopic, and ignore the agents’ interac-
tions. In other words, player 1 does not take player’s 2 po-
tential move into consideration and vice versa. While GDA
might be an approach of interest in decentralized COMDP,
it mainly falls short in the problem of competitive and cen-
tralized optimization in a priori unknown COMDPs, i.e., the
focus of this work. In fact, this behaviour is far from optimal
and is shown to diverge in many simple cases e.g. plain bilin-
ear or linear quadratic games [Schaefer and Anandkumar,
2019, Mazumdar et al., 2019]. While single agent policy
gradient methods generalize gradient descent [Robbins and
Monro, 1951] to single player RL settings, in this paper,
we generalize competitive gradient descent [Schaefer and
Anandkumar, 2019] to zero-sum RL settings.

We propose competitive policy optimization COPO, a policy
gradient approach for optimization in unknown COMDPs.



In contrast to standard PG methods, such as GDA, COPO
considers a bilinear approximation of the game objective,
and takes the interaction between players into account. Fol-
lowing the competitive gradient updates, COPO incorporates
the game theoretic nature of the COMDP optimization and
derives parameter updates through finding the Nash equilib-
rium of the bilinear approximation of the game objective,

θ1←θ1+ argmax
∆θ1:∆θ1+θ1∈Θ1

∆θ1>Dθ1η+∆θ1
>
Dθ1θ2η∆θ2− 1

2α
||∆θ1||2,

θ2←θ2+argmin
∆θ2:∆θ2+θ2∈Θ2

∆θ2>Dθ2η+∆θ2>Dθ2θ1η∆θ1+
1

2α
||∆θ2||2, (5)

which has an extra term, the interaction term, in contrast to
Eq. 4, and has the following closed-form solution,

θ1←θ1+α
(
I+α2Dθ1θ2ηDθ2θ1η

)−1(
Dθ1η−αDθ1θ2ηDθ2η

)
,

θ2←θ2−α
(
I+α2Dθ2θ1ηDθ1θ2η

)−1(
Dθ2η+αDθ2θ1ηDθ1η

)
,(6)

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

(a)

5 10 15
-14

-12

-10

-8

-6

-4

-2

0

CoPO
GDA

(b)

Figure 1: Bilinear games: (a) COPO updates towards Nash
equilibrium. (b) GDA updates point outward, leading to
cycling/divergence.

where I is an identity matrix of appropriate size. Note
that, the bilinear approximation in Eq. 5 is still linear in
each player’s action/parameters. Including any other terms,
e.g., block diagonal Hessian terms from the Taylor expan-
sion of the game objective, results in nonlinear terms in
at least one player’s parameters. As such, COPO can be
viewed as a natural linear generalization of PG. It is known
that GDA-style co-learning approaches can often diverge
or cycle indefinitely and never converge [Mertikopoulos
et al., 2018a]. Fig. 1 shows that for a bilinear game, the
gradient flow of GDA cycles or has gradient flow outward,
while the COPG flow, considering players’ future moves,
has gradient flow toward the Nash equilibrium and con-
verges. In Apx.9, we deploy the Neumann series expan-
sion of the inverses in Eq.5, and show that COPO recov-
ers the infinite recursion reasoning between players and
the environment, while GDA correspond to the first term,
and LOLA corresponds to the first two terms in the series.
Next, we compute terms in Eq. 6 using the score function
g(τ, θi) := Dθi(log

∏|τ |−1
k=0 π(ak|sk; θi)),

Proposition 1. Given a COMDP, players i, j ∈{1, 2}, i 6= j
and the policy parameters θi, θj ,

Dθiη =

∫
τ

f(τ ; θ1, θ2)g(τ, θi)R(τ)dτ,

Dθiθjη=

∫
τ

f(τ ; θ1, θ2)g(τ, θi)g(τ, θj)>R(τ)dτ.

Proof in Apx. 10.1. In practice, we use conjugate gradient
and Hessian vector product to efficiently compute the up-
dates in Eq.6, as explained in later sections. A closer look at
COPO shows that this paradigm does not require the knowl-
edge of the environment if sampled trajectories are available.
It neither requires full observability of the states, nor any
structural assumption on COMDP, but the Monte Carlo es-
timation suffer from high variance. In the following, we
explicitly take the COMDP structure into account to develop
efficient algorithms.

3.1 COMPETITIVE POLICY GRADIENT

We propose competitive policy gradient (COPG), an efficient
algorithm that exploits the structure of COMDPs to compute
the parameter updates. The following is the COMDP gener-
alizing of the single agent PG theorem [Sutton et al., 2000].
For τl:l′ = (sk, a

1
k, a

2
k, rk)l

′

k=l, the events from time step l
to l′, we have:

Theorem 1. Given a COMDP, players i, j ∈{1, 2}, i 6= j,
and the policy parameters θi, θj ,

Dθiη =

∫
τ

∑|τ |−1

k=0
γkf(τ0:k; θ1, θ2)Dθi(log π(aik|sk; θi))

Q(sk, a
1
k, a

2
k; θ1, θ2)dτ, (7)

Dθiθjη= T1 + T2 + T3. (8)

Proof in Apx. 10.2. T1, T2 and T3 are described in Ta-
ble 1. This theorem indicates that the terms in Eq. 6 can be
computed using Q function. In Eq. 8, T1 is the immediate
interaction between players, T2 is the interaction of player
i’s behavior up to time step k with player j’s reaction at
time step k, and the environment. T3 is the interaction of
player j’s behavior upto time step k with player i’s reaction
at time step k, and the environment.

COPG operates in epochs. At each epoch, COPG deploys
π(θ1), π(θ2) to collect trajectories, exploits them to esti-
mate the Q, Dθiη, and Dθiθjη. Then COPG follows the
parameter updates in Eq. 6 and updates (θ1, θ2), and this
process goes on to the next epoch (Alg.2). Many variants of
PG approach uses baselines, and replace Q with, the advan-
tage function A(s, a1, a2; θ1, θ2) = Q(s, a1, a2; θ1, θ2) −
V (s; θ1, θ2), Monte Carlo estimate of Q-V [Baird, 1993],
empirical TD error or generalized advantage function



Table 1: Notations for the bilinear term in the competitive policy theorem

Symbol Formulation

T1 :
∫
τ

∑|τ |−1
k=0 γkf(τ0:k; θ1, θ2)Dθi(log π(aik|sk; θi))Dθj (log π(ajk|sk; θj))>Q(sk, a

1
k, a

2
k; θ1, θ2)dτ

T2 :
∫
τ

∑|τ |−1
k=1 γkf(τ0:k; θ1, θ2)Dθi(log

∏k−1
l=0 π(ail|sl; θi))Dθj (log π(ajk|sk; θj))>Q(sk, a

1
k, a

2
k; θ1, θ2)dτ

T3 :
∫
τ

∑|τ |−1
k=1 γkf(τ0:k; θ1, θ2)Dθi(log π(aik|sk; θi))Dθj (log

∏k−1
l=0 π(ajl |sl; θj))>Q(sk, a

1
k, a

2
k; θ1, θ2)dτ

(GAE) [Schulman et al., 2016]. Our algorithm can be ex-
tended to this set up and in Apx. 11 we show how COPG
can be accompanied with all the mentioned variants.

3.2 OPPONENT PARAMETER ESTIMATION

In some settings, each learner does not have access to the
opponent’s policy. To apply COPG in such settings, one
natural approach is to estimate online the opponent’s policy
by the opponent’s state-action pairs, as proposed in [Foerster
et al., 2017b]. We thus propose a variant of COPG that also
infers the opponent’s policy parameters (COPG-OP), where
each agent i also estimates the parameters θ̂j of its opponent
j’s policy, e.g., using maximum-likelihood estimator,

θ̂j = argmaxθj Eτ∼f(·,θ1,θ2)

|τ |−1∑
k=0

log π(ajk|sk, θ
j) (9)

Then, the agent utilizes θ̂j to derive its policy updates in
Eq. 7, 8, in place of θj . In our empirical study, we observe
that COPG-OP training is as stable as COPG and the policies
learned using COPG-OP are as competent as COPG (refer
to Apx. 16). We conclude that opponent parameter learn-
ing can be considered effective in online settings, which
confirms the observation in [Foerster et al., 2017b].

3.3 TRUST REGION COMPETITIVE POLICY
OPTIMIZATION

Trust region based policy optimization methods exploit the
local Riemannian geometry of the parameter space to de-
rive more efficient policy updates [Kakade and Langford,
2002, Kakade, 2002, Schulman et al., 2015]. In this section,
we propose trust region competitive policy optimization
(TRCOPO), the COPO generalization of TRPO [Schulman
et al., 2015], that exploits the local geometry of the compet-
itive objective to derive more efficient parameter updates.

Lemma 1. Given the advantage function of policies
π(θ1), π(θ2), ∀(θ′1, θ′2) ∈ Θ1 ×Θ2 we have,

η(θ′1,θ′2)=η(θ1,θ2)+Eτ∼f(·;θ′1,θ′2)

|τ |−1∑
k=0

γkA(s, a1, a2;θ1, θ2).(10)

Proof in Apx. 13.1. Eq.10 indicates that, considering our
current policies (π(θ1), π(θ2)), having access to their ad-
vantage function, and also samples from f(·; θ′1, θ′2) of
any (θ′

1
, θ′

2
) (without rewards), we can directly compute

η(θ′1, θ′2) and optimize for (θ′1, θ′2). However, in practice,
we might not have access to f(·; θ′1, θ′2) for all (θ′

1
, θ′

2
)

to accomplish the optimization task, therefore, direct use
of Eq.10 is not favorable. Instead, we define a surrogate
objective function, Lθ1,θ2(θ′1, θ′2),

Lθ1,θ2(θ′1, θ′2)=η(θ1, θ2)+ Eτ∼f(·;θ1,θ2)

[∑|τ |−1

k=0
γk

Eπ(a′1k |sk;θ′1),π(a′2k |sk;θ′2)A(sk, a
′1
k , a
′2
k ; θ1, θ2)

]
, (11)

which can be computed using trajectories of our current
polices π(θ1), π(θ2). Lθ1,θ2(θ′

1
, θ′

2
) is an object of

interest in PG [Kakade and Langford, 2002, Schulman
et al., 2015] since mainly its gradient is equal to that
of η(θ1, θ2) at (θ1, θ2), and as stated in the following
theorem, it can carefully be used as a surrogate of the game
value. For KL divergence DKL((θ1, θ2), (θ′1, θ′2)) :=∫
τ
f(τ, θ1, θ2) log

(
f(τ, θ1, θ2)/f(τ, θ′1, θ′2)

)
dτ , we

have,

Theorem 2. Lθ1,θ2(θ′
1
, θ′

2
) approximate η(θ′

1
, θ′

2
) up to

the following error upper bound, with constant ε∣∣η(θ′1,θ′2)−Lθ1θ2(θ′1,θ′2)
∣∣≤ε/√2

√
DKL((θ′1,θ′2),(θ1,θ2)),(12)

ε :=maxτ
|τ |∑
k

γkEπ(a′1k |sk;θ′1),π(a′2k |sk;θ′2)A(sk, a
′1
k , a
′2
k ; θ1, θ2).

Proof in Apx. 13.2. This theorem states that we can use
Lθ1θ2(θ′1, θ′2) to optimize for η(θ′1, θ′2) as long as we
keep the (θ′1, θ′2) in the vicinity of θ1, θ2. Similar to sin-
gle agent TRPO [Schulman et al., 2015], we optimize
for Lθ1θ2(θ′1, θ′2), while constraining the KL divergence,
DKL((θ1, θ2), (θ′1, θ′2)) ≤ δ′, i.e.,

max
θ′1∈Θ1

min
θ′2∈Θ2

Lθ1θ2(θ
′1, θ′2),withDKL((θ1, θ2),(θ′1, θ′2))≤δ′. (13)

The GDA generalizing of TRPO uses a linear approxima-
tion of Lθ1θ2(θ′1, θ′2) to approach this optimization, which
again ignores the players’ interactions. In contrast, TRCOPO
considers the game theoretic nature of this optimization, and
uses a bilinear approximation. TRCOPO operates in epochs.



At each epoch, TRCOPO deploys (π(θ1), π(θ2)) to collect
trajectories, exploits them to estimate A (or GAE), then
updates parameters accordingly, Alg.4. (For more details,
please refer to Apx. 13.3.)

4 EXPERIMENTS

We empirically study the performance of COPG and TR-
COPO and their counterparts GDA and TRGDA, on six
games, ranging from single-state repeated games to general
sequential games, and tabular games to infinite/continuous
high dimensional states/action games. They are 1) linear-
quadratic(LQ) game, 2) bilinear game, 3) matching pennies
(MP), 4) rock paper scissors (RPS), 5) Markov soccer, and
6) car racing. These games are representative enough that
their study provides insightful conclusions, and challenging
enough to highlight the core difficulties and interactions in
competitive games.

We show that COPG and TRCOPO converge to stable points,
and learn opponent aware strategies, whereas GDA’s and
TRGDA’s greedy approach shows poor performance and
even diverge in bi-linear, MP, and RPS games. For the LQ
game, when GDA does not diverge, it almost requires 1.5
times the amount of samples, and is 1.5 times slower than
COPG. In highly strategic games, where players’ policies
are tightly coupled, we show that COPG and TRCOPO learn
much better interactive strategies. In the soccer game, COPG
and TRCOPO players learn to defend, dodge and score goals,
whereas GDA and TRGDA players learn how to score when
they are initialized with the ball, and give way to the other
player otherwise. In the car racing, while GDA and TRGDA
show poor performance, COPG and TRCOPO produce com-
peting players, which learn to block and fake each other.
Overall, we observe COPG and TRCOPO considerably out-
perform their counterparts in terms of convergence, learned
strategies, and gradient dynamics.

We implemented all algorithms in Pytorch [Paszke et al.,
2019], and made the code and the videos public1. In our
implementation, we deploy Pytorch’s autograd package and
Hessian vector product to efficiently obtain gradients and
Hessian vector products to compute the bilinear terms in the
optimizer. Moreover, we use the conjugate gradient trick to
efficiently computed the inverses-matrix vector product in
Eq.6 which incurs a minimal computational overhead (see
[Shewchuk, 1994] for more details). To improve computa-
tion times, we compute inverse-matrix vector product only
for one player strategy, and use optimal counter strategy
for other player ∆θ2 which is computed without an inverse
matrix vector product. Also, the last optimal strategy can
be used to warm start the conjugate gradient method which
improves convergence times. We provide efficient imple-
mentation for both COPO- and GDA-based methods, where

1Link to Videos: https://sites.google.com/view/rl-copo

COPO incurs 1.5 times extra computation per batch.

Zero-sum LQ game is a continuous state-action linear dy-
namical game between two players, where GDA, with con-
siderably small learning rate, has favorable convergence
guarantees [Zhang et al., 2019]. This makes the LQ game
an ideal platform to study the range of allowable step sizes
and convergence rate of COPG and GDA. We show that,
with increasing learning rate, GDA generates erratic trajec-
tories and policy updates, which cause instability (see “�”
in Table 4), whereas COPG is robust towards this behav-
ior. Fig. 2a shows that COPG dynamics are not just faster
at the same learning rate but more importantly, COPG can
potentially take even larger steps.
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Figure 2: During training COPG (C) vs GDA (G) on a) LQ
game, difference in game objective due to policy update
for α = 1e − 1, 1e − 2 b) Bilinear game, µ1 vs µ2 c)
MP, probability of selecting Head(H) and Tail(T) d) RPS,
probability of selecting rock(R), paper(P) and scissors(S).

