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A KL-DIVERGENCE IS ARBITRARILY FAR FROM SATISFYING THE TRIANGLE
INEQUALITY

We recall the definition of Kullback-Leibler divergence.

Definition A.1 (Kullback-Leibler divergence). For discrete probability distributions q, p on the same probability space X,
the KL-divergence from q to p is defined as D(p|q) =

∑
x∈X p(x) ln

(
p(x)
q(x)

)
.

Proposition A.2 (KL-divergence fails the triangle inequality). For any ε > 0, there exist probability measures p, q, r on N
so that

D(q|p) < ε and D(r|q) < ε while D(r|p) =∞.

Proof. Let p(x) = 1/2x, q(x) = Z/x3, and r(x) = Z ′/x2, where Z,Z ′ are normalization constants so that

∞∑
x=1

q(x) =

∞∑
x=1

r(x) = 1.

Observe that

D(q|p) =
∑
x∈N

q(x) ln

(
q(x)

p(x)

)
=
∑
x∈N

ln

(
2xZ

x3

)
Z

x3

and D(r|q) =
∑
x∈N

r(x) ln

(
r(x)

q(x)

)
=
∑
x∈N

ln

(
x3Z ′

x2Z

)
Z ′

x2
,

both series of which are convergent. Thence, D(q|p) and D(r|q) are both bounded (the specific bound is not important
here).

On the other hand,

D(r|p) =
∑
x∈N

r(x) ln

(
r(x)

p(x)

)
=
∑
x∈N

ln

(
2xZ ′

x2

)
Z ′

x2
,

which is divergent. Thence, D(r|p) =∞.

Now for each α ∈ [0, 1], let pα(x) = Yα

(
α
p(x) +

1−α
q(x)

)−1
, and rα(x) = αr(x) + (1 − α)q(x), where Yα is a suitable

normalization constant so that these are probability distributions. The series involved in computing the normalisation
constant for pα is convergent by the harmonic-arithmetic inequality, which also implies that Yα ≥ 1. Yα is a continuous
function of α.

Now the claim is that D(q|pα), D(rα|q)→ 0 as α→ 0, while D(rα|pα) =∞ for all α > 0.

First consider

D(q|pα) =
∑
x∈N

Z

x3
ln

(
Z
α2x + (1− α)x3/Z

Yαx3

)

Since ln is increasing, we can bound this sum by∑
x∈N

Z

x3
ln

(
Z
max(2x, x3/Z)

Yαx3

)
Since 2xZ dominates for x large enough, this sum converges. Let δ > 0 be given. Choose M large enough that∑∞
x=M

Z
x3 ln

(
Zmax(2x,x3/Z)

Yαx3

)
< δ/2. Note that M is independent of α – this is possible because Yα ≥ 1. Then we

also have
∞∑

x=M

Z

x3
ln

(
Z
α2x + (1− α)x3/Z

Yαx3

)
< δ/2

Now each term of the sum goes to zero as α→ 0, since Y0 = 1 and α 7→ Yα is continuous. Hence we can choose α small
enough that the sum of the first M − 1 terms is < δ/2. This proves that the whole sum goes to 0 as α→ 0.



For the case of D(rα|q), we have

D(rα|q) =
∑
x∈N

(
αr(x) + (1− α)q(x)

)
ln

(
αr(x) + (1− α)q(x)

q(x)

)

We can use an analogous argument. We can use monotonicity and the fact that Z
′

x2 is eventually bigger than Z
x3 to prove

convergence, with convergence speed independent of α, so that the tail is eventually < δ/2 independently of α, then choose
α to bound the head.

Now consider D(rα|pα), which we can rewrite as

D(rα|pα) =
∑
x∈N

(
αZ ′

x2
+

(1− α)Z
x3

)
ln

(
αZ′

x2 + (1−α)Z
x3

Yα
α2x+(1−α)x3/Z

)
.

First, we see that this is larger than
∑
x
αZ′

x2 ln

(
αZ′
x2
Yα

α2x+(1−α)x3

)
.

