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1 DeepMind

A DERIVATION OF THE COUPLING
ESTIMATOR

Consider the expectation in Eq. 13. One choice to estimate
the expectation is to build an Markov chain Monte Carlo
(MCMC) kernelK(· |u) that has π(u) as its stationary distri-
bution, run theMarkov chain for some number of iterationsT
to obtain samples u(0), u(1), . . . , u(T ), and then approximate
the expectation as Eπ(u) [h(u)] ≈ 1

T−t0+1

∑T
t=t0

h(u(t)),
where the initial t0 samples are thrown away as they are part
of the burn-in period. However, this estimator is biased when
the number of iterations T is finite.Instead, MCMC cou-
plings provide an unbiased estimator in finite time [Glynn
and Rhee, 2014, Jacob et al., 2020b]. Coupling estimators
use two MCMC chains, each with invariant distribution
π(·), which evolve according to a marginal transition kernel
K(· |u) and a joint transition kernelKC(·, · |u, ū). In our pa-
per, we rely on a slight variation over the approach of Jacob
et al. [2020b] proposed by Vanetti and Doucet [2020], which
provides a construction also used by Biswas et al. [2019].

Consider an integer L ≥ 1. We draw the first Markov
chain as u(0) ∼ π0(u) and u(t) ∼ K(u |u(t−1)) for
t = 1, . . . , L. We then draw ū(0) (potentially condition-
ally upon u(L−1), u(L)) such that marginally ū(0) ∼ π0(z).
For t > L, we draw both states jointly as u(t), ū(t−L) ∼
KC(u, ū |u(t−1), ū(t−L−1)). The meeting time is defined as
τ = inf{t ≥ L : u(t) = ū(t−L)}.

We now provide an informal derivation of the estimator. First,
we write the expectation of interest as

Eπ(u) [h(u)] = lim
N→∞

1

L

N∑
t=N−L+1

E[h(u(t))]

= lim
N→∞

1

L

{ t0+L−1∑
t=t0

E[h(u(t))] +

N∑
t=t0+L

E[h(u(t))]

−
N−L∑
t=t0

E[h(u(t))]
}
. (16)

Since N →∞, then the term within the limit can be equiv-
alently rewritten as

1

L

N∑
t=N−L+1

E[h(u(t))] =
1

L

{ t0+L−1∑
t=t0

E[h(u(t))]

+

N∑
t=t0+L

E[h(u(t))]−
N∑

t=t0+L

E[h(u(t−L))]
}
. (17)

Taking into account that u(t) and ū(t) have the samemarginal
distribution, then we can replace u(t−L) with ū(t−L),

1

L

N∑
t=N−L+1

E[h(u(t))] =
1

L

{ t0+L−1∑
t=t0

E[h(u(t))]

+

N∑
t=t0+L

E[h(u(t))]−
N∑

t=t0+L

E[h(ū(t−L))]
}
. (18)

We now combine the two sums in the right,

1

L

N∑
t=N−L+1

E[h(u(t))] =
1

L

{ t0+L−1∑
t=t0

E[h(u(t))]

+

N∑
t=t0+L

E[h(u(t))− h(ū(t−L))]
}
. (19)

We now apply the fact that the two chains meet after some
time τ , i.e., u(t) = ū(t−L) for t ≥ τ . This gives

1

L

N∑
t=N−L+1

E[h(u(t))] =
1

L

{ t0+L−1∑
t=t0

E[h(u(t))]

+

N∧(τ−1)∑
t=t0+L

E[h(u(t))− h(ū(t−L))]
}
. (20)

When we consider the limit N → ∞, the sum in the r.h.s.
no longer depends on N ; instead, it only contains (at most)
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τ − t0 − L terms,

Eπ(u) [h(u)] = lim
N→∞

1

L

N∑
t=N−L+1

E[h(u(t))] (21)

=
1

L

{t0+L−1∑
t=t0

E[h(u(t))] +

τ−1∑
t=t0+L

E[h(u(t))− h(ū(t−L))]
}
.

