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Abstract

The variational auto-encoder (VAE) is a deep latent
variable model that has two neural networks in an
autoencoder-like architecture; one of them parame-
terizes the model’s likelihood. Fitting its parame-
ters via maximum likelihood (ML) is challenging
since the computation of the marginal likelihood in-
volves an intractable integral over the latent space;
thus the VAE is trained instead by maximizing a
variational lower bound. Here, we develop a ML
training scheme for VAEs by introducing unbiased
estimators of the log-likelihood gradient. We obtain
the estimators by augmenting the latent space with
a set of importance samples, similarly to the im-
portance weighted auto-encoder (IWAE), and then
constructing a Markov chain Monte Carlo coupling
procedure on this augmented space. We provide the
conditions under which the estimators can be com-
puted in finite time and with finite variance. We
show experimentally that VAEs fittedwith unbiased
estimators exhibit better predictive performance.

1 INTRODUCTION

The variational auto-encoder (VAE) [Kingma and Welling,
2014] is a deep latent variable model that uses a joint dis-
tribution pθ(x, z), parameterized by θ, over an observation
x and the corresponding latent variable z. The marginal
log-likelihood involves an integral over the latent space,

L(θ) := log pθ(x) = log

(∫
pθ(x, z)dz

)
. (1)

As for any other latent variable model, fitting the VAE re-
quires finding the parameters θ that best describe the ob-
servations. One (intractable) way to find θ would be via
maximum likelihood, for which the gradient of Eq. 1 is re-
quired. Using Fisher’s identity, this gradient can be written

as an expectation w.r.t. the posterior pθ(z |x),

∇θL(θ) = Epθ(z | x) [∇θ log pθ(x, z)] . (2)

The gradient in Eq. 2 could be approximated unbiasedly if we
had access to samples from pθ(z |x); however, the posterior
is intractable. Although we could use Markov chain Monte
Carlo (MCMC) to sample approximately from it [Hoffman,
2017, Naesseth et al., 2020], this would provide a biased
estimate, and the bias is difficult to quantify.

Instead, VAEs introduce an encoder qφ(z |x) and learn the
parameters θ by maximizing a variational evidence lower
bound (ELBO) [Wainwright and Jordan, 2008, Blei et al.,
2017], for which unbiased gradients are readily available
[Kingma and Welling, 2014]. Burda et al. [2016] form such
a bound using a set of importance samples using the encoder
as proposal distribution, leading to the so-called importance
weighted auto-encoder (IWAE). The standard ELBO in vari-
ational inference can be thought of as a particular instance
of the IWAE bound with one importance sample, where the
importance distribution is given by the encoder. However, it
remains difficult to quantify the difference between the true
log-likelihood and the corresponding bound.

We develop here unbiased gradient estimators of the log-
likelihood for VAEs by exploiting the coupling estimators
developed by Jacob et al. [2020b]. Coupling estimators al-
low us to obtain unbiased estimators of expectations w.r.t.
an intractable target distribution by running two coupled
MCMC chains for a finite number of iterations. This ap-
proach does not require that the MCMC chains converge
to the target, so the unbiased estimator can be computed
in a finite (but random) time. However, MCMC couplings
are a generic methodology that is not readily applicable to
VAEs, since it requires an MCMC kernel that mixes well
and provides a suitable coupling mechanism, while at the
same time yielding a low-variance estimator.

We address these issues by building coupling estimators
based on the iterated sampling importance resampling (ISIR)
algorithm [Andrieu et al., 2010]. ISIR is in turn based on
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importance sampling, and thus it uses multiple samples to
reduce the variance of the estimator, similarly to the IWAE.
Like the IWAE, we simultaneously fit an encoder as the pro-
posal distribution for the importance sampling algorithm.
Unfortunately, the variance of ISIR is still not small enough
for fitting VAEs. To that end, we develop an extension of
ISIR, called dependent iterated sampling importance resam-
pling (DISIR), that combines the use of dependent impor-
tance samples and reparameterization ideas. DISIR drasti-
cally reduces the running time and the variance of the result-
ing coupling estimator. We develop a DISIR-based coupling
estimator to estimate the gradient of the VAE log-likelihood.

Contributions. Our contributions are as follows.

• We show that the unbiased gradient estimators based
on ISIR are not practical for VAEs, since they require
to run the Markov chains for a long time even for only
moderately high-dimensional models.

• We develop DISIR, an extension of ISIR that reduces
the running time and the variance of the estimators.

• We use DISIR to form unbiased gradient estimators for
VAEs. The resulting estimator is widely applicable as
it can be used wherever the IWAE bound is applicable.

• We prove that the unbiased gradient estimates have
finite variance and can be computed in finite expected
time under some regularity conditions.

• We demonstrate experimentally that VAEs fitted with
the DISIR-based gradient estimators exhibit better pre-
dictive log-likelihood on binarized MNIST, fashion-
MNIST, and CIFAR-10, when compared to IWAE.

2 BACKGROUND

Here, we review the IWAE bound [Burda et al., 2016]
and show that it can be seen as a standard ELBO on an
augmented model. Consider a model pθ(x, z) of data x and
latent variables z ∈ Z , and a proposal distribution qφ(z |x),
where θ and φ denote the model and proposal parameters,
respectively. Let the proposal satisfy the assumption below.