Bilinear game is a state-less strongly non-cooperative game,
where GDA is known to diverge [Balduzzi et al., 2018].
In this game, reward r(a1, a2) = 〈a1, a2〉 where a1 ∼
N (µ1, σ1) and a2 ∼ N (µ2, σ2), and (µ1, σ1), (µ2, σ2) are
policy parameters. We show that GDA diverges for all learn-
ing rates, whereas COPG converges to the unique Nash
equilibrium Fig. 2b.

Matching pennies and Rock paper scissors, are challeng-
ing matrix games with mixed strategies as Nash equilibria,
demand opponent aware optimization.2 We show that COPG
and TRCOPO both converge to the unique Nash equilibrium
of MP Fig. 2c and RPS Fig. 2d, whereas GDA and TRGDA

2Traditionally, fictitious and counterfactual regret minimiza-
tion approaches have been deployed [Neller and Lanctot, 2013].

https://sites.google.com/view/rl-copo


diverges (to a sequence of polices that are exploitable by de-
terministic strategy). Detailed empirical study, formulation
and explanation of these 4 games can be found in Apx. 15.

Markov soccer game, Fig. 4, consists of players A and B
that are randomly initialised in the field, that are supposed
to pick up the ball and put it in the opponent’s goal [Littman,
1994, He et al., 2016]. The winner is awarded with +1 and
the loser with -1 (see Apx. 15.5 for more details).

Since all methods converge in this game, it is a suitable
game to compare learned strategies. In this game, we ex-
pect a reasonable player to learn sophisticated strategies of
defending, dodging and scoring. For each method playing
against their counterparts, e.g., COPG against COPG and
GDA, Fig. 3 shows the number of times the ball is seized
between the players before one player finally scores a goal,
or time-out. In (3a), COPG vs COPG, we see agents seize
ball, twice the times as compared to (3b),GDA vs GDA (see
A2 and B2 in (3a) and (3b)). In the matches COPG vs GDA
(3c), COPG trained agent could seize the ball from GDA
agent (A2) nearly 12 times more due to better seizing and
defending strategy, but GDA can hardly take the ball back
from COPG (B2) due to a better dodging strategy of the
COPG agent. Playing COPG agent against GDA one, we ob-
serve that COPG wins more than 74% of the games Fig. 3d.
We observe a similar trend for trust region based methods
TRCOPO and TRGDA, playing against each other (a slightly
stronger results of 85% wins, A2 column in Figs 3g, 3c).

We also compared COPG with MADDPG [Lowe et al., 2017]
and LOLA [Foerster et al., 2017b]. We observe that the
MADDPG learned policy behaves similar to GDA, and loses
80% of the games to COPG’s (Fig. 15b). LOLA learned
policy, with its second level reasoning, performs better than
GDA, but lose to COPG 72% of the matches. For complete-
ness, we also compared GDA-PG, COPG, TRGDA, and
TRCOPO playing against each other. TRCOPO performs
best,COPG was runner up, then TRGDA, and lastly GDA
(see Apx. 15.5).

Car Racing is another interesting game, with continuous
state-action space, where two race cars competing against
each other to finish the race first [Liniger and Lygeros,
2020]. The game is accompanied by two important chal-
lenges, 1) learning a policy that can maneuver the car at
the limit of handling, 2) strategic interactions with oppo-
nents. The track is challenging, consisting of 13 turns with
different curvature (Fig. 6). The game is formulated as a
zero-sum, with reward r(sk, a1

k, a
2
k) = ∆ρcar1 − ∆ρcar2 ,

where ∆ρ = ρk+1 − ρk and ρk is the car’s progress along
the track at the kth time step. If a car crosses track bound-
aries (e.g., hit the wall), it is penalized, and the opponent
receives rewards, this encourages cars to play rough and
push each other into the track boundaries. When a collision
happens, the rear car is penalized, and the car in the front re-
ceives a reward; it promotes blocking by the car in front and

overtaking by the car in the rear. We study agents trained
with all GDA, TRGDA, MADDPG, LOLA, COPG and TR-
COPO in this game, and show that even though all players
were able to learn to "drive" only COPG and TRCOPO were
able to learn how to "race". Using GDA, only one player
was able to learn, which manifested in either one player
completely failing and the other finishing the track (Fig. 5a),
or by an oscillation behavior where one player learns to
go ahead, the other agent stays at lower progress(Fig. 5c,
Fig. 5e). Even if one of the players learns to finish one lap
at some point, this player does not learn to interact with
its opponent(https://youtu.be/rxkGW02GwvE). In contrast,
players trained with COPG and TRGDA, both progress, learn
to finish the lap, and race (interact with each other) (See
Fig. 5b and Fig. 5d). To test the policies, we performed races
between COPG and GDA, TRCOPO and TRGDA, and COPG
and TRCOPO. As shown in Table 2, COPG and TRCOPO
win almost all races against their counterparts. Overall, we
see that both COPG and TRCOPO are able to learn policies
that are faster, more precise, and interactive with the other
player (e.g., learns to overtake).

Table 2: Trained agents competing against each others in car
racing. Ratio of Wins(W), Overtakes(O) and Collisions(C).

COPG v GDA TRCOPO v TRGDA COPG v TRCOPO

W 1 0 1 0 0.24 0.76
O 1.28 0.78 1.28 0.78 1.80 2.07
C 0.17 16.11 0.25 1.87 0.30 0.31

4.1 CASE STUDIES

Generative Adversarial Imitation Learning: One can also
apply our approach in asymmetric games, such as learning
the agent policy and the discriminator in generative adver-
sarial imitation learning (GAIL) [Ho and Ermon, 2016]. In
GAIL, to imitate the expert, the agent (θ player) plays a
game with a discriminator D (φ player), i.e.,

min
θ

max
φ

Eτθ[logDφ(s,a)]+Eτe[log(1− Dφ(s,a))]−λH(θ),

where τθ is a trajectory and H(θ) is the casual entropy.

We conduct this study on the car racing game with a single
car, where the aim is to learn to drive a full lap. Given a long
track (Fig. 6), exploration and reward formulation can be
challenging. We train the agent using COPO to learn to drive
by imitating an expert. The expert trajectories are collected
using a pure pursuit (PP) controller [Coulter, 1992] with
different sets of parameters Apx. 17. We evaluate agent’s
policy using lap time (tlap), and:

ζ = Eτθ [
∑|τ |−1

k
‖ak − aek‖2/|τ |], (14)

https://youtu.be/rxkGW02GwvE
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Figure 3: a-c), e-g) Interaction plots, representing probability of seizing ball in the game between A vs B. X-axis convention,
for player A. A1: A scored goal, A2: A scored goal after seizing ball from B, A3: A scored goal by seizing ball from B
which took the ball from A and so forth. Vice versa for player B. N: No one scored goal both kept on seizing ball. d),h)
Probability of games won.

A

B

Goal Ball

Figure 4: Markov Soccer

where ak, aek are the agent and the expert actions evaluated
at the same state sk, collected from an agent rollout. We
compare the results of COPO-GAIL with GDA-GAIL, Be-
haviour cloning (BC) [Ho and Ermon, 2016] and controllers
such as PID and PP. The agent trained with COPO learns to
follow the reference path of the expert and even drives better
than the average expert policy, achieving a performance sim-
ilar to the best expert (https://youtu.be/DtGWZubjcf4). The
COPO-based agent achieves the lowest ζ value and learns a
better imitation policy compared to GDA and BC Table 3.

Table 3: Comparing lap time and ζ (Eq. 14) of the policies
learnt using imitation learning and the baseline controllers.

score PPavg COPO-GAIL GDA-GAIL PID BC

ζ x 10−2 0 0.82 1.14 2.35 2.02
tlap(s) 13.07 11.82 12.18 14.67 DNF

Opponent learning: We next explore the case where one
does not directly have access to the opponent’s parameters
and they have to be inferred through interaction with the
other agent and the environment. We propose to use COPG-
OP (Sec. 3.2), the opponent learning variant of COPG.

Fig. 7 shows interaction plots of COPG-OP conducted on
the Markov Soccer game (setting explained in Apx. 15.5).
The opponent’s parameters are estimated by observing state-
action pairs of the opponent using Eq. 9. The interaction
plot of the COPG-OP agent with the estimated opponent
(Fig. 7a) shows that the COPG-OP player learns to seize the
ball and interact with the opponent(A3, A4). Fig. 18b shows
the interaction plot of COPG-OP with COPG, where we
observe that COPG-OP also learns a policy similar to COPG,
which is able to defend, escape and score goals (A3). When
directly competing with COPG, we observe that COPG-OP
can win 46.5% of the games against COPG.

The experiment details and numerical results on other se-
tups can be found in Apx. 16. They show that COPG-OP
achieves the performance of COPG in terms of stability and
convergence to sophisticated strategies.

Training by Self-play: In self-play, one player plays against
itself using the same policy model for both players. Each
player then samples actions from this policy for their respec-
tive state and updates the policy using COPG-SP (Alg. 5)
which is a special case of COPG. We observe that COPG-
SP can successfully learn competing strategies similarly to
COPG. We provide the COPG-SP algorithm and a detailed
empirical study in Apx. 12.

https://youtu.be/DtGWZubjcf4
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Figure 5: Normalised progress of agents in one lap of car racing game during training
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Racing Game. The thin line shows the trajectory of the
player in the game and the thick line shows trajectory when
the trailing agent overtook.

5 RELATED WORK

In tabular COMDP, Q-learning and actor-critic have been
deployed [Littman, 1994, 2001b,a, Bowling and Veloso,
2002, Greenwald and Hall, 2003, Hu and Wellman, 2003,
Frénay and Saerens, 2009, Pérolat et al., 2018, Srinivasan
et al., 2018], and recently, deep RL methods have been
extending to COMDPs, with focus on modeling agents be-
haviour [Tampuu et al., 2017, Leibo et al., 2017, Raghu et al.,
2017]. To mitigate the stabilization issues, centralized meth-
ods [Matignon et al., 2012, Lowe et al., 2017, Foerster et al.,
2017a], along with opponent’s behavior modeling [Raileanu
et al., 2018, He et al., 2016] have been explored. Optimiza-
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Figure 7: Interaction plots evaluated by playing 5000 games.
Matches played between a) COPG-OP player A and player
B estimated by A b) COPG-OP and COPG

tion in multi-agent learning can be interpreted as a game in
the parameter space, and the main body of the mentioned lit-
erature does not take this aspect directly into account since
they attempt to separately improve players’ performance.
Hence, they often fail to achieve desirable performance
and oftentimes suffer from unstable training, especially in
strategic games [Hernandez-Leal et al., 2019, Buşoniu et al.,
2010]. In imperfect information games with known rules,
e.g., poker [Moravcík et al., 2017], a series of works study
algorithmically computing Nash equilibra [Shalev-shwartz
and Singer, 2007, Koller et al., 1995, Gilpin et al., 2007,
Zinkevich et al., 2008, Bowling et al., 2017]. Also, studies
in stateless episodic games shown convergence to coarse
correlated equilibrium [Hartline et al., 2015, Blum et al.,
2008]. In contrast COPO converges to the Nash equilibrium
in such games. In two-player competitive games, self-play
is an approach of interest where a player plays against it-
self to improve its behavior [Tesauro, 1995, Silver et al.,
2016]. But, many of these approaches are limited to specific
domains [Heinrich et al., 2015, Heinrich and Silver, 2016].

The closest approach to COPO in the literature is LOLA [Fo-
erster et al., 2017b] an opponent aware approach. LOLA
updates parameters using a second-order correction term,
resulting in gradient updates corresponding to the following
shortened recursion: if a player thinks that the other player
thinks its strategy stays constant [Schaefer and Anandku-
mar, 2019], whereas COPO recovers the full recursion series
until the Nash equilibrium is delivered. In contrast to [Fo-
erster et al., 2017b] we also provide COPO extension to
value-based, and trust region-based methods, along with



their efficient implementation.

Our work is also related to GANs [Goodfellow et al., 2014],
which involves solving a zero sum two-player competitive
game (COMDP with single state). Recent development in
nonconvex-nonconcave problems and GANs training show
GDA has undesirable convergence properties [Mazumdar
et al., 2019] and exhibit strong rotation around fixed points
[Balduzzi et al., 2018]. To overcome this rotation behaviour
of GDA, various modifications have been proposed, includ-
ing averaging [Yazıcı et al., 2019], negative momentum
[Gidel et al., 2018] along many others [Mertikopoulos
et al., 2018b, Daskalakis et al., 2017, Mescheder et al., 2017,
Balduzzi et al., 2018, Gemp and Mahadevan, 2018]. Consid-
ering the game-theoretic nature of this problem, competitive
gradient descent has been proposed as a natural generaliza-
tion of gradient descent in two-players instead of GDA for
GANs [Schaefer and Anandkumar, 2019]. This method, as
the predecessor to COPO, enjoys stability in training, ro-
bustness in choice of hyper-parameters, and has desirable
performance and convergence properties.

6 DISCUSSION ON APPLICABILITY

COPO is the paradigm of competitive policy optimization
where the goal is to jointly find policies for agents. In COPO,
the optimization is centralized, and the execution of actions
is decentralized. Applications of such setting are; (i) self-
play: we train an agent to play against itself; (ii) adversarial
robustness, inverse RL, and imitation learning: we aim to
find a robust model; (iii) robust control [Zhou et al., 1996]:
we train agents to be robust against attackers; (iv) athletic
games analysis, e.g., soccer and basketball: we train models
of teams in simulation, and let them play against each other
to discover tactics and strategies; (v) Robocup World (robots
soccer): we train our team in our lab before deploying it
in the real match; (vi) AI economist [Zheng et al., 2020]:
we run a game between workers along with rule-makers to
discover new tax laws, and many more real-world problems.

Our empirical study shows that COPG and TRCOPO can
excel in this setting and have clear advantages compared
to existing algorithms. While the centralized optimization
setting in COPO has a vast range of real-world applications,
there are problems that require decentralized optimization.
We showed that COPG-OP, a decentralized extension of
COPG, where each agent also learns its opponent’s param-
eters/model to compute its policy update, comes with the
same benefits as COPG in the centralized setting.

7 CONCLUSION

We presented competitive policy optimization COPO, a
novel PG-based RL method for two player strictly com-
petitive game. In COPO, each player optimizes strategy by

considering the interaction with the environment and the op-
ponent through game theoretic bilinear approximation to the
game objective. This method is instantiated to competitive
policy gradient (COPG) and trust region competitive policy
optimisation (TRCOPO) using value based and trust region
approaches. We theoretically studied these methods and pro-
vided PG theorems to show the properties of these model-
free RL approaches. We provided efficient implementation
of these methods and empirically showed that they provide
stable and faster optimization, and also converge to more
sophisticated and competitive strategies. We performed case
studies for COPO based approach on self-play, asymmetric
mini-max game GAIL, with opponent modelling and further
discussed the general applicability of the COPO paradigm
in various real life settings. We dedicated this paper to two
player zero-sum games, however, the principles provided in
this paper can be used for multi-player general games. In the
future, we plan to extend this study to multi-player general-
sum games along with efficient implementation of methods.
Moreover, we plan to use the techniques proposed in par-
tially observable domains, and study imperfect information
games [Azizzadenesheli et al., 2020].
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Appendix

8 ALGORITHMS

In this section, we briefly present the algorithms discussed in the paper, namely gradient descent ascent (GDA), competitive
policy gradient (COPG), trust region gradient descent ascent (TRGDA) and trust region competitive policy optimization
(TRCOPO).