From this expression, we can obtain the unbiased estimator
of Eπ(u) [h(u)] as given in Eq. 14.

B MAXIMAL COUPLING KERNEL FOR
CATEGORICAL DISTRIBUTIONS

Here we describe the maximal coupling kernel for two cate-
gorical distributions [Lindvall, 2002], which is used by the
coupled DISIR procedure from Section 4.2 (more specifi-
cally, in Line 7 of Algorithm 3).

The kernelKC-Cat is summarized in Algorithm 5. It takes two
(possibly unnormalized) probability vectors, (w1, . . . , wK)
and (v1, . . . , vK), and returns a realization of two coupled
categorical random variables (`, ¯̀). Algorithm 5 is a maxi-
mal coupling scheme, in the sense that it achieves the theo-
retically maximum probability that ` = ¯̀.

C PROOFS OF PROPOSITIONS AND
LEMMAS

C.1 PROPOSITION 5 AND ITS PROOF

The results in this section were derived by Andrieu et al.
[2010, Theorem 4] and Andrieu et al. [2018, Theorem 1],
but we include them here for completeness.

Proposition 5 (ISIR is invariant w.r.t. the posterior). Under
Assumption 1, for any K ≥ 2, the ISIR transition kernel
KISIR is invariant w.r.t. pθ,φ(z1:K , ` |x) and the correspond-
ing Markov chain is ergodic. Additionally, if Assumption 3
is satisfied, then for any initial value (z

(0)
1:K , `

(0)), the total
variation distance w.r.t. the target is upper bounded by∣∣∣∣∣∣KTISIR(·, · | z(0)1:K , `

(0))− pθ,φ(·, · |x)
∣∣∣∣∣∣
TV
≤ ρTK , (22)

where ρK := 1 − K−1
2wmax

θ,φ/pθ(x)+K−2
< 1, and the notation

KTISIR(·, · | z(0)1:K , `
(0)) indicates the distribution of the state of

the chain after T steps of the kernel initialized at (z(0)1:K , `
(0)).

We now prove Proposition 5. Under Assumption 1, the ex-
tended target distribution

pθ,φ(z1:K , ` |x) =
1

K
pθ(z` |x)

K∏
k=1,k 6=`

qφ(zk |x) (23)

Algorithm 5: Maximal coupling kernel for categoricals,
KC-Cat(·, · | (w1, . . . , wK), (v1, . . . , vK))

Input: Two unnormalized probability vectors
(w1, . . . , wK) and (v1, . . . , vK)

Output: A sample `, ¯̀from the maximal coupling
kernel

1 Normalize the input vectors, obtaining w̃k ∝ wk and
ṽk ∝ vk for k = 1, . . . ,K

2 Compute the total variation γ = 1
2

∑K
k=1 |w̃k − ṽk|

3 Sample u ∼ Uniform(0, 1)
4 if u ≤ 1− γ then coupling occurs
5 Sample ` ∼ Cat(p1, . . . , pK) with

pk ∝ min(w̃k, ṽk)
6 Return (`, `)

7 else coupling does not occur
8 Sample ` ∼ Cat(p1, . . . , pK) with

pk ∝ max(w̃k − ṽk, 0)
9 Sample ¯̀∼ Cat(p1, . . . , pK) with

pk ∝ max(ṽk − w̃k, 0)
10 Return (`, ¯̀)

11 end

is well-defined. The transition kernel of ISIR is defined by
Algorithm 1 and given by

KISIR(z?1:K , `
? | z1:K , `) =

K∑
`aux=1

1

K
δz`(z

?
`aux)

×

 K∏
k=1,k 6=`aux

q(z?k |x)

 wθ,φ(z?`?)∑K
k=1 wθ,φ(z?k)

. (24)