We can rewrite this as

∑
x∈N

αZ ′

x2
ln(aZ ′

α2x + (1− α)x3

Y x2
)

≥
∑
xN

αZ ′

x2
ln

(
αZ ′

α2x

Yαx2

)

As above, this diverges independently of the value of α (as long as α > 0). Hence D(rα|pα) =∞ for all α > 0.

Hence for sufficiently small but positive α, the distributions pα, q, rα satisfy the desired properties.

One might hope that this rather stark result is just a quirk of the infinities involved, disappearing when we restrict to finite
probability measures. Since KL-divergences on finite sets are always finite (as long as the measures involved have the same
support), we cannot reproduce the infinity in the above result on finite sets. However, we can come arbitrarily close, in the
following sense:

Proposition A.3 (Instance of KL-divergence failing). For any ε,K > 0, there exist a finite set {1, . . . N} and probability
measures p, q, r on it so that D(q|p), D(r|q) < ε,D(r|p) > K.

Proof. Let pα, q, rα be as before. Let pNα , q
N , rNα be the distributions on {1, . . . N} so that pNα (x) = pα(x) for x ∈

{1, . . . N − 1}, etc. Then D(pNα |rNα ) → ∞ as N → ∞ – the sum computing this divergence is N − 1 terms of the sum
computing the overall (infinite) divergence, and a remainder term which is certainly positive for N large enough.

On the other hand, we now show that D(pNα |qN )→ D(pα|q) as N →∞. To see this, consider the sum in question:

D(pNα |qN ) =

N−1∑
x=1

pα(x) ln(pα(x)/q(x)) +

( ∞∑
x=N

pα(x)

)
ln

(∑∞
x=N pα(x)∑∞
x=N q(x)

)
The first term here converges to D(pα|q), so it suffices to show that the remainder converges to zero.

We can write this remainder as (
∑∞
x=N pα(x))(ln(

∑∞
x=N pα(x))− ln(

∑∞
x=N q(x)))

Observe that we can write
D(pα|q) =

∑
x

pα(x) ln(pα(x))−
∑
x

pα(x) ln(q(x))

Since the left-hand side is finite, and the first sum is convergent, so is the second sum.



Hence we can use convexity of ln to obtain the following inequality:

≤

( ∞∑
x=N

pα(x)

)
ln

( ∞∑
x=N

pα(x)

)
−
∞∑
x=N

pα(x) ln(q(x))

Now convergence means that as N → ∞ the second term goes to zero. And since
∑∞
x=N pα(x) → 0, and x ln(x) → 0

when x→ 0, so does the first term.

The analogous argument verifies the same statement for D(qN |rNα ).

Thus, by choosing α small enough and N big enough, we obtain the desired measures.



B STRING-DIAGRAMMATIC CONSTRUCTION OF INTERVENTIONAL
DISTRIBUTIONS

In Definition 2.3, we claim that an interventional model has a well-defined interventional distribution, a kernel IS :∏
v∈SX

M
v →

∏
v∈V (M) X

M
v for any subset S ⊆ V (M).

The intuition is as follows. To sample (yv)v∈V (M) according to IS(xv)v∈S , we do the following:

1. If v ∈ S, yv = xv with probability 1.

2. Identify a variable v so that yv has not been determined yet, but all its parents have been determined, and sample yv
according to ϕMv ((yv′)v′→v).

The question is whether this gives a well-defined distribution. We here prove that it does.

For convenience, we write XM
X =

∏
v∈X XM

v when X ⊂ V (M) is a subset of variables of M and pa(v) ⊆ V (M) for the
set of parents of v ∈ V (M).

We use the graphical notation known as string diagrams. These are widely used in category theory to depict constructions in
monoidal categories. A full discussion of the technical details behind their use is beyond the scope of this appendix (see,
for example, Selinger [2011]). Their meaning in the special case under consideration, kernels between finite sets, can be
intuitively understood. For example, the following diagram (read bottom-to-top)

XM
X

XM
y′XM

y XM
X

ϕMy ϕMy′

depicts a kernel XM
X → XM

y ×XM
X ×XM

y′ , informally described as “given x ∈ XM
X , sample y ∈ Xy from the distribution

ϕMy (x) and independently sample y′ from the distribution ϕMy′ (x), then return the tuple (y, x, y′)”.