Algorithm 1: Gradient Descent Ascent Policy Gradient

Initialize (θ1, θ2)
for epoch : 1, 2, 3, .. until termination do

Collect samples under π(.|.; θ1), π(.|.; θ2),
Estimate Q, then Dθiη in Eq.7
Update θ1, θ2 using Eq. 4

end

Algorithm 2: Competitive Policy Gradient

Initialize (θ1, θ2)
for epoch : 1, 2, 3, .. until termination do

Collect samples under π(.|.; θ1), π(.|.; θ2),
Estimate Q, then Dθiη,Dθiθjη in Eqs. 7,8
Update θ1, θ2 using Eq. 6

end

Algorithm 3: Trust Region Gradient Descent Ascent

Initialize (θ1, θ2)
for epoch : 1, 2, 3, .. until termination do

Collect samples under π(.|.; θ1), π(.|.; θ2),
Estimate A, and DθiL using Eq. 63,
Update θi using Eq. 58, with bilinear term as a null matrix.

end

Algorithm 4: Trust Region Competitive Policy Optimisation

Initialize (θ1, θ2)
for epoch : 1, 2, 3, .. until termination do

Collect samples under π(.|.; θ1), π(.|.; θ2),
Estimate A, and DθiL,DθiθjL using Eq. 63,
Update θ1, θ2 using Eq. 58,

end

9 RECURSION REASONING

When players play strategic games, in order to maximize their payoffs, they need to consider their opponents’ strategies
which in turn may depend on their strategies (and so on), resulting in the well known infinite recursion in game theory. This
is the recursive reasoning of the form what do I think that you think that I think (and so on) and arises while acting rationally
in multi-player games. In this section we elaborate on the recursion in COMDP and latter show how COPO recovers the
infinite recursion reasoning Fig. 8. Recursion reasoning in COMDP works as follows:



• Level 1 recursion: Each player considers how the environment, as the results of the agents’ current and future moves
temporally evolves in favor of each agent,

• Level 2 recursion: Considering that the other agent also considers how the environment, as the results of the agents’
current and future moves temporally evolves in favor of each agent,

• Level 3 recursion: Considering that the other agent also considers that the other agent also considers how the
environment, as the results of the agents’ current and future moves temporally evolves in favor of each agent,

• .......

Level 1 recursion

Level 2 recursion

Level 3 recursion

Level 4 recursion

.....   Infinite recursion

Player 1
Player 2

Figure 8: Recursion reasoning. The notion of "Level N recursion" in the figure assumes that there is no further recursive
thinking (cloud) beyond that level.

In the special case of single state games (non sequential setting), this recursive reasoning boils down to what each player
thinks, the other player thinks that the other player thinks, .... . ( For readers interested in the recursion reasoning in non-
sequential but repeated episodic competitive games (single state (or stateless) episodic COMDP), stability and convergence
of competitive gradient optimization and the derivation of Eq. 6, we refer to [Schaefer and Anandkumar, 2019]).

In the following we provide an intuitive explanation for the updates prescribed by COPO. Let us restate the Nash equilibrium
of the bilinear game in Eq. 5 in its matrix form,[

θ1

θ2

]
←
[
θ1

θ2

]
+ α

[
I −αDθ1θ2η

αDθ2θ1η I

]−1 [
Dθ1η
−Dθ2η

]
. (15)

We rewrite the above mentioned update as[
θ1

θ2

]
←
[
θ1

θ2

]
+ α(I −A)−1

[
Dθ1η
−Dθ2η

]
, with A =

[
0 αDθ1θ2η

−αDθ2θ1η 0

]
. (16)

If it holds that the spectral radius of A is smaller than one, then we can use the Neumann series to compute the inverse,

(I −A)−1 = lim
N→∞

N∑
k=0

Ak = I +A+A2 +A3 + ... . (17)

Using this expansion and its different orders as an approximation, e.g., up to k ∈ {0, . . . , N} for a finite N , we derive policy
update rules that have different levels of reasoning. For example, consider the following levels of recursion reasoning:



• N = 0, (I −A)−1 → I , i.e., we approximate (I −A)−1 with the first term in the series presented in Eq. 17, therefore,
the update rule in Eq. 15 reduces to the GDA update rule. In this case, each agent updates its parameters considering
its current and future moves to gain a higher total cumulative reward in the environment assuming the policy of the
opponent stays unchanged, [

θ1

θ2

]
←
[
θ1

θ2

]
+ α

[
Dθ1η
−Dθ2η

]
.

• N = 1, (I−A)−1 → I+A and the update rule in Eq. 15 reduce to the LOLA update rule. In this case, each agent updates
its parameters considering that the opponent updates its parameters considering the other player stays unchanged. For
example, player 1 updates its parameter, assuming that player 2 also updates its parameter, but player 1 assumes that
the player 2 updates its parameter assuming the player 1 stays unchanged.[

θ1

θ2

]
←
[
θ1

θ2

]
+ α

[
Dθ1η − αDθ1θ2ηDθ2η
−Dθ2η − αDθ2θ1ηDθ1η

]
.

• N = 2, (I −A)−1 → I +A+A2, and the update rule is given by Eq. 18. In this case, the agent updates its parameters
considering that the opponent also considering that the agent is considering to update parameters, such that its current
and future moves increase the probability of earning a higher total cumulative reward in the environment.[

θ1

θ2

]
←
[
θ1

θ2

]
+ α

[
Dθ1η − αDθ1θ2ηDθ2η − α2Dθ1θ2ηDθ2θ1ηDθ1η
−Dθ2η − αDθ2θ1ηDθ1η + α2Dθ2θ1ηDθ1θ2ηDθ2η

]
. (18)

• lim N→∞, (I −A)−1 → I +A+A2 +A3 + ..., we recover the Nash equilibrium in the limit which corresponds to
infinite recursion reasoning. In this case, the update rule in Eq. 15 is given by Eq. 19 which resembles the Eq. 6.[

θ1

θ2

]
←
[
θ1

θ2

]
+ α

[ (
Id+ α2Dθ1θ2ηDθ2θ1η

)−1(
Dθ1η − αDθ1θ2ηDθ2η

)
−
(
Id+ α2Dθ2θ1ηDθ1θ2η

)−1(
Dθ2η + αDθ2θ1ηDθ1η

)] . (19)

We provided this discussion to motivate the importance of taking the game theoretic nature of a given problem into account,
in order to design an update.

10 PROOF OF COMPETITIVE POLICY GRADIENT THEOREM

In this section, we first derive the gradient and bilinear terms in the form of score function. In the subsequent subsections we
provide complete proof of the competitive policy gradient theorem.

10.1 PROOF FOR PROP. 1:

Proof. Given that the agents’ policies are parameterized with θ1 and θ2, we know that the game objective is,

η(θ1, θ2) =

∫
τ

f(τ ; θ1, θ2)R(τ)dτ, (20)

thus, the gradient with respect to θi is given by

Dθiη =

∫
τ

Dθif(τ ; θ1, θ2)R(τ)dτ, i ∈{1, 2} , (21)

for any f(τ ; θ1, θ2) 6= 0 using Dθi log f(τ ; θ1, θ2) =
Dθif(τ ;θ1,θ2)

f(τ ;θ1,θ2) from standard calculus and the definition of f(τ ; θ1, θ2)
in Eq. 1, we can compute the gradient of the game objective,

Dθiη =

∫
τ

f(τ ; θ1, θ2)(Dθi log(

|τ |−1∏
k=0

π(ak|sk; θi)))R(τ)dτ ,

Let us define the score function as g(τ, θi) = Dθi(log(
∏|τ |−1
k=0 π(ak|sk; θi))) which results in,

Dθiη =

∫
τ

f(τ ; θ1, θ2)g(τ, θi)R(τ)dτ. (22)



By definition we know that the second order bilinear approximation of the game objective is Dθ2θ1η(θ1, θ2) =
Dθ2Dθ1η(θ1, θ2). Hence,

Dθ2θ1η =

∫
τ

Dθ2f(τ ; θ1, θ2)g(τ, θ1)>R(τ)dτ .

=

∫
τ

f(τ ; θ1, θ2)(Dθ2 log(

|τ |−1∏
k=0

π(ak|sk; θ2)))g(τ, θ1)>R(τ)dτ ,

=

∫
τ

f(τ ; θ1, θ2)g(τ, θ2)g(τ, θ1)>R(τ)dτ .

which concludes the proof.

10.2 PROOF FOR THM. 1

The competitive policy gradient theorem (Thm. 1) consists of two parts. We first provide the derivation for the gradient and
utilise this result to derive the bilinear term in the subsequent subsection.

10.2.1 Derivation of gradient term Dθ1η

Proof. Using Eq. 2, which defines V (sk; θ1, θ2) and Q(sk, a
1
k, a

2
k; θ1, θ2). We can write V (s0; θ1, θ2) as,

V (s0; θ1, θ2) =

∫
a10

∫
a20

π(a1
0|s0; θ1)π(a2

0|s0; θ2)Q(s0, a
1
0, a

2
0; θ1, θ2)da1

0da
2
0 , (23)

where, Q(s0, a
1
0, a

2
0; θ1, θ2) = r(s0, a

1
0, a

2
0) + γ

∫
s1

T (s1|s0, a
1
0, a

2
0)V (s0; θ1, θ2)ds1 .

Hence, the gradient of the state-value V is,

Dθ1V (s0; θ1, θ2) =

∫
a10

∫
a20

∂π(a1
0|s0; θ1)

∂θ1
π(a2

0|s0; θ2)Q(s0, a
1
0, a

2
0; θ1, θ2)da1

0da
2
0

+

∫
a10

∫
a20

π(a1
0|s0; θ1)π(a2

0|s0; θ2)
∂Q(s0, a

1
0, a

2
0; θ1, θ2)

∂θ1
da1

0da
2
0. (24)

The gradient of the state-action value Q, in term of the gradient of the state-value V is given by

Dθ1Q(s0, a
1
0, a

2
0; θ1, θ2) = γ

∫
s1

T (s1|s0, a
1
0, a

2
0)
∂V (s1; θ1, θ2)

∂θ1
ds1 . (25)

Substituting Eq. 25 in Eq. 24 results in,

Dθ1V (s0; θ1, θ2) =

∫
a10

∫
a20

∂π(a1
0|s0; θ1)

∂θ1
π(a2

0|s0; θ2)Q(s0, a
1
0, a

2
0; θ1, θ2)da1

0da
2
0 (26)

+

∫
a10

∫
a20

π(a1
0|s0; θ1)π(a2

0|s0; θ2)γ

∫
s1

T (s1|s0, a
1
0, a

2
0)
∂V (s1; θ1, θ2)

∂θ1
ds1da

1
0da

2
0 .

By exploring the recursive nature of the state-value V and Dθ1V (s0; θ1, θ2), we can unroll Eq. 26 as,

Dθ1V (s0; θ1, θ2) =

∫
a10

∫
a20

∂π(a1
0|s0; θ1)

∂θ1
π(a2

0|s0; θ2)Q(s0, a
1
0, a

2
0; θ1, θ2)da1

0da
2
0 (27)

+

∫
a10

∫
a20

π(a1
0|s0; θ1)π(a2

0|s0; θ2)γ

∫
s1

T (s1|s0, a
1
0, a

2
0)(∫

a11

∫
a21

∂π(a1
1|s1; θ1)

∂θ1
π(a2

1|s1; θ2)Q(s1, a
1
1, a

2
1; θ1, θ2)da1

1da
2
1

+

∫
a11

∫
a21

π(a1
1|s1; θ1)π(a2

1|s1; θ2)γ

∫
s2

T (s2|s1, a
1
1, a

2
1)



∂V (s2; θ1, θ2)

∂θ1
ds2da

1
1da

2
1

)
ds1da

1
0da

2
0 .

To find the derivative of the expected return, we can use the definition of the expected return η(θ1, θ2) and Eq. 27, which
results in

Dθ1η(θ1, θ2) =

∫
s0

p(s0)Dθ1V (s0; θ1, θ2)ds0

=

∫
s0

p(s0)

∫
a10

∫
a20

∂π(a1
0|s0; θ1)

∂θ1
π(a2

0|s0; θ2)Q(s0, a
1
0, a

2
0; θ1, θ2)da1

0da
2
0ds0

+γ

∫
τ

f(τ0:0, s1; θ1, θ2)
∂π(a1

1|s1; θ1)

∂θ1
π(a2

1|s1; θ2)Q(s1, a
1
1, a

2
1; θ1, θ2)dτ0:1

+ γ2

∫
τ

f(τ0:1, s2; θ1, θ2)
∂V (s2; θ1, θ2)

∂θ1
ds2dτ0:1. (28)

Similar to the two previous step, unrolling and marginalisation can be continued for the entire length of the trajectory, which
results in,

Dθ1η(θ1, θ2) =

∫
τ

|τ |−1∑
k=0

γkf(τ0:k−1,sk; θ
1, θ2)

∫
a1k

∫
a2k

∂π(a1
k|sk;θ1)

∂θ1
π(a2

k|sk;θ2)Q(sk,a
1
k,a

2
k;θ1, θ2)dτ (29)

=

∫
τ

|τ |−1∑
k=0

γkf(τ0:k; θ1, θ2)
∂ log π(a1

k|sk; θ1)

∂θ1
Q(sk, a

1
k, a

2
k; θ1, θ2)dτ. (30)

This concludes our derivation of the gradient term of the game objective for the two agent case.

10.2.2 Derivation of Bilinear term Dθ1θ2η

Proof: By definition we know that Dθ1θ2V (s0; θ1, θ2) = Dθ1(Dθ2V (s0; θ1, θ2)). Thus we can use Dθ2V (s0; θ1, θ2) as
defined in Eq. 24 and differentiating with respect to θ1, thereby we get,

Dθ1θ2V (s0; θ1, θ2) =

∫
a10

∫
a20

∂π(a1
0|s0; θ1)

∂θ1

∂π(a2
0|s0; θ2)

∂θ2

>

Q(s0, a
1
0, a

2
0; θ1, θ2)da1

0da
2
0

+

∫
a10

∫
a20

∂π(a1
0|s0; θ1)

∂θ1
π(a2

0|s0; θ2)
∂Q(s0, a

1
0, a

2
0; θ1, θ2)

∂θ2

>

da1
0da

2
0

+

∫
a10

∫
a20

π(a1
0|s0; θ1)

∂Q(s0, a
1
0, a

2
0; θ1, θ2)

∂θ1

∂π(a2
0|s0; θ2)

∂θ2

>

da1
0da

2
0

+

∫
a10

∫
a20

π(a1
0|s0; θ1)π(a2

0|s0; θ2)
∂2Q(s0, a

1
0, a

2
0; θ1, θ2)

∂θ1∂θ2
da1

0da
2
0. (31)

Exploiting the recursive structure of Dθ1θ2V (s0; θ1, θ2), we can evaluate Dθ1θ2V (s1; θ1, θ2) and substitute it back in
Eq. 31,we get,

Dθ1θ2V (s0; θ1, θ2) =

∫
a10

∫
a20

∂π(a1
0|s0; θ1)

∂θ1

∂π(a2
0|s0; θ2)

∂θ2

>

Q(s0, a
1
0, a

2
0; θ1, θ2)da1

0da
2
0 (32)

+

∫
a10

∫
a20

∂π(a1
0|s0; θ1)

∂θ1
π(a2

0|s0; θ2)
∂Q(s0, a

1
0, a

2
0; θ1, θ2)

∂θ2

>

da1
0da

2
0

+

∫
a10

∫
a20

π(a1
0|s0; θ1)

∂Q(s0, a
1
0, a

2
0; θ1, θ2)

∂θ1

∂π(a2
0|s0; θ2)

∂θ2

>

da1
0da

2
0

+

∫
a10

∫
a20

π(a1
0|s0; θ1)π(a2

0|s0; θ2)

(
γ

∫
s1

T (s1|s0, a
1
0, a

2
0)



(∫
a11

∫
a21

∂π(a1
1|s1; θ1)

∂θ1

∂π(a2
1|s1; θ2)

∂θ2

>

Q(s1, a
1
1, a

2
1; θ1, θ2)da1

1da
2
1

+

∫
a11

∫
a21

∂π(a1
1|s1; θ1)

∂θ1
π(a2

1|s1; θ2)
∂Q(s1, a

1
1, a

2
1; θ1, θ2)

∂θ2

>

da1
1da

2
1

+

∫
a11

∫
a21

π(a1
1|s1; θ1)

∂Q(s1, a
1
1, a

2
1; θ1, θ2)

∂θ1

∂π(a2
1|s1; θ2)

∂θ2

>

da1
1da

2
1

+

∫
a11

∫
a21

π(a1
1|s1; θ1)π(a2

1|s1; θ2)γ

∫
s2

T (s2|s1, a
1
1, a

2
1)
∂2V (s2; θ1, θ2)

∂θ2∂θ1
ds2da

1
1da

2
1

)
ds1

)
da1

0da
2
0.