To prove invariance, the marginalization∑K
`=1

∫
pθ,φ(z1:K , ` |x)KISIR(z?1:K , `

? | z1:K , `)dz1:K
should be equal to pθ,φ(z?1:K , `

? |x). Indeed,

K∑
`=1

∫
pθ,φ(z1:K , ` |x)KISIR(z?1:K , `

? | z1:K , `)dz1:K

=

K∑
`aux=1

pθ,φ(z?1:K , `aux |x)pθ,φ(`? | z?1:K , x)

= pθ,φ(z?1:K , `
? |x). (25)

Here, we have first integrated out the latent variables z1:K
except the `-th one. Then, we have integrated out z` apply-
ing the properties of the Dirac delta function; this makes
the resulting expression independent of ` and therefore we
can easily get rid of the sum over `. Next, we have recog-
nized the term pθ,φ(z?1:K , `aux |x) (from Eq. 23), and we
have applied that pθ,φ(`? | z?1:K , x) is a categorical distribu-
tion with probability proportional to wθ,φ(z?`?). Finally, we
have marginalized out `aux, leading to the final expression.

This transition kernel is φ-irreducible and aperiodic under



Assumption 1; therefore, the Markov chain is ergodic [Tier-
ney, 1994].

When simulating a Markov chain (z
(t)
1:K , `

(t))t≥0 according
toKISIR, the `(t)-th latent variable, i.e., (z(t) := z

(t)

`(t)
)t≥0, is

also a Markov chain with the transition kernel originally de-
scribed by Andrieu et al. [2010], which we denote KISIR,orig.
We can obtain this kernel from Eq. 24 by setting z` = z,
z?`? = z?, and marginalizing out the variables `? and z?1:K .
This gives

KISIR,orig(z
? | z) =

1

K

K∑
`aux=1

K∑
`?=1

∫
δz(z

?
`aux) (26)

×

∏
k 6=`aux

qφ(z?k |x)

 wθ,φ(z?`?)∑K
k=1 wθ,φ(z?k)

δz?
`?

(z?)dz?1:K

=

K∑
`?=1

∫
δz(z

?
1)

(
K∏
k=2

qφ(z?k |x)

)

× wθ,φ(z?`?)∑K
k=1 wθ,φ(z?k)

δz?
`?

(z?)dz?1:K ,

where we have used the symmetry of the kernel w.r.t. `aux
and have arbitrarily considered the term with `aux = 1.

We next prove the bound on the total variation distance.
Given that each term is non-negative, we can lower bound
KISIR,orig(z

? | z) by getting rid of the term corresponding to
`? = 1 from the summation. This gives

KISIR,orig(z
? | z) ≥

K∑
`?=2

∫
δz(z

?
1)

(
K∏
k=2

qφ(z?k |x)

)
(27)

× wθ,φ(z?`?)∑K
k=1 wθ,φ(z?k)

δz?
`?

(z?)dz?1:K .

Using the definition of the importance weights, wθ,φ(z) =
pθ(x, z)/qφ(z |x) = pθ(x)pθ(z |x)/qφ(z |x), this yields

KISIR,orig(z
? | z) ≥

K∑
`?=2

∫
δz(z

?
1)

 K∏
k=2,k 6=`?

qφ(z?k |x)


× pθ(x)pθ(z

?
`? |x)∑K

k=1 wθ,φ(z?k)
δz?
`?

(z?)dz?1:K . (28)

By Assumption 3, we have wθ,φ(z?1) + wθ,φ(z?2) ≤ 2wmax
θ,φ ,

and we can further lower bound KISIR,orig as

KISIR,orig(z
? | z) ≥

K∑
`?=2

∫
δz(z

?
1)

 K∏
k=2,k 6=`?

qφ(z?k |x)


× pθ(x)pθ(z

?
`? |x)

2wmax
θ,φ +

∑K
k=3 wθ,φ(z?k)

δz?
`?