Proposition B.1. The interventional distribution in Definition 2.3 is well-defined.

For this proposition, we need the following lemma.

Lemma B.2. Let S be a finite partially ordered set. Let A : s1 . . . sn and B : s′1 . . . s
′
n be two totalizations of the ordering

on S — in other words, two ways of arranging the elements of S in a non-decreasing sequence. Then one can turn A into B
by a finite sequence of transpositions, where each transposition exchanges two adjacent, incomparable elements.

Proof. Let’s show that any nondecreasing sequence can be turned into B by such a sequence of transpositions — this is
really the content of the lemma. Define the error of a sequence s1 . . . sn as the total number of pairs i, j so that si and sj are
not in the same order as in B. If the error is zero, we must already be in sequence B. Suppose the error is greater than zero.
Then there must be a pair of consecutive elements, si, si+1, that are in the wrong order compared to the ordering B. The
elements must also be incomparable:

1) we cannot have si+1 ≤ si, since it is a non-decreasing sequence,
2) we cannot have si ≤ si+1 — if this was true, the pair would already be in the same order as in B.

Hence we can swap si and si+1, which decreases the error by 1. After a finite number of steps the error must be zero and we
have obtained B.

Proof of Proposition B.1. By applying Lemma B.2 to the vertices of the DAG GM , partially ordered by causal dependence,
we see that we can move between any two constructions of the interventional distribution by swapping two consecutive



variables at a time. Hence it suffices to show that we may swap the order of two consecutive yi, neither dependent on the
other, without changing the final distribution. Consider the following diagram manipulation:

XM
X

XM
y

XM
y′XM

yXM
X

ϕMy

ϕMy′

XM
X

XM
y

XM
y′XM

yXM
X

ϕMy

ϕMy′

= =

XM
X

XM
y′XM

y XM
X

ϕMy ϕMy′

(B.1)

In the first step we use the fact that y′ does not depend on y, so we may delete the XM
y input to ϕMy′ . Then rearrange the

wires.

This shows that the composition XM
X → XM

X∪{y} → XM
X∪{y,y′} is equal to another map XX → XX∪{y,y′}. A similar

argument shows that the composition XX → XX∪{y′} → XM
X∪{y,y′} is equal to the same map. This concludes our

proof.

We also prove our claim that this distribution is “the right one”, in the sense that the mechanisms are the conditional
distributions. We introduce the following diagram-theoretic definition of conditionals:

Definition B.3. Let ψ : A→ X×Y be a Markov kernel. We say that a kernel p : A×X→ Y is a conditional distribution
of Y ∈ Y given A ∈ A and X ∈ X, if there exists ϕ : A→ X so that we have the following identity:

A

X Y

ψ

A

ϕ

p

X Y

=
(B.2)

Remark B.4. Definition B.3 is a definition of conditional distributions suitable for parameterized joint distributions. Dealing
with such distributions is necessary if we want to combine conditional and interventional distributions. In the case A = {∗},
we recover the usual situation of a joint distribution on a product set.

Let us spell out the connection with the normal definition of conditional distribution: a map p : A×X→ Y is a conditional
distribution for ψ : A → X ×Y if and only if, for all a ∈ A, and for all x ∈ X with nonzero probability given a, the
distribution p(a, x) is the conditional distribution of Y given X = x and (X,Y ) ∼ ψ(a). This is also the reason we say a
conditional distribution and not the conditional distribution.

For a more thorough discussion of this point from a categorical point of view, see, for example, Fritz [2020, Section 11 (in
particular Definition 11.5 and Remark 11.6)].

Proposition B.5. Each mechanism ϕMX : XM
pa(v) → XM

v is a conditional distribution for the observational distribution
∗ → XM

pa(V ) ×XM
v .

Proof. Recall that given a distribution ∗ → X⊗Y, a kernel X→ Y is a conditional distribution if and only if we have
the identity in Equation (B.2). After marginalizing out the other variables, the observational distribution on XM

pa(v) ×XM
v

factors as

∗ → XM
pa(v)

(1,ϕMv )−→ XM
pa(v) ×XM

v .