Exploring the recursive structure, quickly leads to long sequences of terms, to deal with this let us define a short hand
notation, the first term in Eq. 31 is denoted by b0, second term by c0, third term by d0, forth term as e0, note that the subscript
indicates the time step and let Prk = Pr(sk → sk+1, θ

1, θ2) be the state transition probability summed over all actions.
When investigating Eq. 32 note that the forth term of Eq. 31 e0, expanded to e0 = γ

∫
s1
Pr0(b1 + c1 + d1 + e1)ds1. Thus,

recursively applying this insight and using our short hand notation results in,

Dθ1θ2V (s0; θ1, θ2) =b0+c0+d0+γ

∫
s1

Pr0

(
b1+c1+d1+γ

∫
s2

Pr1

(
b2+c2+d2

+γ

∫
s3

Pr2

(
b3+c3+d3+γ

∫
s4

Pr3

(
...
)
ds4

)
ds3

)
ds2

)
ds1

=b0+γ

∫
s1

Pr0

(
b1+γ

∫
s2

Pr1

(
b2+γ

∫
s3

Pr2

(
b3+γ

∫
s4

Pr3

(
...
)
ds4

)
ds3

)
ds2

)
ds1

+c0+γ

∫
s1

Pr0

(
c1+γ

∫
s2

Pr1

(
c2+γ

∫
s3

Pr2

(
c3+γ

∫
s4

Pr3

(
...
)
ds4

)
ds3

)
ds2

)
ds1

+d0+γ

∫
s1

Pr0

(
d1+γ

∫
s2

Pr1

(
d2+γ

∫
s3

Pr2

(
d3+γ

∫
s4

Pr3

(
...
)
ds4

)
ds3

)
ds2

)
ds1.

Summing over the initial state distribution results in,

Dθ1θ2η(θ1, θ2)=

∫
s0

p(s0)Dθ1θ2V (s0; θ1, θ2)ds0

=

∫
s0

p(s0)
(
b0+γ

∫
s1

Pr0

(
b1+γ

∫
s2

Pr1

(
b2+γ

∫
s3

Pr2

(
b3+γ

∫
s4

Pr3

(
...
)
ds4

)
ds3

)
ds2

)
ds1

)
ds0

+

∫
s0

p(s0)
(
c0+γ

∫
s1

Pr0

(
c1+γ

∫
s2

Pr1

(
c2+γ

∫
s3

Pr2

(
c3+γ

∫
s4

Pr3

(
...
)
ds4

)
ds3

)
ds2

)
ds1

)
ds0

+

∫
s0

p(s0)
(
d0+γ

∫
s1

Pr0

(
d1+γ

∫
s2

Pr1

(
d2+γ

∫
s3

Pr2

(
d3+γ

∫
s4

Pr3

(
...
)
ds4

)
ds3

)
ds2

)
ds1

)
ds0. (33)

Eq. 33 is clearly build up by three terms the first depending on bk, the second on ck and the last on dk, let us denote these
terms as T1,T2 and T3 respectively. Thus we have Dθ1θ2η(θ1, θ2) = T1 + T2 + T3. Given this separation, we can tackle
each part separately.

Solving for the T1:
To bring T1 in Eq. 33, to the final form in our theorem, let us substitute the terms for bk back in,

T1 =

∫
s0

p(s0)

(∫
a10

∫
a20

∂π(a1
0|s0; θ1)

∂θ1

∂π(a2
0|s0; θ2)

∂θ2

>

Q(s0, a
1
0, a

2
0; θ1, θ2)da1

0da
2
0

+γ

∫
s1

Pr(s1|s0; θ1, θ2)

(∫
a11

∫
a21

∂π(a1
1|s1; θ1)

∂θ1

∂π(a2
1|s1; θ2)

∂θ2

>

Q(s1, a
1
1, a

2
1; θ1, θ2)da1

1da
2
1

+

∫
a11

∫
a21

π(a1
1|s1; θ1)π(a2

1|s1; θ2)γ

∫
s2

T (s2|s1, a
1
1, a

2
1)
(
...
)
ds2da

1
1da

2
1

)
ds1da

1
0da

2
0

)
ds0. (34)



Similar to Eq. 28 we can unrolling and marginalizing, which allows us to bring it into a compact form,

T1 =

∫
τ

|τ |−1∑
k=0

γkf(τ0:k−1, sk; θ1, θ2)
∂π(a1

k|sk; θ1)

∂θ1

∂π(a2
k|sk; θ2)

∂θ2

>

Q(sk, a
1
k, a

2
k; θ1, θ2)dτ

=

∫
τ

|τ |−1∑
k=0

γkf(τ0:k; θ1, θ2)
∂ log π(a1

k|sk; θ1)

∂θ1

∂ log π(a2
k|sk; θ2)

∂θ2

>

Q(sk, a
1
k, a

2
k; θ1, θ2)dτ. (35)

Solving for the T2:
For T2 in Eq. 33, we again substitute the ck terms back in, which gets us,

T2 =

∫
s0

p(s0)

(∫
a10

∫
a20

∂π(a1
0|s0; θ1)

∂θ1
π(a2

0|s0; θ2)
∂Q(s0, a

1
0, a

2
0; θ1, θ2)

∂θ2

>

da1
0da

2
0

+

∫
a10

∫
a20

π(a1
0|s0; θ1)π(a2

0|s0; θ2)γ

∫
s1

T (s1|s0, a
1
0, a

2
0)(∫

a11

∫
a21

∂π(a1
1|s1; θ1)

∂θ1
π(a2

1|s1; θ2)
∂Q(s1, a

1
1, a

2
1; θ1, θ2)

∂θ2

>

da1
1da

2
1

+

∫
a11

∫
a21

π(a1
1|s1; θ1)π(a2

1|s1; θ2)γ

∫
s2

T (s2|s1, a
1
1, a

2
1)

(
...
)
ds2 da

1
1da

2
1

)
ds1da

1
0da

2
0

)
ds0. (36)

Note that T2 contains ∂Q(sk,a
1
k,a

2
k;θ1,θ2)

∂θ2 . We can unroll ∂Q(s0,a
1
0,a

2
0;θ1,θ2)

∂θ2 using Eq. 25 and Eq. 26, till the next state s1, which
results in,

T2 =

∫
s0

p(s0)

(∫
a10

∫
a20

∂π(a1
0|s0; θ1)

∂θ1
π(a2

0|s0; θ2)

∫
s1

γT (s1|s0, a
1
0, a

2
0)(∫

a11

∫
a21

π(a1
1|s1; θ1)

∂π(a2
1|s1; θ2)

∂θ2
Q(s1, a

1
1, a

2
1; θ1, θ2)da1

1da
2
1

+

∫
a11

∫
a21

π(a1
1|s1; θ1)π(a2

1|s1; θ2)
∂Q(s1, a

1
1, a

2
1; θ1, θ2)

∂θ2
da1

1da
2
1

)>
ds1da

1
0da

2
0

+

∫
a10

∫
a20

π(a1
0|s0; θ1)π(a2

0|s0; θ2)γ

∫
s1

T (s1|s0, a
1
0, a

2
0)(∫

a11

∫
a21

∂π(a1
1|s1; θ1)

∂θ1
π(a2

1|s1; θ2)
∂Q(s1, a

1
1, a

2
1; θ1, θ2)

∂θ2

>

da1
1da

2
1

+

∫
a11

∫
a21

π(a1
1|s1; θ1)π(a2

1|s1; θ2)γ

∫
s2

T (s2|s1, a
1
1, a

2
1)

(
...
)
ds2da

1
1da

2
1

)
ds1da

1
0da

2
0

)
ds0.

Using log trick
(
Dθi log π(aik|sk; θi) = Dθiπ(aik|sk; θi)/π(aik|sk; θi), i ∈ 1, 2

)
and combining terms together, we get,

T2 =

∫
s0

p(s0)

(∫
a10

∫
a20

π(a1
0|s0; θ1)π(a2

0|s0; θ2)

∫
s1

γT (s1|s0, a
1
0, a

2
0)

∫
a11

∫
a21

π(a1
1|s1; θ1)π(a2

1|s1; θ2)

(
∂ log π(a1

0|s0; θ1)

∂θ1

∂ log π(a2
1|s1; θ2)

∂θ2

>

Q(s1, a
1
1, a

2
1; θ1, θ2)

+

(
∂ log π(a1

0|s0; θ1)

∂θ1
+
∂ log π(a1

1|s1; θ1)

∂θ1

)
∂Q(s1, a

1
1, a

2
1; θ1, θ2)

∂θ2

>



+ γ

∫
s2

T (s2|s1, a
1
1, a

2
1)
(
...
)
ds2

)
da1

1da
2
1ds1da

1
0da

2
0

)
ds0

=

∫
τ

f(τ0:1; θ1, θ2)γ

(
∂ log π(a1

0|s0; θ1)

∂θ1

∂ log π(a2
1|s1; θ2)

∂θ2

>

Q(s1, a
1
1, a

2
1; θ1, θ2)

+

(
∂ log π(a1

0|s0;θ1)

∂θ1
+
∂ log π(a1

1|s1;θ1)

∂θ1

)
∂Q(s1, a

1
1, a

2
1;θ1, θ2)

∂θ2

>

+γ

∫
s2

T (s2|s1, a
1
1, a

2
1)
(
...
)
ds2

)
dτ0:1.

We can use the identical method for the remaining ∂Q(sk,a
1
k,a

2
k;θ1,θ2)

∂θ2 . Thus unrolling this term for one time step and using
the log trick to combine terms. For example unrolling the second step results in,

T2 =

∫
τ

f(τ0:1;θ1, θ2)γ
∂ log π(a1

0|s0; θ1)

∂θ1

∂ log π(a2
1|s1;θ2)

∂θ2

>

Q(s1, a
1
1, a

2
1; θ1, θ2)dτ0:1

+

∫
τ

f(τ0:2;θ1, θ2)γ2

((
∂ log π(a1

0|s0;θ1)

∂θ1
+
∂ log π(a1

1|s1;θ1)

∂θ1

)
∂ log π(a2

2|s2; θ2)

∂θ2

>

Q(s2, a
1
2, a

2
2;θ1, θ2)

+

(
∂ log π(a1

0|s0;θ1)

∂θ1
+
∂ log π(a1

1|s1;θ1)

∂θ1
+
∂ log π(a1

2|s2;θ1)

∂θ1

)
∂Q(s2, a

1
2, a

2
2;θ1, θ2)

∂θ2

>

+
(
...
))
dτ0:2.

Finally, on unrolling for |τ | steps we get,

T2 =

∫
τ

|τ |−1∑
k=1

γkf(τ0:k;θ1, θ2)
∂ log(

∏k−1
i=0 π(a1

i |si;θ1))

∂θ1

∂ log π(a2
k|sk;θ2))

∂θ2

>

Q(sk, a
1
k, a

2
k;θ1, θ2)dτ. (37)

Solving for the T3:

In T3 in Eq. 33, similar to the previous two terms we again substitute dk back in, which results in,

T3 =

∫
s0

p(s0)

(∫
a10

∫
a20

π(a1
0|s0; θ1)

∂Q(s0, a
1
0, a

2
0; θ1, θ2)

∂θ1

∂π(a2
0|s0; θ2)

∂θ2

>

da1
0da

2
0

+

∫
a10

∫
a20

π(a1
0|s0; θ1)π(a2

0|s0; θ2)γ

∫
s1

T (s1|s0; a1
0, a

2
0)(∫

a11

∫
a21

π(a1
1|s1; θ1)

∂Q(s1, a
1
1, a

2
1; θ1, θ2)

∂θ1

∂π(a2
1|s1; θ2)

∂θ2

>

da1
1da

2
1

+

∫
a11

∫
a21

π(a1
1|s1; θ1)π(a2

1|s1; θ2)γ

∫
s2

T (s2|s1, a
1
1, a

2
1)

(
...
)
ds2da

1
1da

2
1

)
ds1da

1
0da

2
0

)
ds0.

Similar to T2, T3 contains ∂Q(sk,a
1
k,a

2
k;θ1,θ2)

∂θ1 , using the same approach and unfold this term using Eq. 25 and Eq. 26 for one
step results in,

T3 =

∫
s0

p(s0)

(∫
a10

∫
a20

π(a1
0|s0; θ1)

∫
s1

γT (s1|s0; a1
0, a

2
0)(∫

a11

∫
a21

∂π(a1
1|s1; θ1)

∂θ1
π(a2

1|s1; θ2)Q(s1, a
1
1, a

2
1; θ1, θ2)da1

1da
2
1

+

∫
a11

∫
a21

π(a1
1|s1; θ1)π(a2

1|s1; θ2)
∂Q(s1, a

1
1, a

2
1; θ1, θ2)

∂θ1
da1

1da
2
1



)
ds1

∂π(a2
0|s0; θ2)

∂θ2

>

da1
0da

2
0

+

∫
a10

∫
a20

π(a1
0|s0; θ1)π(a2

0|s0; θ2)γ

∫
s1

T (s1|s0; a1
0, a

2
0)(∫

a11

∫
a21

π(a1
1|s1; θ1)

∂Q(s1, a
1
1, a

2
1; θ1, θ2)

∂θ1

∂π(a2
1|s1; θ2)

∂θ2

>

da1
1da

2
1

+

∫
a11

∫
a21

π(a1
1|s1; θ1)π(a2

1|s1; θ2)γ

∫
s2

T (s2|s1, a
1
1, a

2
1)

(
...
)
ds2da

1
1da

2
1

)
ds1da

1
0da

2
0

)
ds0.

Using log trick
(
Dθi log π(aik|sk; θi) = Dθiπ(aik|sk; θi)/π(aik|sk; θi), i ∈ 1, 2

)
and combining terms together, we get,

T3 =

∫
s0

p(s0)

(∫
a10

∫
a20

π(a1
0|s0; θ1)π(a2

0|s0; θ2)

∫
s1

γT (s1|s0; a1
0, a

2
0)

∫
a11

∫
a21

π(a1
1|s1; θ1)π(a2

1|s1; θ2)

(
∂ log π(a1

0|s0; θ1)

∂θ1

∂ log π(a2
1|s1; θ2)

∂θ2

>

Q(s1, a
1
1, a

2
1; θ1, θ2)

+
∂Q(s1, a

1
1, a

2
1; θ1, θ2)

∂θ1

(
∂ log π(a2

0|s0; θ2)

∂θ2
+
∂ log π(a2

1|s1; θ2)

∂θ2

)>
+ γ

∫
s2

T (s2|s1, a
1
1, a

2
1)
(
...
)
ds2

)
da1

1da
2
1ds1da

1
0da

2
0

)
ds0,

by simplifying the notation we get,

T3 =

∫
τ

f(τ0:1; θ1, θ2)γ

(
∂ log π(a1

0|s0; θ1)

∂θ1

∂ log π(a2
1|s1; θ2)

∂θ2

>

Q(s1, a
1
1, a

2
1; θ1, θ2)

+
∂Q(s1, a

1
1, a

2
1;θ1, θ2)

∂θ1

(
∂ log π(a2

0|s0;θ2)

∂θ2
+
∂ log π(a2

1|s1;θ2)

∂θ2

)>
+γ

∫
s2

T (s2|s1,a
1
1,a

2
1)
(
...
)
ds2

)
dτ0:1.