(z?)dz?1:K . (29)

Next, by using the symmetry of the integrand w.r.t. `?, it

follows that

KISIR,orig(z
? | z) ≥ E

[
(K − 1)pθ(x)pθ(z

? |x)

2wmax
θ,φ +

∑K
k=3 wθ,φ(z?k)

]
, (30)

where the expectation is w.r.t. z?k ∼ qφ(· |x) for k =
3, ...,K. We finally apply Jensen’s inequality, Eq [f(·)] ≥
f(Eq [·]) for the convex function f(x) = 1/x, obtaining

KISIR,orig(z
? | z) ≥ (K − 1)pθ(x)pθ(z

? |x)

E
[
2wmax

θ,φ +
∑K
k=3 wθ,φ(z?k)

]
=

(K − 1)pθ(x)

2wmax
θ,φ + (K − 2)pθ(x)

pθ(z
? |x). (31)

This kernel thus satisfies a minorization condition and thus∣∣∣∣∣∣KTISIR,orig(· | z(0))− pθ(· |x)
∣∣∣∣∣∣
TV
≤ ρTK , (32)

where ρK := 1− K−1
2wmax

θ,φ/pθ(x)+K−2
.

The bound in Eq. 22 follows directly, since z(t) := z
(t)

`(t)
and,

under the transition kernel KISIR, the remaining variables
are sampled from the full conditional distribution of the
extended target from Eq. 23, so we have for any T ≥ 0,∣∣∣∣∣∣KTISIR,orig(· | z(0))− pθ(· |x)

∣∣∣∣∣∣
TV

(33)

=
∣∣∣∣∣∣KTISIR(·, · | z(0)1:K , `

(0))− pθ,φ(·, · |x)
∣∣∣∣∣∣
TV
.

C.2 PROOF OF PROPOSITION 1

We now prove here that the DISIR kernel admits
pDISIRθ,φ (ξ1:K , ` |x) defined in Eq. 10 as invariant distribution.
The transition kernel KDISIR(·, · | ξ1:K , `) is defined through
Algorithm 2 and can be written as

KDISIR(ξ?1:K , `
? | ξ1:K , `) =

K∑
`aux=1

1

K
δξ`(ξ

?
`aux) (34)

×
`aux−1∏
k=1

pβ(ξ?k | ξ?k+1)

K∏
k=`aux+1

pβ(ξ?k | ξ?k−1)
wθ,φ(z?`?)∑K
k=1 wθ,φ(z?k)

,

for z?k = gφ(ξ?k, x).

For the kernel to be invariant, the marginalization∑K
`=1

∫
pDISIRθ,φ (ξ1:K , ` |x)KDISIR(ξ?1:K , `

? | ξ1:K , `)dξ1:K
should be equal to pDISIRθ,φ (ξ?1:K , `

? |x). We obtain this
marginalization below. We first define

pDISIRθ,φ (ξ |x) :=
wθ,φ(gφ(ξ, x))q(ξ)

pθ(x)
. (35)

(Eq. 35 gives the marginal distribution of ξ` obtained after
integrating out the rest of latent variables from Eq. 10.) Sim-
ilarly to the proof in Appendix C.1, we first integrate out the



variables ξ1:K except the `-th one, and then we marginalize
out ξ` taking into account the integration property of the
Dirac delta function; this allows us to get rid of the sum over
`. Specifically, we have

K∑
`=1

∫
pDISIRθ,φ (ξ1:K , ` |x)KDISIR(ξ?1:K , `

? | ξ1:K , `)dξ1:K

=

K∑
`=1

K∑
`aux=1

1

K

∫
pDISIRθ,φ (ξ` |x)

K
δξ`(ξ

?
`aux)

×
`aux−1∏
k=1

pβ(ξ?k | ξ?k+1)