Diagrammatically, this looks like



M [ϕX ]

M [pa(X)]M [X]

Which is the statement we wanted.

Here the triangle denotes the observational distribution on XM
pa(v).

There is nothing surprising about this proposition: just as in the classical theory of graphical models, it holds by construction.
In classical treatments, this is usually not made into a theorem, although it is implicit in most treatments of the Markov
property for structure causal models, see, for example, Peters et al. [2017, Proposition 6.31].

Proposition B.6. The observational distribution satisfies the directed Markov property with respect to the DAG G.

Proof. We must prove that any variable v is independent of its non-descendants given its parents. Let us introduce the
notation nd(v) for the non-descendants of v excluding its parents. Then we are trying to show nd(v)⊥v | pa(v).

Observe this diagram manipulation:

XM
pa(v) X

M
v

XM
nd(v) XM

pa(v)X
M
v

XM
nd(v)

=

XM
pa(v) XM

v
XM

nd(v)

=

In the first step, we are factoring the observational distribution on v ∪ pa(v) ∪ nd(v) as “sample the parents and non-
descendants of v, then sample v conditional on the parents” — according to the definition, this is a possible choice for how
to construct the observational distribution.

In the second step, we are factoring the distribution on pa(v) ∪ nd(v) as “sample the parents of v, then sample the
non-descendants of v according to the conditional distribution”. This is always possible, and yields the diagram on the right.

By Fritz [2020, Remark 12.2], this implies the conditional independence nd(v)⊥v | pa(v).

Remark B.7. In fact, Propositions B.5 and B.6 characterize the observational distribution uniquely. This can be proven
diagrammatically by using a diagrammatic formulation of Proposition B.6 to show that the observational distribution
factorizes as a certain diagram, and then using Proposition B.5 to show that the morphisms in this diagram may be replaced
by the mechanisms.

In classical terms, this argument corresponds to arguing that the probability factorizes according to the graph, and that the
factors must be precisely the mechanisms.



C JENSEN-SHANNON DIVERGENCE IS COMPOSITIONAL

Proposition 2.8 (kernel composition is short). The composition of kernels

FinStoch(X,Y)⊗ FinStoch(Y,Z)→ FinStoch(X,Z)

is a short map, that is,
dJSD(f1 ◦ g1, f2 ◦ g2) ≤ dJSD(f1, f2) + dJSD(g1, g2)

for any f1, f2 ∈ FinStoch(Y,Z), g1, g2 ∈ FinStoch(X,Y).

Proof. Since dJSD is a metric, this is equivalent to the two statements

dJSD(fg0, fg1) ≤ dJSD(g0, g1)

dJSD(fg, f
′g) ≤ dJSD(f, f ′)

In each case it suffices to show the given inequality at each x ∈ X, so we can assume that X = ∗. Since x 7→
√
x is a

monotone map, it suffices to show that

JSD(fp0, fp1) ≤ JSD(p0, p1)

and JSD(f0p, f1p) ≤ sup
x

JSD(f0(x), f1(x)),

where p0, p1 are distributions on Y.

The first case follows, since “postprocessing” the random variable X can only reduce its mutual information with B.

In the second case, we are comparing the following two situations:

1. If you learn the value of a random variable sampled from fi(x), how much do you learn about i, if x is chosen to
maximize this amount of information.

2. If you learn the value of a random variable sampled from fi(x), where x is chosen at random, how much do you learn
about i?

To see that the first number is bigger, consider the following: In the second case, even if you were additionally told what x
was (giving you more information), you would still, at best, be in the first situation.

Lemma 2.10 (JSD is compositional). Consider a diagram (not necessarily commutative) in FinStoch of the following form:

A A′

B B′

C C ′

a

f

g

b

b′

h

c′

(C.1)

Then dJSD(f, b′c′hba) ≤ dJSD(f, b′ga) + dJSD(g, c
′hb).

Proof.

d(f, b′c′hba) ≤ d(f, b′ga) + d(b′ga, b′c′hba)

≤ d(f, b′ga) + d(g, c′hb),

where the first inequality is the triangle inequality and the last one uses Proposition 2.8.