The remaining terms in the recursive structure again contain terms of the form ∂Q(sk,a
1
k,a

2
k;θ1,θ2)

∂θ1 , which we simplify in a
similar fashion by unfolding for one step, for example unfolding the second term for one step results in,

T3 =

∫
τ

f(τ0:1; θ1, θ2)γ
∂ log π(a1

0|s0; θ1)

∂θ1

∂ log π(a2
1|s1; θ2)

∂θ2

>

Q(s1, a
1
1, a

2
1; θ1, θ2)dτ0:1

+

∫
τ

f(τ0:2;θ1, θ2)γ2

(
∂ log π(a1

2|s2; θ1)

∂θ1

(
∂ log π(a2

0|s0;θ2)

∂θ2
+
∂ log π(a2

1|s1;θ2)

∂θ2

)>
Q(s2, a

1
2, a

2
2;θ1, θ2)

+
∂Q(s2, a

1
2, a

2
2; θ1, θ2)

∂θ1

(
∂ log π(a2

0|s0; θ2)

∂θ2
+
∂ log π(a2

1|s1; θ2)

∂θ2
+
∂ log π(a2

2|s2; θ2)

∂θ2

)>
+
(
...
))
dτ0:2.

Finally on unrolling for |τ | steps we get,

=

∫
τ

|τ |−1∑
k=1

γkf(τ0:k; θ1, θ2)
∂ log π(a1

k|sk; θ1)

∂θ1

∂ log(
∏k−1
l=0 π(a2

l |sl; θ2))

∂θ2

>

Q(sk, a
1
k, a

2
k; θ1, θ2)dτ. (38)

Combining all 3 terms:
By Eq. 33 we know that the bilinear term of the game objective is given by Dθ1θ2η(θ1, θ2) = T1 + T2 + T3, or in other
words the sum of the three terms derived above. Thus, we derived that,

Dθ1θ2η(θ1, θ2)=

∫
τ

|τ |−1∑
k=0

γkf(τ0:k; θ1, θ2)
∂ log π(a1

k|sk; θ1)

∂θ1

∂ log π(a2
k|sk; θ2)

∂θ2

>

Q(sk, a
1
k, a

2
k; θ1, θ2)dτ



+

∫
τ

|τ |−1∑
k=1

γkf(τ0:k; θ1, θ2)
∂ log(

∏k−1
l=0 π(a1

l |sl; θ1))

∂θ1

∂ log π(a2
k|sk; θ2)

∂θ2

>

Q(sk, a
1
k, a

2
k; θ1, θ2)dτ

+

∫
τ

|τ |−1∑
k=1

γkf(τ0:k; θ1, θ2)
∂ log π(a1

k|sk; θ1)

∂θ1

∂ log(
∏k−1
l=0 π(a2

l |sl; θ2))

∂θ2

>

Q(sk, a
1
k, a

2
k; θ1, θ2)dτ. (39)

This concludes our derivation of the bilinear term of the game objective.

11 GENERALIZATION OF COPG TO VARIANTS OF RETURN

11.1 ESTIMATION OF GRADIENT AND BILINEAR TERM USING A BASELINE

The gradient and bilinear terms can be estimated using Eq. 7 and Eq. 8 based on Q(sk, a
1
k, a

2
k; θ1, θ2) the state-action value

function. But in practice, this can perform poorly due to variance and missing the notion of relative improvement. During
learning, policy parameters are updated to increase the probability of visiting good trajectories and reducing chances of
encountering bad trajectories. But, let us assume good samples have zero reward and bad samples have a negative reward. In
this case, the policy distribution will move away from the negative samples but can move in any direction as zero reward
does not provide information on being better a state-action pair. This causes high variance and slow learning. In another case,
let us assume that a non zero constant is added to the reward function for all states-action pairs, ideally this constant factor
should not affect the policy update but in the current formulation using Q(sk, a

1
k, a

2
k; θ1, θ2) it does because the notion of

better or worse sample is with respect to zero. Hence, missing the notion of relative improvement.

To mitigate the issues, a baseline b can be subtracted from Q(s, a1
k, a

2
k; θ1, θ2). The baseline can be any random variable as

long as it is not a function of a1
k and a2

k [Sutton and Barto, 2018]. For an MDP, a good baseline b is a function of the state
b(s), because let say in some states all actions have high values and we need a high baseline to differentiate the higher valued
actions from the less highly valued ones; in other states all actions will have low values and a low baseline is appropriate.
This is equivalent to Q(sk, a

1
k, a

2
k; θ1, θ2)←− Q(sk, a

1
k, a

2
k; θ1, θ2)− b(sk) in Eq. 8 and Eq. 7.

11.2 EXTENDING THM. 1 FOR GRADIENT AND BILINEAR ESTIMATION USING ADVANTAGE
FUNCTION

A popular choice for a baseline b(s) is V (s, θ1, θ2), which results in the advantage function defined in Sec. 3.1. In Thm. 3
we extend Thm. 1 to estimate gradient and bilinear terms using the advantage function.

Theorem 3. Given that the advantage function is defined as A(s, a1, a2; θ1, θ2) = Q(s, a1, a2; θ1, θ2)− V (s; θ1, θ2) and
given Eq. 7, then for player i, j ∈ {1, 2} and i 6= j, it holds that,

Dθiη=

∫
τ

|τ |−1∑
k=0

γkf(τ0:k; θ1, θ2)Dθi(log π(aik|sk; θi))A(sk, a
1
k, a

2
k; θ1, θ2)dτ, (40)

Dθiθjη =

∫
τ

|τ |−1∑
k=0

γkf(τ0:k; θ1, θ2)Dθi(log π(aik|sk; θi))Dθj (log π(ajk|sk; θj))>A(sk, a
1
k, a

2
k; θ1, θ2)dτ

+

∫
τ

|τ |−1∑
k=1

γkf(τ0:k; θ1, θ2)Dθi(log

k−1∏
l=0

π(ail|sl; θi))Dθj (log π(ajk|sk; θj))>A(sk, a
1
k, a

2
k; θ1, θ2)dτ

+

∫
τ

|τ |−1∑
k=1

γkf(τ0:k; θ1, θ2)Dθi(log π(aik|sk; θi))Dθj (log

k−1∏
l=0

π(ajl |sl; θ
j))>A(sk, a

1
k, a

2
k; θ1, θ2)dτ. (41)

Proof. The RHS of Eq. 40 is,

∫
τ

|τ |−1∑
k=0

γkf(τ0:k; θ1, θ2)Dθi(log π(aik|sk; θi))A(sk, a
1
k, a

2
k; θ1, θ2)dτ



=

∫
τ

|τ |−1∑
k=0

γkf(τ0:k; θ1, θ2)Dθi(log π(aik|sk; θi))(Q(s, a1, a2; θ1, θ2)− V (s; θ1, θ2))dτ

= Dθiη −
∫
τ

|τ |−1∑
k=0

γkf(τ0:k; θ1, θ2)Dθi(log π(aik|sk; θi))V (s; θ1, θ2))dτ

= Dθiη −
∫
τ

|τ |−1∑
k=0

γkf(τ0:k−1, sk; θ1, θ2)Dθi(π(aik|sk; θi))π(ajk|sk; θj)V (s; θ1, θ2))dτ (42)

= Dθiη.

The last equality holds since the value function V (s; θ1, θ2) is independent of the actions, and this concludes the proof for
Dθiη. Now consider, the RHS of Eq. 41,

∫
τ

|τ |−1∑
k=0

γkf(τ0:k; θ1, θ2)Dθi(log π(aik|sk; θi))Dθj (log π(ajk|sk; θj))>A(sk, a
1
k, a

2
k; θ1, θ2)dτ (43)

+

∫
τ

|τ |−1∑
k=1

γkf(τ0:k; θ1, θ2)Dθi(log

k−1∏
l=0

π(ail|sl; θi))Dθj (log π(ajk|sk; θj))>A(sk, a
1
k, a

2
k; θ1, θ2)dτ

+

∫
τ

|τ |−1∑
k=1

γkf(τ0:k; θ1, θ2)Dθi(log π(aik|sk; θi))Dθj (log

k−1∏
l=0

π(ajl |sl; θ
j))>A(sk, a

1
k, a

2
k; θ1, θ2)dτ.

Using definition of Advantage function, we can equivalently write,∫
τ

|τ |−1∑
k=0

γkf(τ0:k;θ1, θ2)Dθi(log π(aik|sk;θi))Dθj (log π(ajk|sk;θj))>(Q(sk,a
1
k,a

2
k;θ1, θ2)−V(sk;θ1, θ2))dτ

+

∫
τ

|τ |−1∑
k=1

γkf(τ0:k;θ1, θ2)Dθi(log

k−1∏
l=0

π(ail|sl;θi))Dθj (log π(ajk|sk;θj))>(Q(sk,a
1
k,a

2
k;θ1, θ2)−V(sk;θ1, θ2))dτ

+

∫
τ

|τ |−1∑
k=1

γkf(τ0:k;θ1, θ2)Dθi(log π(aik|sk;θi))Dθj (log

k−1∏
l=0

π(ajl |sl;θ
j))>(Q(sk,a

1
k,a

2
k;θ1, θ2)−V(sk;θ1, θ2))dτ.

Using Eq. 8, we can equivalently separate the expression in Dθiθjη and terms depending on the value function,

Dθiθjη −
∫
τ

|τ |−1∑
k=0

γkf(τ0:k; θ1, θ2)Dθi(log π(aik|sk; θi))Dθj (log π(ajk|sk; θj))>V (sk; θ1, θ2)dτ

−
∫
τ

|τ |−1∑
k=1

γkf(τ0:k; θ1, θ2)Dθi(log

k−1∏
l=0

π(ail|sl; θi))Dθj (log π(ajk|sk; θj))>V (sk; θ1, θ2)dτ

−
∫
τ

|τ |−1∑
k=1

γkf(τ0:k; θ1, θ2)Dθi(log π(aik|sk; θi))Dθj (log

k−1∏
l=0

π(ajl |sl; θ
j))>V (sk; θ1, θ2)dτ, (44)

note that for any pθ(τ) 6= 0 using Dθ log pθ(τ) = Dθpθ(τ)/pθ(τ), which allows us to further simplify the expression to,

Dθiθjη −
∫
τ

|τ |−1∑
k=0

γkf(τ0:k−1, sk; θ1, θ2)Dθi(π(aik|sk; θi))Dθj (π(ajk|sk; θj))>V (sk; θ1, θ2)dτ

−
∫
τ

|τ |−1∑
k=1

γkf(τ0:k−1, sk, a
i
k; θ1, θ2)Dθi(log

k−1∏
l=0

π(ail|sl; θi))Dθj (π(ajk|sk; θj))>V (sk; θ1, θ2)dτ

−
∫
τ

|τ |−1∑
k=1

γkf(τ0:k−1, sk, a
j
k; θ1, θ2)Dθi(π(aik|sk; θi))Dθj (log

k−1∏
l=0

π(ajl |sl; θ
j))>V (sk; θ1, θ2)dτ

= Dθiθjη, (45)



where the last equality holds since V (sk; θ1, θ2) is independent of the actions of any player. This concludes our proof.

11.3 APPROACHES TO ESTIMATE ADVANTAGE FUNCTION

There exist multiple approaches to estimate A(sk, a
1
k, a

2
k; θ1, θ2), for example Monte Carlo (Eq. 46), 1-step TD residual

(Eq. 47) and t-step TD residual (Eq. 48)

A(sk, a
1
k, a

2
k; θ1, θ2) =

|τ |−1∑
j=k

γj−kr(sj , a
1
j , a

2
j )− V (sk; θ1, θ2), (46)

A(sk, a
1
k, a

2
k; θ1, θ2) =r(sk, a

1
k, a

2
k) + γV (sk+1; θ1, θ2)− V (sk; θ1, θ2), (47)

A(sk, a
1
k, a

2
k; θ1, θ2) =r(sk,a

1
k,a

2
k)+γr(sk+1,a

1
k+1,a

2
k+1)+...+γt−1r(sk+t−1,a

1
k+t−1,a

2
k+t−1)

+ γtV (sk+t;θ
1, θ2)− V (sk;θ1, θ2). (48)

The Monte Carlo approach experience high variance in gradient estimation, particularly with long trajectories, which may
result in slow learning or not learning at all. On the other hand 1-step TD residual has bias towards initialization of the value
function. t-step TD residual can lower this effect up to an extent. To trade between bias and variance we propose to use
generalized advantage estimation (GAE) [Schulman et al., 2016], which is an exponentially λ weighted average over t-step
estimators. It is given by,

AGAE(sk, a
1
k, a

2
k; θ1, θ2) =

|τ |−1∑
l=0

(λγ)lδVl+k,

where, δVk = r(sk, a
1
k, a

2
k) + γV (sk+1; θ1, θ2)− V (sk; θ1, θ2).

Note that at λ = 0, AGAE(sk, a
1
k, a

2
k; θ1, θ2) reduces to 1-step TD residual and at λ = 1 it is equivalent to the Monte Carlo

approach to estimate the advantage function. We refer the interested reader to [Schulman et al., 2016] for more details.

12 TRAINING BY SELF-PLAY

As proposed in Alg. 6, we use COPG to learn a policy for each player, however, it is also possible to use the competitive
policy gradient algorithm to learn game strategies by self-play. In contrast to two player training where each player has its
own policy model, in self-play, we have one model for both players. Each player then samples actions from the same policy
model for two different state instances s1 = [sl1, sl2] and s2 = [sl2, sl1], where sl1 and sl2 are the local states of player 1
and player 2 respectively. Let τ =

(
(sl1k ,sl2k , a

1
k, a

2
k, rk)

|τ1|−1
k=0 , s|τ |

)
be a trajectory obtained in the game. Using Eq. 7 and

Eq. 8, we can define the gradient and bilinear terms as Dθη
i and Dθθη

i , i, j ∈ {1, 2}, i 6= j,

Dθη
i =

∫
τ

|τ |−1∑
k=0

γkf(τ0:k; θ)Dθ(log π(aik|sik; θ))Q(s1
k, a

1
k, a

2
k; θ)dτ, (49)

Dθθη
i =

∫
τ

|τ |−1∑
k=0

γkf(τ0:k; θ)Dθ(log π(aik|sik; θ))Dθ(log π(ajk|s
j
k; θ))>Q(s1

k, a
1
k, a

2
k; θ)dτ

+

∫
τ

|τ |−1∑
k=1

γkf(τ0:k; θ)Dθ(log

k−1∏
l=0

π(ail|sil; θ))Dθ(log π(ajk|s
j
k; θ))>Q(s1

k, a
1
k, a

2
k; θ)dτ

+

∫
τ

|τ |−1∑
k=1

γkf(τ0:k; θ)Dθ(log π(aik|sik; θ))Dθ(log

k−1∏
l=0

π(ajl |s
j
l ; θ))

>Q(s1
k, a

1
k, a

2
k; θ)dτ. (50)

Utilizing the gradients and bilinear term in Eq. 49 and Eq. 50, the parameters are updated twice which results in the following
update rule for self-play,

θt ← θ + α
(
Id+ α2Dθθη

1Dθθη
2
)−1(

Dθη
1 − αDθθη

1Dθη
2
)
,



θ ← θt − α
(
Id+ α2Dθθη

2Dθθη
1
)−1(

Dθη
2 + αDθθη

2Dθη
1
)
, (51)

where θt is a temporary intermediate variable.3

Algorithm 5: Competitive Policy Gradient with self-play

Input: π(.|.; θ), N, B, α, Choice of A(s1, a1, a2; θ) mentioned in Sec 3.1
for epoch : e = 1 to N do

for batch : b = 1 to B do
for k = 0 to |τ | − 1 do

Sample a1
k ∼ π(a1

k|s1
k; θ), a2

k ∼ π(a2
k|s2

k; θ).
Execute actions ak = (a1

k, a
2
k)

Record {sl1k , sl2k , a1
k, a

2
k, rk} in τb

end
Record τb in M

end
1. Estimate A(s1, a1, a2; θ) with τ in M
2. Estimate Dθη

1, Dθη
2, Dθθη

1, Dθθη
2 using Eq. 49 and Eq. 50

3. Update θ using Eq. 51
end

We tested the self-play algorithm on the Markov soccer game, which is discussed in more detail in Sec. 15.5.We focus in
this comparison on the Markov soccer game since it is strategic enough while being representative. The game has two player
A and B. The state vector in perspective of player A is s1 = [sA, sB ] and in player B s2 = [sB , sA], in accordance with
the self-play setting described above. The game description is given in Sec. 15.5. The player was trained while competing
with itself using Alg. 5. Fig. 9a below show the interaction plot for COPG agents trained with self-play with both players
winning almost 50% of the games. On competing agents trained under self-play (COPG-SP) against agents trained with two
different networks (COPG), we observe that self-play had slight edge in number of game wins. The is probably due to better
generalisation of agents in self-play obtained by exploiting symmetricity in the game. We also trained a GDA agent using
self-play and saw no clear improvements compared to normal GDA as tested in Sec. 15.5.
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Figure 9: a-b) Interaction plots, representing probability of seizing ball in the game between A vs B. X-axis convention, for
player A. A1: A scored goal, A2: A scored goal after seizing ball from B, A3: A scored goal by seizing ball from B which
took the ball from A and so forth. Vice versa for player B. N: No one scored goal both kept on seizing ball. c) probability of
games won.