K∏
k=`aux+1

pβ(ξ?k | ξ?k−1)
wθ,φ(z?`?)∑K
k=1 wθ,φ(z?k)

dξ`

=

K∑
`aux=1

pDISIRθ,φ (ξ?1:K , `aux |x)
wθ,φ(z?`?)∑K
k=1 wθ,φ(z?k)

=

K∑
`aux=1

pDISIRθ,φ (ξ?1:K , `aux |x)pθ,φ(`? |x, ξ1:K)

= pDISIRθ,φ (ξ?1:K , `
? |x). (36)

Here, we have additionally recognized the term
pDISIRθ,φ (ξ?1:K , `aux |x) (see Eq. 10). For the second-to-
last step, we have applied the fact that the conditional
distribution of ` under Eq. 10, pDISIRθ,φ (` |x, ξ1:K), is a
categorical with probability proportional to wθ,φ(gφ(ξ`, x))
(this posterior is analogous to the ISIR case). To establish
this result, we note that

pDISIRθ,φ (` |x, ξ1:K) ∝ wθ,φ(gφ(ξ`, x))q(ξ`) (37)

×
`−1∏
k=1

pβ(ξk | ξk+1)

K∏
k=`+1

pβ(ξk | ξk−1).

Since pβ is reversible with respect to q, it follows that

q(ξ`)

`−1∏
k=1

pβ(ξk | ξk+1)

K∏
k=`+1

pβ(ξk | ξk−1)

= q(ξ1)

K∏
k=2

pβ(ξk | ξk−1), (38)

so this product is independent of ` and we have

pDISIRθ,φ (` |x, ξ1:K) ∝ wθ,φ(gφ(ξ`, x)). (39)

This establishes the proof of invariance. The DISIR kernel
is ergodic for the same reasons as ISIR.

C.3 PROOF OF PROPOSITION 1

We prove here Lemma 1. From the DISIR invariant distribu-
tion in Eq. 10, it follows that the marginal distribution of ξ`
is given by pDISIRθ,φ (ξ` |x) (Eq. 35).

We need to show that for ξ ∼ pDISIRθ,φ (ξ |x), then z :=
gφ(ξ, x) ∼ pθ(z |x). For any test function f(·),

EpDISIRθ,φ (ξ | x) [f(gφ(ξ, x))] (40)

=

∫
f(gφ(ξ, x))

wθ,φ(gφ(ξ, x))q(ξ)

pθ(x)
dξ

=

∫
f(gφ(ξ, x))

pθ(x, gφ(ξ, x))

qφ(gφ(ξ, x) |x)

q(ξ)

pθ(x)
dξ.

Under Assumption 2, we know that if ξ ∼ q(ξ) then z =
gφ(ξ, x) ∼ qφ(z |x). Thus, by using the change of variables
z = gφ(ξ, x), we have

EpDISIRθ,φ (ξ | x) [f(gφ(ξ, x))] =

∫
f(z)

pθ(x, z)

qφ(z |x)

qφ(z |x)

pθ(x)
dz

= Epθ(z | x) [f(z)] . (41)

This completes the proof of the first part of Lemma 1.

The second part says that, for β = 0, the variables
(z1:K , `) are distributed according to the augmented pos-
terior. In this case, the variables ξk for k 6= ` are indepen-
dent and identically distributed according to q(ξ). Thus, if
(ξ1:K , `) ∼ pDISIRθ,φ (ξ1:K , ` |x) then, for zk = gφ(ξk, `), we
have (z1:K , `) ∼ pθ,φ(z1:K , ` |x).