D ENRICHED CATEGORY THEORY AND ERROR CATEGORIES

An enriched category is a generalization of the concept of category, where the set of maps x→ y, C(x, y), has been replaced
by an object C(x, y) ∈ V in some other, enriching, category. For example, the set of linear maps V → W between two
vector spaces can itself be equipped with the structure of a vector space in a canonical way – this defines an enrichment of
the category of vector spaces in itself.

A full discussion of enriched categories is beyond the scope of the present article; see Kelly [2005] for a comprehensive
introduction. The present paper contains two examples of enriched categories.

First, Proposition 2.8 shows that the Jensen-Shannon distance defines an enrichment of FinStoch in the category Met of
metric spaces:

Definition D.1. The category Met of metric spaces is defined as follows:

1. The objects are metric spaces.

2. A morphism (X, dX)→ (Y, dY ) is a function f : X → Y which is distance nonincreasing (or “short”), meaning that
dY (f(x), f(x

′)) ≤ dX(x, x′).

3. Composition is function composition and the identity morphisms are the identity functions.

4. The tensor product of two metric spaces is (X, dX) ⊗ (Y, dY ) = (X × Y, dX ⊗ dY ), defined by (dX ⊗
dY )((x, y), (x

′, y′)) = dX(x, x′) + dY (y, y
′).

Then a category enriched in metric spaces consists of the following data:

1. A category C
2. with a metric dC(X,Y ) on each set of morphisms C(X,Y ) (for each pair of objects X,Y ∈ C)

3. so that, if f, f ′ : X → Y, h : Y → Z, g : A→ X , we have

dC(X,Z)(h ◦ f, h ◦ f ′), dC(A,Y )(f ◦ g, f ′ ◦ g) ≤ dC(X,Y )(f, f
′).

In other words, post- and precomposition are distance nonincreasing maps.

Lemma 2.10 is essentially a lemma about enriched categories – the statement and the proof make sense for any category
enriched over Met.

Second, the compositional property of our error measure, Proposition 2.12, can be phrased to say that error defines an
enrichment of FinMod in the following category of error spaces.

Definition D.2 (Category of error spaces). An error space (X, e) consists of a set X and a function e : X → [0,∞]. A
morphism of error spaces f : (X, eX)→ (Y, eY ) is a function f : X → Y so that eY (f(x)) ≤ eX(x) for all x ∈ X . The
tensor product (X, eX)⊗ (Y, eY ) of two error spaces is (X × Y, eX ⊗ eY ), where eX ⊗ eY (x, y) = eX(x) + eY (y). This
data defines a symmetric monoidal category Err of error spaces.

A category enriched in error spaces, or an Err-category, then consists of the following data:

1. A category C,

2. with an error e(f) for each morphism f in C
3. such that, when f, g are composable, e(fg) ≤ e(f) + e(g).

There is an error category of error spaces, Err, where the maps f : (X, eX)→ (Y, eY ) are all functions f : X → Y , and
the error of such a function is e(f) := max(0, supx eY (f(x))− eX(x)); that is, the error is the maximal increase in error
created by the function.

In Section 3, we mentioned the notion of a functor. A functor is a mapping between categories preserving the compositional
structure:

Definition D.3 (Functor). Given categories C,D, a functor F : C → D consists of an object F (X) in D for each object
X in C, as well as a morphism F (f) : F (X) → F (Y ) for each f : X → Y , so that F (f ◦ g) = F (f) ◦ F (g) and
F (1X) = 1F (X).



There is also a notion of functor between enriched categories. Here, we spell this out for the case of Err-categories:

A functor of Err-categories (or Err-functor) C → D then consists of the following data:

1. A functor F : C → D
2. such that e(F (f)) ≤ e(f).

In particular, an Err-functor F : C → Err consists of the following:

1. For each C ∈ C, an error space F (C),

2. for each map f : C → D, a function F (C)→ F (D)

3. such that F (f ◦ g) = F (f) ◦ F (g) and

4. such that eF (D)(F (f)(x)) ≤ eF (C)(x) + e(f).

Thus, this captures the desired properties of the collection of implemented models discussed in Section 3.
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