13 TRUST REGION COMPETITIVE POLICY OPTIMISATION

Following our discussion in the Sec. 3.3 on trust region competitive policy optimization, in this section we will go into more
details on constraint competitive optimization and formally derive and proof all our results presented in Sec. 3.3. More
precisely in this section we first proof Lem. 1 and Thm. 2, second we will derive how we can efficiently approximate Eq. 13

3Of course, there are other ways to come up with self-play updates. For example, one can use Eq. 6 with θ1 = θ2 = θ to update
parameters, then set θ ← (θ1 + θ2)/2.



using a bilinear approximation of the objective and a second order approximation of the KL divergence constraint and how
this allows us to efficiently find an approximate solution.

13.1 PROOF FOR LEM. 1

Proof. The second term on the RHS of Eq. 10 can be simplified as,

Eτ∼f(.;θ′1,θ′2)

[|τ |−1∑
k=0

γkA(sk, a
1
k, a

2
k; θ1, θ2)

]

= Eτ∼f(.;θ′1,θ′2)

[|τ |−1∑
k=0

γk
(
Q(sk, a

1
k, a

2
k; θ1, θ2)− V (sk; θ1, θ2)

)]

= Eτ∼f(.;θ′1,θ′2)

[|τ |−1∑
k=0

γk
(
r(sk, a

1
k, a

2
k) + γV (sk+1; θ1, θ2)− V (sk; θ1, θ2)

)]

= Eτ∼f(.;θ′1,θ′2)

[|τ |−1∑
k=0

γkr(sk, a
1
k, a

2
k) + γk+1V (sk+1; θ1, θ2)− γkV (sk; θ1, θ2)

]

= Eτ∼f(.;θ′1,θ′2)

[|τ |−1∑
k=0

γkr(sk, a
1
k, a

2
k)
]
− Es0

[
V 1(s0; θ1, θ2)

]
= η(θ′1, θ′2)− η(θ1, θ2). (52)

This concludes our proof that,

η(θ′1, θ′2) = η(θ1, θ2) + Eτ∼f(·;θ′1,θ′2)

∑|τ |−1

k=0
γkA(s, a1, a2; θ1, θ2).

13.2 PROOF FOR THM. 2

Proof. Let θ1, θ2 be the parametrization of the policies, when these parameters are updated to θ′1, θ′2, by Lem. 1 we know
that the improved game objective η(θ′1, θ′2) is,

η(θ′1, θ′2) = η(θ1, θ2) + Eτ∼f(.;θ′1,θ′2)

|τ |−1∑
k

γkA(sk, a
1
k, a

2
k; θ1, θ2). (53)

Furthermore, we defined Lθ1,θ2(θ′1, θ′2) which denotes the surrogate game objective where the trajectory depends on
policies (θ1, θ2) but actions are sampled from (θ′1, θ′2).

Lθ1,θ2(θ′1, θ′2)=η(θ1, θ2)+Eτ∼f(·;θ1,θ2)

|τ |−1∑
k=0

γkEπ(a′1k |sk;θ′1),π(a′2k |sk;θ′2)A(sk, a
′1
k , a

′2
k ; θ1, θ2). (54)

Note that Lθ1,θ2(θ′1, θ′2) is an approximation of true game objective η(θ′1, θ′2). Using the average advantage function,

A(s; θ1, θ2) =
∑
a1,a2

π(a1|s; θ′1)π(a2|s; θ′2)A(s, a1, a2; θ1, θ2), (55)

one can write Eq. 53 and Eq. 54 as,

η(θ′1, θ′2)− η(θ1, θ2) = Eτ∼f(.;θ′1,θ′2)

[|τ |−1∑
k=0

γkA(s; θ1, θ2)
]
, (56)



Lθ1,θ2(θ′1, θ′2)− η(θ1, θ2) = Eτ∼f(.;θ1,θ2)

[|τ |−1∑
k=0

γkA(s; θ1, θ2)
]
. (57)

To finish our proof, we subtract Eq. 57 from Eq. 56 and take the absolute value, this allows to bound |η(θ′1, θ′2)−
Lθ1,θ2(θ′1, θ′2)|. To derive this bound let ε = maxs

∑|τ |−1
k γkA(s; θ1, θ2), which allows us to perform the following steps,

|η(θ′1, θ′2)−Lθ1,θ2(θ′1, θ′2)|=
∣∣∣Eτ∼f(.;θ′1,θ′2)

[|τ |−1∑
k

γkA(s; θ1, θ2)
]
−Eτ∼f(.;θ1,θ2)

[|τ |−1∑
k

γkA(s; θ1, θ2)
]∣∣∣

=

∫
τ

∣∣∣f(τ ; θ′1, θ′2)− f(τ ; θ1, θ2)
∣∣∣[|τ |−1∑

k

γkA(s; θ1, θ2)
]
dτ

≤ εDTV

(
τ ∼ (θ1, θ2), τ ∼ (θ′1, θ′2)

)
≤ ε
√

1

2
DKL(τ ∼ (θ1, θ2), τ ∼ (θ′1, θ′2))

= ε/
√

2
√
DKL((θ′1, θ′2), (θ1, θ2)).

This concludes our proof.

13.3 CONSTRAINT COMPETITIVE OPTIMIZATION OF A TRUST REGION

In this section, we approach the constrained optimization problem of TRCOPO given by Eq. 13 in 3 steps. First, motivated
by CGD we seek for a Nash equilibrium of the bilinear approximation of the game objective. Secondly, in contrast to COPG,
where an L2 penalty term is used along with the bilinear approximation denoting limited confidence in parameter deviation,
here a KL divergence constraint will influence the gradient direction. Note that we incorporate this KL divergence constraint
into the objective using the method of Lagrange multipliers. This results in the game theoretic update rule defined in Eq. 58.

θ1 ← θ1+ argmax
∆θ1;∆θ1+θ1∈Θ1

∆θ1>Dθ1L+∆θ1>Dθ1θ2L∆θ2− λ
2

(∆θ1>A11∆θ1+∆θ2>A22∆θ2−2δ′),

θ2 ← θ2+ argmin
∆θ2;∆θ2+θ2∈Θ2

∆θ2>Dθ2L+∆θ2>Dθ2θ1L∆θ1+
λ

2
(∆θ1>A11∆θ1+∆θ2>A22∆θ2−2δ′). (58)

Here, λ is the Lagrange multiplier. Note that the same λ is used for both the agents and that we use a quadratic
approximation of the KL divergence, which is DKL

(
(θ1, θ2), (θ′1, θ′2)

)
≈ 1

2

∑2
i

∑2
j ∆θi

>
Aij∆θ

j , where Aij =

DθiθjDKL

(
(θ1, θ2), (θ′1, θ′2)

)
, and it holds that for i 6= j, Aij = 0. Note that we will go into more details later on

the approximation of the KL divergence.

TRCOPO update: As said the update step in Eq. 58 is given by the Nash equilibrium of the game within Eq. 58. We can find
the Nash equilibrium that fulfills the approximated KL divergence constraint efficiently by solving the following equation
using a line-search approach,

∆θ = −(B + λA′)−1C, subject to: ∆θ>A∆θ ≤ δ, (59)

where, let A′, B, C, δ, and ∆θ be defined as,

A′ =

[
−A11 0

0 A22

]
, B =

[
0 Dθ1θ2L

Dθ2θ1L 0

]
,

C =

[
Dθ1L
Dθ2L

]
, δ = 2δ′, and ∆θ =

[
∆θ1

∆θ2

]
. (60)

TRCOPO constraint optimization: After this quick introduction on how to practically update the policy parameters using
TRCOPO, let us derive in detail how to get to Eq. 59. As explained above Eq. 59 is the Nash equilibrium of an approximation



of Eq. 13. Before starting to approximate Eq. 13 let us rewrite it by using the definition of Lθ1,θ2(θ′1, θ′2) as given in Eq. 54.
Note that we can neglect the constant term η(θ1, θ2), which results in the following game,

max
θ′1

min
θ′2

Eτ∼f(·;θ1,θ2)

|τ |−1∑
k=0

γkEπ(a′1k |sk;θ′1),π(a′2k |sk;θ′2)A(sk, a
′1
k , a

′2
k ; θ1, θ2), (61)

subject to: DKL((θ1, θ2), (θ′1, θ′2)) ≤ δ′.

Furthermore, we can use an importance sampling factor instead of considering the expected value with respect to the policies
parametrized with (θ′1, θ′2). This results in the following optimization problem,

max
θ′1

min
θ′2

Eτ∼f(·;θ1,θ2)

|τ |−1∑
k=0

γk
π(a1

k|sk; θ′1)π(a2
k|sk; θ′2)

π(a1
k|sk; θ1)π(a2

k|sk; θ2)
A(sk, a

1
k, a

2
k; θ1, θ2), (62)

subject to: DKL((θ1, θ2), (θ′1, θ′2)) ≤ δ′.

For the game in Eq. 62 we can compute the gradient DθiL and bilinear term DθiθjL given player i, j ∈ {1, 2}, i 6= j as

DθiL = Eτ∼f(·;θ1,θ2)

|τ |−1∑
k=0

γk
Dθiπ(aik|sk; θi)

π(aik|sk; θi)
A(sk, a

1
k, a

2
k; θ1, θ2),

DθiθjL = Eτ∼f(·;θ1,θ2)

|τ |−1∑
k=0

γk
Dθiπ(aik|sk; θi)Dθjπ(ajk|sk; θj)

π(aik|sk; θi)π(ajk|sk; θj)
A(sk, a

1
k, a

2
k; θ1, θ2), (63)

which allows us to formulate the following bilinear approximation of the optimization problem,

max
∆θ1;∆θ1+θ1∈Θ1

min
∆θ2;∆θ2+θ2∈Θ2

∆θ1>Dθ1L+ ∆θ1>Dθ1θ2L∆θ2 + ∆θ2>Dθ2L+ ∆θ2>Dθ2θ1L∆θ1,

subject to: DKL((θ1, θ2), (θ′1, θ′2)) ≤ δ′.

However, to efficiently solve the optimization problem we also need to approximate the KL divergence for the two agent
case, similar to Schulman et al. [2015] we use a quadratic approximation of the constraint.

Approximation of KL divergence Let us derive an approximation of the KL divergence for the two player case that can be
estimated efficiently using Monte Carlo samples. As defined in Sec. 3.3, the KL divergence between (θ1, θ2) and (θ′1, θ′2)
is given by,

DKL

(
(θ1, θ2), (θ′1, θ′2)

)
=

∫
τ

f(τ ; θ1, θ2) log

(
f(τ ; θ1, θ2)

f(τ ; θ′1, θ′2)

)
dτ, (64)

Let us define θ =
(
θ1>, θ2>)>, and ∆θ = θ′ − θ, thus, using a Taylor series to approximate DKL around θ we get,

DKL(θ, θ′) = DKL(θ, θ′)
∣∣∣
θ′=θ

+
∂DKL(θ, θ′)

∂θ′

∣∣∣∣
θ′=θ

∆θ +
1

2
∆θ>A

∣∣
θ′=θ

∆θ + ε
(
||∆θ||3

)
, (65)

where,

A =

[
Dθ′1θ′1DKL

(
(θ1, θ2), (θ′1, θ′2)

)
Dθ′1θ′2DKL

(
(θ1, θ2), (θ′1, θ′2)

)
Dθ′2θ′1DKL

(
(θ1, θ2), (θ′1, θ′2)

)
Dθ′2θ′2DKL

(
(θ1, θ2), (θ′1, θ′2)

)] . (66)

In the Taylor expansion Eq. 65, the zero order term DKL(θ, θ′)|θ′=θ = 0 and the first order term can be expanded as,

∂DKL(θ, θ′)

∂θ′

∣∣∣∣
θ′=θ

=
(
Dθ′1DKL

(
(θ1, θ2), (θ′1, θ′2)

)>
, Dθ′2DKL

(
(θ1, θ2), (θ′1, θ′2)

)>)>∣∣∣∣
(θ′1,θ′2)=(θ1,θ2)

.

When solving for Dθ′1DKL

(
(θ1, θ2), (θ′1, θ′2)

)
, we get,

Dθ′1DKL

(
(θ1, θ2), (θ′1, θ′2)

)∣∣∣
θ′=θ

= Dθ′1

(∫
τ

f(τ ; θ1, θ2) log
( f(τ ; θ1, θ2)

f(τ ; θ′1, θ′2)

)
dτ

)∣∣∣∣
(θ′1,θ′2)=(θ1,θ2)



=

∫
τ

Dθ′1
(
f(τ ;θ1, θ2)logf(τ ;θ1, θ2)−f(τ ;θ1, θ2)logf(τ ;θ′1, θ′2)

)
dτ

=

∫
τ

− f(τ ; θ1, θ2)

f(τ ; θ′1, θ′2)
Dθ′1f(τ ; θ′1, θ′2)dτ

∣∣∣∣
(θ′1,θ′2)=(θ1,θ2)

(67)

= −Dθ′1

(∫
τ

f(τ ; θ′1, θ′2)dτ
)

= −Dθ′1(1) = 0.

Similarly, Dθ′2DKL

(
(θ1, θ2), (θ′1, θ′2)

)
= 0. Hence, we write that,

∂DKL(θ, θ′)

∂θ′

∣∣∣
θ′=θ

= 0.