C.4 PROOF OF PROPOSITION 2

We establish here the identity in Eq 10. This is a generaliza-
tion of Theorem 6 in Andrieu et al. [2010]. From the result
in Lemma 1 and the definition of pDISIRθ,φ (ξ1:K , ` |x) (Eq. 10),
it follows that∫

h(z)pθ(z |x)dz (42)

=

K∑
`=1

∫
h(gφ(ξ`, x))pDISIRθ,φ (ξ1:K , ` |x)dξ1:K

=

∫ [ K∑
`=1

h(gφ(ξ`, x))pDISIRθ,φ (` |x, ξ1:K)
]
pDISIRθ,φ (ξ1:K |x)dξ1:K

=

∫ [ K∑
`=1

w̃
(`)
θ,φh(gφ(ξ`, x))

]
pDISIRθ,φ (ξ1:K |x)dξ1:K ,

where w̃(`)
θ,φ ∝ wθ,φ(gφ(ξ`, x)) are the normalized impor-

tance weights. The last equality follows from Eq. 39 used in
the proof of Appendix C.2. The result thus follows.

C.5 PROOF OF PROPOSITION 3

The following shows that the conditions established by Mid-
dleton et al. [2020] to establish the fact that the estimator
of Jacob et al. [2020b] can be computed in finite expected
time and admit a finite variance are also applicable to the
estimator of Eq. 14. The proof follows the approach of Jacob



et al. [2020b, Proposition 3.1] and Middleton et al. [2020,
Theorem 1] but some details differ.

Here, we use the notation µ(h) :=
∫
h(u)µ(u)du for any

test function h(u) and probability density µ(u). Our goal
is to estimate H := π(h). Firstly, by condition (c), we have
E [τ ] <∞, so the estimator Ĥ := π̂(h) from Eq. 14 can be
computed in finite expected time.

Now let us denote by L2 the complete space of random vari-
ables with finite second moment. We consider the sequence
of random variables (π̂N (h))N≥k+L defined by

π̂N (h) =
1

L

(
k+L−1∑
t=k

h(u(t)) +

N∑
t=k+L

h(u(t))− h(ū(t−L))

)

=
1

L

N∑
t=k

∆t, (43)

where ∆t := h(u(t))−h(ū(t−L)) for t ≥ k+L and ∆t :=
h(u(t)) for k ≤ t < k+L. We next show that this sequence
is a Cauchy sequence in L2 converging to π̂(h).

As E [τ ] <∞, we have P(τ <∞) = 1 and u(t) = ū(t−L)

for t ≥ τ under condition (d). Thus, it follows that π̂N (h)→
π̂(h) almost surely. For positive integers N,N ′ such that
k + L ≤ N < N ′, we have

E
[
(π̂N (h)− π̂N ′(h))

2
]

=
1

L2

N ′∑
s=N+1

N ′∑
t=N+1

E [∆s∆t]

≤ 1

L2

N ′∑
s=N+1

N ′∑
t=N+1

E
[
∆2
s

]1/2 E [∆2
t

]1/2
=

1

L2

 N ′∑
t=N+1

E
[
∆2
t

]1/22

. (44)

Since E
[
∆2
t

]
= E

[
∆2
t Iτ>t

]
, where I is the indicator func-

tion, by Holder’s inequality we have

E
[
∆2
t

]
≤ E

[
|∆t|2+η

] 1
1+

η
2 E [Iτ>t]

η
2+η

≤ D
1

1+
η
2 P(τ > t)

η
2+η , (45)

where E
[
|∆t|2+η

]
< D for all t as E

[
|h(u(t))|2+η

]
< D

by condition (b). Consequently, we have

E
[
(π̂N (h)− π̂N ′(h))

2
]

(46)

≤ 1

L2

 N ′∑
t=N+1

(
D

1
1+

η
2 P(τ > t)

η
2+η

) 1
2

2

=
1

L2
D

1
1+

η
2

 N ′∑
t=N+1

P(τ > t)
1
2

η
2+η

2

.