Ignoring higher order terms in the approximation, we get

DKL

(
(θ1, θ2), (θ′1, θ′2)

)
≈ 1

2

[
∆θ1 ∆θ2

] [A11 A12

A21 A22

] [
∆θ1

∆θ2

]
, (68)

where, Aij is defined in Eq. 66. Let us now derive all the Aij terms, starting with A11,

A11 = Dθ′1θ′1

(∫
τ

f(τ ; θ1, θ2) log

(
f(τ ; θ1, θ2)

f(τ ; θ′1, θ′2)

)
dτ

)
=

∫
τ

Dθ′1θ′1
(
f(τ ; θ1, θ2) log f(τ ; θ1, θ2)− f(τ ; θ1, θ2) log f(τ ; θ′1, θ′2)

)
dτ (69)

=

∫
τ

Dθ′1θ′1
(
−f(τ ; θ1, θ2) log f(τ ; θ′1, θ′2)

)
dτ

= −
∫
τ

f(τ ; θ1, θ2)Dθ′1θ′1 log(f(τ ; θ′1, θ′2))dτ,

and now using the definition of f(τ ; θ1, θ2) in Eq. 1, we get,

A11 = −
∫
τ

f(τ ; θ1, θ2)Dθ′1θ′1

(
log
(
p(s0)

|τ |−1∏
k=0

π(a1
k|sk; θ′1)

π(a2
k|sk; θ′2)R(rk|sk, a1

k, a
2
k)T (sk+1|sk, a1

k, a
2
k)
))
dτ

= −
∫
τ

f(τ ; θ1, θ2)Dθ′1θ′1

(|τ |−1∑
k

log π(a1
k|sk; θ′1) + log π(a2

k|sk; θ′2)
)
dτ (70)

= −
∫
τ

f(τ ; θ1, θ2)Dθ′1θ′1

(|τ |−1∑
k

log π(a1
k|sk; θ′1)

)
dτ.

This formulation allows us to estimate A11 using Monte Carlo samples. Note that an interesting alternative to estimate A11

only using first order derivatives is in terms of the Fisher matrix. Using Eq. 69, we get,

A11 =

∫
τ

Dθ′1

(
−f(τ ; θ1, θ2)Dθ′1 log(f(τ ; θ′1, θ′2))

)
dτ

=

∫
τ

Dθ′1

(
− f(τ ; θ1, θ2)

f(τ ; θ′1, θ′2)
Dθ′1f(τ ; θ′1, θ′2)

)
dτ

=

∫
τ

− f(τ ; θ1, θ2)

f(τ ; θ′1, θ′2)
Dθ′1θ′1f(τ ; θ′1, θ′2)

+
f(τ ; θ1, θ2)

f(τ ; θ′1, θ′2)2
Dθ′1f(τ ; θ′1, θ′2)Dθ′1f(τ ; θ′1, θ′2)>dτ.

Similar to Eq. 67, using the above equation we can write A11 at θ′1 = θ1, θ′2 = θ2 as,

A11

∣∣∣
θ′=θ

=

∫
τ

f(τ ; θ1, θ2)
Dθ′1f(τ ; θ′1, θ′2)

f(τ ; θ′1, θ′2)

Dθ′1f(τ ; θ′1, θ′2)

f(τ ; θ′1, θ′2)

>

dτ



= Ef(τ ;θ1,θ2)

[
Dθ1 log(f(τ ; θ′1, θ′2))Dθ1 log(f(τ ; θ′1, θ′2))>

]
.

Which by definition is the Fisher information matrix. Using the definition of f(τ ; θ1, θ2) in Eq. 1 and further reformulations,
we get the following estimate for A11,

A11

∣∣∣
θ′=θ

= Ef(τ ;θ1,θ2)

[
Dθ1

|τ |−1∑
t

(
log(π(a1

t+1|sk; θ′1))
)
Dθ1

|τ |−1∑
t

(
log(π(a1

t+1|sk; θ′1))>
)]
.

Note that for our implementation, we use the first approach Eq. 70, but the second approach has the advantage that it avoids
second order derivatives, which can potentially improve computation times. Using the same ideas as in the derivation of A11

in Eq. 70, we can find the A22 term, which is

A22 = −
∫
τ

f(τ ; θ1, θ2)Dθ′2θ′2

(|τ |−1∑
k

log π(a2
k|sk; θ′2)

)
dτ .

Next, in order to estimate the Hessian of the KL divergence, we want to derive a formulation for A12. Similar to Eq. 70, A12

can be written as,

A12 = −
∫
τ

f(τ ; θ1, θ2)Dθ′1θ′2

(|τ |−1∑
t

log π(a1
t+1|sk; θ′1) + log π(a2

t+1|sk; θ′2)
)
dτ

= −
∫
τ

f(τ ; θ1, θ2)
(
Dθ′1θ′2

|τ |−1∑
t

(
log π(a1

t+1|sk; θ′1)
)

+Dθ′1θ′2

|τ |−1∑
t

(
log π(a2

t+1|sk; θ′2)
))
dτ

= 0 + 0

= 0.

Using the same derivation we also get A21 = 0.

Thus, the constraint on the KL divergence DKL((θ1, θ2), (θ′1, θ′2)) ≤ δ′ can be approximated by the following quadratic
inequality constraint,

∆θ1>A11∆θ1 + ∆θ2>A22∆θ2 ≤ 2δ′, (71)

which allows us to efficiently find an approximate solution for Eq. 13.

Derivation of the TRCOPO Update: Given the bilinear approximation of the objective Eq. 63 and the quadratic approxima-
tion of the KL divergence constraint Eq. 71, we can use the the method of Lagrange multiplier to reformulate the problem as
the following optimization problem:

max
∆θ1;∆θ1+θ1∈Θ1

∆θ1>Dθ1L+ ∆θ1>Dθ1θ2L∆θ2 − λ

2
(∆θ1>A11∆θ1 + ∆θ2>A22∆θ2 − 2δ′),

min
∆θ2;∆θ2+θ2∈Θ2

∆θ2>Dθ2L+ ∆θ2>Dθ2θ1L∆θ1 +
λ

2
(∆θ1>A11∆θ1 + ∆θ2>A22∆θ2 − 2δ′). (72)

Note that in Eq. 58 the same game was used, and thus finding a Nash equilibrium (∆θ1,∗,∆θ2,∗) to Eq. 72 allows to define
the update rule as (θ′1, θ′2) = (θ1, θ2) + (∆θ1,∗,∆θ2,∗). The Nash equilibrium (∆θ1,∗,∆θ2,∗) of the game, for a fixed λ,
can be obtained by differentiating Eq. 72 with respect to θ′1, θ′2 and setting the derivatives to zero:

Dθ1L+Dθ1θ2L∆θ2 − λ(A11∆θ1) = 0,

Dθ2L+Dθ2θ1L∆θ1 + λ(A22∆θ2) = 0. (73)

To solve this system of equations, we can formulate Eq. 73 in matrix form, using ∆θ = [∆θ1>,∆θ2>]> and δ = 2δ′, which
results in [

Dθ1L
Dθ2L

]
+

[
0 Dθ1θ2L

Dθ2θ1L 0

]
∆θ + λ

[
−A11 0

0 A22

]
∆θ = 0 .



This gives us a one dimensional manifold of solutions for ∆θ when varying λ. Using the notation in Eq. 60, we can
reformulate the system of equation as,

C + B∆θ + λA′∆θ = 0,

which for non-singular B + λA′ has the following solution,

∆θ = −(B + λA′)−1 C

For any λ, in case of a unique solution, we obtain a point ∆θ. In the end we are interested in a ∆θ solution that satisfies the
approximate KL divergence constraint Eq. 71 or in other words,

∆θ1>A11∆θ1 + ∆θ2>A22∆θ2 ≤ 2δ′

All λ which satisfy this constraint are legitimate solutions, but we prefer the one which assigns higher value to the left hand
side of this equation. Therefore, considering 1

λ as step size, we select a λ that satisfy this constraint with a high value for
the left hand side using line search. The solution is given by computing ∆θ = −(B + λA′)−1C inside a line search, and
choosing the solution that satisfies the following constraint with the biggest margin,

C>(B + λA′)−1>
A(B + λA′)−1C ≤ δ.

This concludes our derivation.

14 IMPLEMENTATION OF ALGORITHMS

In this section we talk about final setup of COPG and TRCOPO algorithms and their efficient implementation.

14.1 COMPETITIVE POLICY GRADIENT

Algorithm 6: Competitive Policy Gradient

Input: π(.|.; θ1), π(.|.; θ2), Vφ(s), N, B, α, Choice of A(s, a1, a2; θ1, θ2) mentioned in Sec 3.1
for epoch : e = 1 to N do

for batch : b = 1 to B do
for k = 0 to |τ | − 1 do

Sample a1
k ∼ π(a1

k|sk; θ1), a2
k ∼ π(a2

k|sk; θ2).
Execute actions ak = (a1

k, a
2
k)

Record {sk, a1
k, a

2
k, r

1
k, r

2
k} in τb

end
Record τb in M

end
1. Estimate A(s, a1, a2; θ1, θ2) with τ in M
2. Estimate Dθ1η, Dθ2η, Dθ2θ1η, Dθ1θ2η using Thm. 1
3. Simultaneously update (θ1, θ2) using Eq. 6

end

Based on our discussion in Sec. 11 we propose Alg. 6 which is an extension of Alg. 2 to utilise advantage function
estimation. In this algorithm, simultaneous update of (θ1, θ2) using Eq. 6 requires computing inverse matrix product
twice, one for each agent. Instead we can compute infinite recursion strategy using Eq. 6 for one player only and apply
the counter strategy for the other player as proposed in Schaefer and Anandkumar [2019]. From Eq. 6, for player 1
∆θ1 = α

(
Id+ α2Dθ1θ2ηDθ2θ1η

)−1(
Dθ1η − αDθ1θ2ηDθ2η

)
. Using this, one can derive an optimal counter strategy ∆θ2

for player 2 by solving the argmin in Eq. 5. This results in,

∆θ2 = −α
(
Dθ2θ1η∆θ1 +Dθ2η

)
,



which is computed without evaluating an inverse. Similarly, if one evaluates ∆θ2 from Eq. 6, the optimal counter strategy
∆θ1 can be obtain by solving the argmax in Eq. 5, which is given by,

∆θ1 = α
(
Dθ1θ2η∆θ2 +Dθ1η

)
.

This reduces the requirement of computing inverse to only once per epoch. Further, COPG has been extended to utilise
RMSProp to iteratively adapt the step size as proposed in Schäfer et al. [2019]. In RMSProp, the learning rate is adapted
based on the moving average of the square of gradients. The code for COPG along with RMS Prop is also available in the
code repository.

14.2 TRUST REGION COMPETITIVE POLICY OPTIMIZATION

Based on our discussion in Sec. 13.3, we propose the trust region competitive policy optimization algorithm given in Alg. 7.

Algorithm 7: Trust Region Competitive Policy Optimisation

Input: π(.|.; θ1), π(.|.; θ2), N, B, δ, Choice of A(s, a1, a2; θ1, θ2) mentioned in Sec 3.1
for epoch : e = 1 to N do

for batch : b = 1 to B do
for k = 0 to |τ | − 1 do

Sample a1
k ∼ π(a1

k|sk; θ1), a2
k ∼ π(a2

k|sk; θ2).
Execute actions ak = (a1

k, a
2
k)

Record {sk, a1
k, a

2
k, r

1
k, r

2
k} in τb

end
Record τb in M

end
1. Estimate A(s, a1, a2; θ1, θ2) with τ in M
2. Estimate Dθ1L, Dθ1L, D

2
θ1θ2L D

2
θ2θ1L using Eq. 63

3. Solve for ∆θ = [∆θ1>,∆θ2>]> in Eq. 59 using line search,
while ∆θ>A∆θ < δ do

λ←− 2λ
∆θ ←− −(B + λA′)−1C

end
θ ←− θ + ∆θ

end

In the experiments, we used Eq. 70 to estimate A′. As given in the Alg. 7, 3., we suggest to fulfill the constraint using a line
search method. Start with small a value of λ = λ0, and solve for ∆θ = −(B + λA′)−1C. Check for ∆θTA∆θ < δ. If not
satisfied change λ to 2λ and repeat it until the constraint is satisfied.

There could be multiple heuristics to initialize the λ value for a fast convergence. We propose to solve for λ0 assuming 2
agents solve for their objective independently (TRGDA). The λ value can be obtained in closed form using single-agent
TRPO [Schulman et al., 2015]. Let us say we obtain λmin and λmax corresponding to the minimizing and maximizing
player. We propose to use λ0 = min{λmin, λmax} as an initialisation.

Similar to single-agent TRPO, often the resulting step size from the algorithm might be large and thus probably does not
benefit either of the agents with policy updates. During such cases, we can further refine the line search iteratively for a
smaller step size and update the policies only if both players gain an advantage.

15 EXPERIMENT DETAILS

In this section, we provide all the details and explanations of the experiment platforms used in this work. First, we start with
the games with a known closed-form Nash equilibrium. Later we talk about the Markov Soccer game and the car racing
game.



15.1 LINEAR QUADRATIC (LQ) GAME

The zero sum LQ game is defined by:

J(K1,K2) = max
K1

min
K2

E
[ |τ |∑
k=0

γk
(
sk
TQsk + a1

k
T
R11a

1
k + a2

k
T
R22a

2
k

)]
, (74)

where: sk+1 = Ask +B1a
1
k +B2a

2
k, a1

k+1 = −K1sk, a
2
k+1 = −K2sk,

where, sk ∈ Rn is the system state vector, a1 ∈ Rd1 and a2 ∈ Rd2 are the control inputs of player 1 and 2 respectively. The
matrix A ∈ Rn×n, B1 ∈ Rn×d1 and B1 ∈ Rn×d2 describe the system dynamics. Here, K1 and K2 denotes the control
policies. We considered a simple game where, A = 0.9, B1 = 0.8, B2 = 1.5, R11 = 1, R22 = 1. These environment
parameters are not known to the players. The policy of each player is linear in the state and actions are sampled from Gaussian
distribution a1 ∼ N (µ1, σ1), a2 ∼ N (µ2, σ2), with initial values µ1

0 = 0.1 and µ2
0 = −0.1 and log(σ1

0) = log(σ2
0) = 0.1.

The game dynamics and rewards follows Eq. 74. We collected a batch of 1000 trajectories, each 5 time steps long. The
optimal control policy (K1∗,K2∗ = −0.5735,−0.3059), obtained using coupled riccatti equations [Zhang et al., 2019].
The experiment is performed for 5 different random seeds. As per discussion in Apx. 11, we used GAE for advantage
estimation with λ = 0.95 and γ = 0.99. Fig. 10 shows the difference in game objective due to policy update from (θ1, θ2)

to (θ′1, θ′2) given by η(θ1, θ2)− η(θ1, θ2) = Eτ∼f(·;θ′1,θ′2)

∑|τ |−1
k=0 γkA(s, a1, a2; θ1, θ2) of GDA and COPG for different

learning rates. The number of iterations it takes to converge for different learning rates is given in Table 4.

learning rate 0.1 0.05 0.01 0.005 0.001 0.0001
GDA � � 113 139 223 611
COPG 75 87 105 127 195 590

Table 4: Number of iterations to converge to optimal policies

0 50
Iterations

-2

0

2

4

6

8
CoPG:1e-2
GDA:1e-2
CoPG:1e-1

(a)

0 50 100
Iterations

-2

0

2

4

6

8
CoPG:5e-3
GDA:5e-3

(b)

0 50 100
Iterations

-2

0

2

4

6

8
CoPG:1e-3
GDA:1e-3

(c)

0 500
Iterations

-2

0

2

4

6

8
CoPG:1e-4
GDA:1e-4

(d)

Figure 10: Difference in game objective due to policy updates for LQ game at different learning rates

15.2 BILINEAR GAME

In a bilinear game both players play actions simultaneously and receive rewards based on the product of their actions,

r1(a1, a2) = a1a2, r2(a1, a2) = −a1a2, (75)

where a1 ∼ N (µ1, σ1) and a2 ∼ N (µ2, σ2) are actions of player 1 and player 2 respectively. In our experimental setup, a
player’s policy is modelled as a Gaussian distribution with µi, σi, i ∈ {1, 2} as mean and variance respectively. The policy
is randomly initialised. We collected batch of 1000 trajectories. The experiment was performed for learning rates between
0.5 and 0.05 for 8 random seeds. The main paper features results of COPG vs GDA, but even for the trust region approach
we observe a similar contrast between TRCOPO and TRGDA. Starting from some random policy initialization, TRCOPO
converges to the unique Nash equilibrium of the game whereas TRGDA diverges for all δ. Fig. 11 shows such behavior for δ
of 0.001.
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Figure 11: Policy trajectories of player 1 in a bilinear game. (a) TRGDA (b) TRCOPO

15.3 MATCHING PENNIES

The matching pennies game is played between two players, each player holds a coin and hence has two possible actions
{Head, Tail}. Both the players secretly turn their coin to either head or tail. If the pennies of both the players matches then
player 1 wins and player 2 looses. Otherwise, if pennies do not match then player 2 wins and player 1 loses. The game
matrix is given in Table 5 captures win and lose of players for every possible action pair.

H T
H 1,-1 -1,1
T -1,1 1,-1

Table 5: Game matrix for matching pennies game

Players’ policy is modeled with a two-class categorical distribution, which is randomly initialized. They sample actions from
a softmax probability function over the categorical distribution and receive rewards for their actions according to the game
matrix. We collect a batch of 1000 trajectories, to estimate gradient and bilinear terms in every epoch. COPG converges to
the Nash equilibrium of the game (H,T ) =

(
1
2 ,

1
2

)
. The experiment was performed for learning rates between 0.5 and 0.05

for 8 random seeds. The main paper features plot of COPG vs GDA, but even for trust region approach we observe a similar
contrast between TRCOPO and TRGDA. Starting from random policy initialization, TRCOPO converges to the unique Nash
equilibrium of the game (H,T ) =

(
1
2 ,

1
2

)
, whereas TRGDA diverges for all KL-divergence bounds δ. Fig. 12 shows this

behaviour for a δ of 0.01. This experiment was performed also performed for 8 different random seeds and the results where
consistent.
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Figure 12: Policy trajectory in matching pennies game



15.4 ROCK PAPER SCISSORS

The rock paper scissors game is played between two players, each player has three possible actions {Rock, Paper, Scissors}.
Both players will simultaneously display one of three actions: a rock, a paper, or a scissors. Rock beats scissors, scissors
beat paper by cutting it, and paper beats rock by covering it. This is captured in the game matrix given by Table 6. Players’

Rock Paper Scissors
Rock 0,0 -1,1 1,-1
Paper 1,-1 0,0 -1,1

Scissors -1,1 1,-1 0,0

Table 6: Game matrix for rock paper scissors game

policies are modeled with 3 class categorical distribution which is randomly initialized. Players sample action from a softmax
probability function over categorical distribution. They receive a reward for their actions according to the game matrix. We
collect a batch of 1000 trajectories. COPG converges to the unique Nash equilibrium of the game, where probability of
playing (R,P, S) = (1

3 ,
1
3 ,

1
3 ). The experiment was performed for learning rates between 0.5 and 0.05 for 8 random seeds

where COPG converged in all cases and GDA diverged. Similarly for the trust region approach, the TRCOPO agent converges
to a unique Nash equilibrium of the game (R,P, S)=

(
1
3 ,

1
3 ,

1
3

)
, where as TRGDA diverges. Fig. 13 shows this behavior for

δ of 0.001. The experiment was performed for 8 different random seeds.
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Figure 13: Policy trajectory in a rock paper scissors game

15.5 MARKOV SOCCER GAME

The soccer game setup is shown in Fig. 4. It is played between two players A and B, both are randomly initialized in one of
the 4x5 grid cells. The ball is also randomly initialised in one of the 4x5 grid cells, this contrast to the previous studies,
where one of the players was randomly initialised with the ball. Players are supposed to pick up the ball and place it in the
opponent’s goal. The players are allowed to move up, down, left, right or stand still. The player without the ball seizes
the ball, if both players move simultaneously to the same grid cell. The game ends if a player scores a goal or none of
them scores within 1000 steps. The winner receives a +1 reward and -1 is awarded to the losing player, hence the game
is formulated as a zero sum game. This game does not have an optimal deterministic policy. This game depicts heavy
interactions, where strategy depends on what the other player plays. Potentially, a good player can learn defending, dodging
and scoring.

The state vector of a player P with respect to opponent O is sP = [xGO , yGO , xball, yball, xO, yO], where P,O ∈ {A,B}.
GO is goal of the opponent, x, y refers to the relative position from the player to the subscript, e.g., xO, yO is the relative
position to the opponent O. The state vector of the game used during training is s = [sA, sB ], s ∈ R12, it captures the
position of each player relative to the goal, the ball and relative to the opponent. The players’ policy maps state vector of the
game to a categorical distribution with 5 categories using a network with two hidden layers one with 64 and other with 32
neurons. Players sample actions from a softmax probability function over the categorical distribution. The players were
trained using GDA and COPG. In both the algorithms, players were trained for roughly 30,000 episodes until the number
of wins against any good player saturates. In each epoch we collected a batch which consists of 10 trajectories. All the
parameters were the same throughout the training for COPG and GDA. The experiment was tested with 6 different random
seeds. We used learning rate of 0.01 and GAE for advantage estimation with λ of 0.95 and γ of 0.99.



Similarly, for the trust region approach the same game setting was used, with a maximum KL divergence δ of 0.0001. The
players were trained with TRCOPO or TRGDA. Both the agents were trained for 5,000 episodes, each episode denotes a
batch update where each batch consists of 10 trajectories. For comparison, we played 10000 games between agents trained
using TRCOPO and with that using TRGDA, in which for 50% of the games TRCOPO was player A and for remaining
TRGDA was player A. TRGDA generates unequal players, on competing with the stronger TRGDA agent, the TRCOPO
agent still won more than 80% games against TRGDA as shown in Fig. 3h. TRCOPO was able to learn better tactics for
snatching the ball and dodging and defending its goal post. The histogram in Fig. 14, depicts a comparison of GDA, COPG,
TRGDA, and TRCOPO in the soccer game playing against each other.
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Figure 14: Win probability in soccer game played between GDA, COPG, TRGDA and TRCOPO

15.6 THE CAR RACING GAME

Our final experimental setup is a racing game between two miniature race cars, where the goal is to finish the one lap race
first. This involves both, learning a policy that can control a car at the limit of handling, as well as strategic interactions
with the opposing car. Only if a player has the correct relative position to the opponent, this player is able to overtake or to
block an overtaking. Our simulation study mimics the experimental platform located at ETH Zurich, which use miniature
autonomous race cars.Following [Liniger et al., 2015] the dynamics of one car is modeled as a dynamic bicycle model
with Pacejka tire models [Bakker et al., 1987]. However, compared to [Liniger et al., 2015] we formulate the dynamics
in curvilinear coordinates Vázquez et al. [2020] where the position and orientation are represented relative to a reference
path. This change in coordinates significantly simplifies the definition of our reward, and simplified the policy learning. The
resulting state of a single car is given as z = [ρ, d, µ, Vx, Vy, ψ]T , where ρ is the progress along a reference path, d is the
deviation from a reference path, µ is the local heading with respect to the reference path, Vx and Vy are the longitudinal
and the lateral velocity respectively in car frame and ψ is the yawrate of the car. The inputs to the car is [D, δ]T , where
D ∈ [−1, 1] is duty cycle input to the electric motor varying from full braking at −1 to full acceleration at 1 and δ ∈ [−1, 1]
is the steering angle. The test track which consists of 13 turns with different curvature can be seen in Figure 6. For the
reference path we used the X-Y path obtained by a laptime optimization tool Vázquez et al. [2020], note that it is not
necessary to use a pre-optimize reference path, but we saw that it helped the convergence of the algorithm. Finally, to get a
discrete time MDP we discretize the continuous time dynamics using an RK4 integrator with a sampling time of 0.03s.

To formulate the racing game between two cars, we first define the state of the game as the concatenated state of the two
players, s = [z1, z2]. Second we convert the objective of finishing the race first without an accident into a zero sum game.
Therefore, we define the following reward function using reward shaping. First to model our no accident constraints we use
a freezing mechanism: (i) If the car is leaving the track we freeze it until the episode ends, (ii) if the cars collide, the rear car
(car with the lower progress ρ) is stopped for 0.1s, which corresponds to a penalty of about two car lengths. Note that this
gives an advantage to the car ahead, but in car racing the following car has to avoid collisions. Furthermore, an episode ends
if both cars are either frozen due to leaving the track or the first car finished the lap. Finally, to reward the players receive at
every time step is r(sk, a1

k+1, a
2
k+1) = ∆ρcar1 −∆ρcar2 , where ∆ρ = ρk+1 − ρk. This reward encourages the player to

get as far ahead of the of the opponent player as possible. Note that the reward is zero sum, and the collision constraints do
only indirectly influence the reward.

For the training we started the players on the start finish line (ρ = 0) and randomly assigned d ∈ {0.1,−0.1}. We also
limited one episode to 700 time steps, which is about twice as long as it takes an expert player to finish a lap. For each policy
gradient step we generated a batch of 8 game trajectories, and we run the training for roughly 20000 epochs until the player
consistently finish the lap. This takes roughly 62 hours of training for a single core CPU. To increase the performance and



robustness of learning we adapted the learning rate with RMS prop for both GDA and COPG and used a slow learning rate of
5.10−5 for both players. For our experiments we run 8 different random seeds and report the numbers of the best seed. As a
policy we use a multi-layer perceptron with two hidden layers, each with 128 neurons, we used ReLU activation functions
and a Tanh output layer to enforce the input constraints. GAE is used for advantage estimation with λ of 0.95 and γ of 0.99.
The same setting was also used to compare performance of TRCOPO and TRGDA. The maximum KL divergence δ was set
between 1e-4 to 1e-5 and the training was performed for 8 different random seeds. The statistics of the experiments are
presented in the main part of the paper Sec. 4.

15.7 COMPARISON WITH MADDPG AND LOLA

Finally, we give more details on our comparison of COPG with MADDPG and LOLA. We performed this comparison on the
Markov soccer and the racing game. We start with the comparison for the Markov soccer game. To compare the performance
of MADDPG on discrete action spaces (such as in the Markov soccer game), we used policies that can produce differentiable
samples through a Gumbel-Softmax distribution, similar to [Iqbal and Sha, 2019]. The rest of the experimental setup was
kept as similar as explained in 15.5, and we trained both MADDPG and COPG. Fig. 15a shows that a policy learned by
MADDPG performs similar to that of GDA. But when the MADDPG player competes against COPG, the COPG agent wins
80% of the games. Second we studied LOLA, we observed that LOLA learns better policies than GDA potentially due to the
second level reasoning, but LOLA still loses 72% of the games when playing against COPG. Fig. 15 show the number of
games won by COPG when competing against MADDPG and LOLA.
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Figure 15: Comparison with LOLA and MADDPG on the Markov soccer game

Next we evaluated MADDPG and LOLA in the game of Car Racing, where we kept all the setting identical to 15.6. Fig. 5e
show the progress of an MADDPG agent during learning, and we can see that it performs similar to GDA. The car learns
to drive up to 30% of the track, but after that the agents show oscillatory behaviour in training. We also performed this
experiment with LOLA, but due to the variance in estimating the bilinear term and more importantly the non adaptive
learning rate of LOLA it does not learn to drive around the track.

16 OPPONENT PARAMETER ESTIMATION

In the following section we conducted experiments comparing COPG, with its opponent parameter estimation counterpart
COPG-OP as explained in Sec. 3.2.

Matching pennies The game setting is explained in Apx. 15.3. The opponents’ parameters are estimated by maximizing the
likelihood using Eq. 9. The Fig. 16a shows the policy trajectory of player 1 and the estimation of the trajectory of player 2
by player 1 and vice versa in Fig. 16b for player 2. We observe that both the trajectories of player 1 and player 2 converge to
the unique Nash equilibrium of the game which is p(H,T) = ( 1

2 , 1
2 ).

Rock paper scissors The game setting is explained in Apx. 15.4. The opponents’ parameters are estimated by maximizing
likelihood using Eq. 9. The Fig. 17a, 17b shows the policy trajectory of player 1 and the estimation of the trajectory of
player 2 by player 1 and vice versa in Fig. 17c, Fig. 17d for player 2. We observe that both the trajectory of player 1 and
player 2 converge to the unique Nash equilibrium of the game which is p(R,P, S) = ( 1

3 , 1
3 , 1

3 ).

Markov Soccer We next tested the opponent modelling approach on the Markov soccer game, which is discussed in
more detail in Sec. 15.5. We focus in this comparison on the Markov soccer game since it is strategic enough while
being representative. The game has two player A and B. Player A maintains a record of policy of player B (B Est A)
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Figure 16: COPG-OP policy trajectory of player P1 (P2) and its opponents’ estimation P2E1 (P1E2) in matching pennies
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Figure 17: COPG-OP policy trajectory of players and opponents’ estimation in rock paper scissors

which is estimated online by observing state-action pairs of the player B. The state vector in perspective of player A is
s1 = [sA, sBestA] and in player B s2 = [sAestB , sB ], in accordance with the game setting explained in Apx. 15.5. In
contrast to the COPG experiment, in the case of COPG-OP the batch size is increased to 40 to reliably estimate the opponent’s
parameters. The player estimates it’s opponent’s parameters by maximizing likelihood Eq. 9 with observed state-action
pairs of the opponent. The player is trained while competing with the estimated opponent using Alg. 6. Fig. 18a below
show the interaction plot for COPG-OP agents with it’s estimated opponent. We see that the COPG-OP player learns to seize
ball/interact(A3, A4) with the estimated opponent. Fig. 18b shows the interaction plot of COPG-OP with COPG, where we
observe that COPG-OP can also learns a policy similar to COPG, where it learns to defend, escape and score the goal (A3).
When directly competing with COPG, we observed that COPG-OP can win 46.5% of the games against COPG (Fig. 18c).
COPG has slight edge in the number of game wins, which is probably due to variance in the estimation of the opponent’s
parameter.
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Figure 18: Interaction plots evaluated by playing 5000 games. Matches played between a) COPG-OP player A and player B
estimated by A b) COPG-OP and COPG c) Probability of games won between COPG vs COPG-OP.



17 GAIL CASE STUDY

The GAIL case study is conducted on the Car Racing game Apx. 15.6, with a single car, where s = [z]. The aim is to learn to
drive around the track Fig. 6 by imitating experts. For expert trajectories, we collected a batch of 80 trajectories using four pure
pursuit controllers each having a different set of tuning parameters. This ensures that the batch of expert trajectory is collected
across various speeds and with a variation in the action set. The set of parameters are pp1 : {kp = 10, vtar = 1.45, ld = 26},
pp2 : {kp = 10, vtar = 1.3, ld = 15}, pp3 : {kp = 10, vtar = 1.2, ld = 20} and pp4 : {kp = 8, vtar = 1.35, ld = 15}.
Here, kp is the proportional gain of the velocity control, ld is the look ahead distance and vtar is the target velocity.

In the GAIL training, one episode was limited to 700 time steps, which is about twice as long as it takes an expert player to
finish a lap. For each competitive policy gradient step, we generated a batch of 8 game trajectories, and we run the training
for roughly 4000 epochs until the player consistently finishes the lap. This takes roughly 2 hours of training for a single-core
CPU. For our experiments, we run 8 different random seeds and report the numbers of the best seed. As a policy we use a
multi-layer perceptron with two hidden layers, each with 128 neurons, we used ReLU activation functions and a Tanh output
layer to enforce the input constraints. The agent receives a reward according to the GAIL framework Alg.2 in [Ho and
Ermon, 2016]. GAE is used for advantage estimation with a λ of 0.95 and a γ of 0.99. The agent’s policy and discriminator
are updated simultaneously using COPO, and the critic to COPO update ration is 1:1. We use a slow learning rate of 3e-4 for
COPO and 8e-3 for the critic update.
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