Defining λ := 1
2

η
2+η , it follows from condition (c) that

P(τ > t) ≤ Ct−κ for κ > 1/λ, which yields
∞∑

t=N+1

P(τ > t)λ ≤ C
∞∑

t=N+1

1

tλκ
<∞. (47)

Thus, we have limN→∞
∑∞
t=N+1 P(τ > t)λ = 0. Hence,

we have proved π̂N (h) is a Cauchy sequence in L2, and has
finite first and second moments, so π̂(h) has finite variance.
As Cauchy sequences are bounded, the dominated conver-
gence theorem shows that

E [π̂(h)] = E
[

lim
N→∞

π̂N (h)
]

= lim
N→∞

E [π̂N (h)] , (48)

and, under condition (a), we have

lim
N→∞

E [π̂N (h)] = lim
N→∞

1

L

N∑
t=N−L+1

E
[
h(u(t))

]
= π(h).

(49)

C.6 PROOF OF PROPOSITION 4

To prove Proposition 4, we need to check that the conditions
(a) to (d) of Proposition 3 are satisfied for the coupled ISIR-
DISIR kernel from Algorithm 3. Condition (a) is satisfied
as the ISIR kernel is φ-irreducible and aperiodic [see, e.g.,
Tierney, 1994]. Condition (b) is satisfied by assumption.
Condition (d) is also satisfied by design of Algorithm 3—
once the chains are coupled, they remain equal to each other
forever. We next check that condition (c) is also satisfied.

We recall that the transition kernel we couple is a composi-
tion of the ISIR kernel followed by the DISIR kernel. Here
we show that, at each iteration, the coupled ISIR kernel cou-
ples with a probability that is lower bounded by a quantity
strictly positive independent of the current states of the two
chains. This ensures that the distribution of the meeting time
τ has tails decreasing geometrically fast.

As discussed in Section 4.2, the coupled ISIR kernel from
Algorithm 3 couples when (i) both indicators sampled in
Line 7 are equal, i.e., `? = ¯̀?, and (ii) these indicators are
different from `aux. Event (i) is driven by the joint kernel
KC-Cat, whose probability of coupling is 1− γ, where γ is
defined in Algorithm 5. The probability of event (ii) is equal
to the probability that the sampled indicators are different
from `aux, which we assume equal to 1 (without loss of
generality).

When we use Algorithm 5 to couple the ISIR chains, we
have wk = wθ,φ(z?k) and vk = wθ,φ(z̄?k) (see Line 7 of
Algorithm 3). Thus, the unnormalized weights (wk)k=1,...,K

and (vk)k=1,...,K before coupling differ at most by a single
entry, which we assumed above to be the first entry, i.e.,
w1 6= v1 and wk = vk for k = 2, . . . ,K. The normalized
probabilities are thus

w̃k =
wk

w1 + S
, ṽk =

vk
v1 + S

, (50)



where

S =

K∑
k=2

vk =

K∑
k=2

wk. (51)

Therefore, the probability of coupling of ISIR is

Pmeet ≥ E

[
(1− γ)

∑K
k=2 min(w̃k, ṽk)∑K
k=1 min(w̃k, ṽk)

]
, (52)

where the expectation is w.r.t. to the joint distribution of the
two chains at time t. Using the identity |a− b| = a+ b−
2 min(a, b), the term 1− γ can be simplified as

1− γ = 1− 1

2

K∑
k=1

|w̃k − ṽk| =
K∑
k=1

min(w̃k, ṽk). (53)

Thus, we have

Pmeet ≥ E

[
K∑
k=2

min(w̃k, ṽk)

]
. (54)

By Assumption 3, we have w1 +S ≤ Kwmax
θ,φ (and similarly

for v1 + S); thus we can further lower bound the probability
of coupling,

Pmeet ≥ E

[
K∑
k=2

min

(
wk

w1 + S
,

vk
v1 + S

)]
(55)

≥ E

[
1

Kwmax
θ,φ

K∑
k=2

wk

]
=
pθ(x)

wmax
θ,φ

− pθ(x)

Kwmax
θ,φ

.

We have used above that S =
∑K
k=2 wk only depends on

the K − 1 proposals common to the two chains at any
iteration and so E [S] =

∑K
k=2 E [wk], where E [wk] =

Eqφ [wθ,φ(z?k)] = pθ(x). Contrary to Jacob et al. [2020a],
the lower bound we obtain on Pmeet is (as expected) increas-
ing with K instead of decreasing. From this lower bound,
we can also deduce directly an upper bound on E[τ ]:

E[τ ] ≤ (L− 1) +
1

Pmeet
(56)

where 1/Pmeet is the expectation of a geometric random
variable of success probability Pmeet. By plugging the lower
bound on the r.h.s. of (55) in (56), we obtain a decreasing
upper bound onE[τ ] converging toL−1+

wmax
θ,φ

pθ(x)
asK →∞.

D ADDITIONAL EXPERIMENTAL
DETAILS

D.1 GRADIENTS OF THE PPCA MODEL

Figure 5 shows the errors when estimating the gradient w.r.t.
a randomly chosen weight term of the probabilistic principal
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Figure 5: Boxplot representation of the error of different
estimators for the gradient w.r.t. one of the weights of the
PPCA model.
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Figure 6: Relative error (in absolute value) for the PPCA
model, averaged over all components of the gradient.

component analysis (PPCA) model; it looks qualitatively
similar to Figure 2.

Figure 6 shows the relative error in absolute value, averaged
across all the components of the gradient. C-ISIR-DISIR
exhibits the smaller error.

D.2 EXPERIMENTAL SETUP FOR THE VAE

Binarized MNIST. For binarized MNIST, the model is
pθ(x, z) = N (z; 0, I)pθ(x | z), where pθ(x | z) is a product
of Bernoulli distributions whose parameters are obtained
as the output of a neural network with 2 hidden layers of
200 hidden units each and ReLU activations (the third layer
is the output layer and has sigmoid activations). We set the
distribution qφ(z |x) as a fully factorized Gaussian, and
the encoder network has an analogous architecture (in this
case, the output layer implements a linear transformation for
the variational means and a softplus transformation for the
standard deviations). The RMSProp learning rate is 5×10−4

and the batchsize is 100.

Fashion-MNIST and CIFAR-10. We define the likelihood
pθ(z |x) using a mixture of 10 discretized logistic distribu-
tions [Salimans et al., 2017].

For fashion-MNIST, we use the same encoder and decoder
architecture as for binarized MNIST described above (ex-
cept for the output layer of the decoder, which implements
a linear transformation for the location parameters, a soft-
plus transformation for the scale parameters, and a softmax
transformation for the mixture weights).

For CIFAR-10, we use convolutional networks instead. The
decoder consists of a fully connected layer with hidden size
16 × 16 × 1 and ReLu activations, followed by three con-
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Figure 7: Train log-likelihood on a VAE fitted on binarized
MNIST. The estimator from Algorithm 4 provides better
performance for multiple values of the dimensionality D.

volutional layers with 200, 50, and 30 channels (the filter
size is 4× 4 with stride of 2) and ReLu activations (except
for the last layer). The encoder network has three convolu-
tional layers with 64, 128, and 512 channels, followed by a
fully connected hidden layer with output size 128 and by the
output layer, which is the same as for fashion-MNIST.

The RMSProp learning rate is 10−4, and the batchsize is
100 for fashion-MNIST and 50 for CIFAR-10.

D.3 TRAIN LOG-LIKELIHOOD ON BINARIZED
MNIST

Figure 7 shows (an estimate of) the evolution of the train
log-likelihood for the VAE fitted on binarized MNIST for
different values of the dimensionality D.

D.4 HISTOGRAMS OF THE MEETING TIME

Figure 8 shows the histograms of the meeting time for the
experiment on binarizedMNIST from Section 6.2. The meet-
ing time behaves similarly across different values of the di-
mensionality D, although the histogram gets heavier-tailed
for C-ISIR when D increases.
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