Assumption 1 (The proposal and posterior have the same
support). For any z ∈ Z , we have qφ(z |x) > 0 if and
only if pθ(x, z) > 0, so that 0 < wθ,φ(z) < ∞, where the
importance weights are

wθ,φ(z) :=
pθ(x, z)

qφ(z |x)
. (3)

The IWAE bound. The IWAE is a lower bound of the
marginal log-likelihood in Eq. 1 formed with K ≥ 1 im-
portance samples z1:K from the proposal, i.e., L(θ) ≥
LIWAE(θ, φ), with

LIWAE(θ, φ) = Eqφ(z1:K | x)

[
log

(
1

K

K∑
k=1

wθ,φ(zk)

)]
, (4)

where qφ(z1:K |x) :=
∏K
k=1 qφ(zk |x). Eq. 4 monotoni-

cally increases withK, converging towardsL(θ) asK →∞.
For the caseK = 1, it recovers the standard ELBO,

LELBO(θ, φ) = Eqφ(z | x) [logwθ,φ(z)] . (5)

The importance samples z1:K also provide an approxima-
tion of the posterior pθ(z |x). Specifically, if we define the
importance weights w(k)

θ,φ := wθ,φ(zk) and the normalized
importance weights w̃(k)

θ,φ ∝ w
(k)
θ,φ, with

∑K
k=1 w̃

(k)
θ,φ = 1,

then the approximation is

p̂θ(z |x) =

K∑
k=1

w̃
(k)
θ,φδzk(z), (6)

where δzk(·) is the delta Dirac measure located at zk.

Fitting VAEs. VAEs parameterize the likelihood pθ(x | z)
using a distribution whose parameters are given by a neural
network (decoder) that inputs the latent variable z. The dis-
tribution qφ(z |x) is amortized [Gershman and Goodman,
2014], i.e., its parameters are computed by a neural network
(encoder) that inputs the observation x. Fitting a VAE in-
volves maximizing the bound (either Eq. 4 or Eq. 5) w.r.t.
both θ and φ using stochastic optimization. For that, the VAE
uses unbiased gradient estimators of the objective. To form
such gradients, we typically assume that qφ(z |x) is repa-
rameterizable [Kingma and Welling, 2014, Rezende et al.,
2014, Titsias and Lázaro-Gredilla, 2014]. For convenience,
we additionally assume that we can reparameterize in terms
of a Gaussian (but we can easily relax this latter assumption).

Assumption 2 (The variational distribution is reparameteriz-
able in terms of a Gaussian). There exists a mapping gφ(ξ, x)
such that by sampling ξ ∼ q(ξ), where q(ξ) = N (ξ; 0, I),
and setting z = gφ(ξ, x), we obtain z ∼ qφ(z |x).

The IWAE bound as a standard ELBO. The IWAE bound
in Eq. 4 can be interpreted as a regular ELBO on an aug-
mented latent space [Cremer et al., 2017, Domke and Shel-
don, 2018], and we use this perspective in Sections 3 and 4.
Indeed, consider the K importance samples z1:K and an
indicator variable ` ∈ {1, . . . ,K}. We next define a gen-
erative model with latent variables (z1:K , `), as well as a
variational distribution, such that its ELBO recovers Eq. 4.

The augmented generative model posits that the indicator
` ∼ Cat( 1

K , . . . ,
1
K ), where Cat denotes the categorical

distribution. Given `, each zk is distributed according to
qφ(z |x), except the `-th one, which follows the prior:

pθ,φ(x, z1:K , `) =
1

K
pθ(x, z`)

K∏
k=1,k 6=`

qφ(zk |x). (7)

Under the corresponding augmented posterior distribution,
pθ,φ(z1:K , ` |x) ∝ pθ,φ(x, z1:K , `), the random variable z`
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follows the posterior pθ(z |x). We next define a variational
distribution on the same augmented space,

qθ,φ(z1:K , ` |x) = Cat
(̀
| w̃(1)

θ,φ, · · · , w̃
(K)
θ,φ

) K∏
k=1

qφ(zk |x).

(8)
We recover the IWAE bound (Eq. 4) as the ELBO of the aug-
mented model, i.e., as Eqθ,φ(z1:K ,` | x) [log pθ,φ(x, z1:K , `)].

Towards unbiased gradient estimation. The gradient w.r.t.
θ of the IWAE bound in Eq. 4 can be interpreted as a (biased)
approximation of ∇θL from Eq. 2. To see this, note that
∇θLIWAE = Ep̂θ(z | x) [∇θ log pθ(x, z)]; i.e., ∇θLIWAE can
be seen as an approximation of ∇θL where we replace the
posterior pθ(z |x) with the approximation p̂θ(z |x) in Eq. 6.

To obtain an unbiased estimate, we need an alter-
native approximation p̂θ(z |x) of pθ(z |x) satisfying
Ep̂θ(z | x) [∇θ log pθ(x, z)] = ∇θL. One such example is the
empirical measure of exact samples from pθ(z |x). However,
as mentioned earlier, it is typically impossible to obtain such
samples, as a finite run with an MCMC kernel only provides
biased estimates when the chain is initialized out of equilib-
rium. We can obtain an approximation p̂θ(z |x) that leads
to unbiased estimation using two coupled MCMC chains
[Jacob et al., 2020b]. In Sections 3 and 4 we build on this
idea to develop a method for unbiased gradient estimation.

3 IMPORTANCE SAMPLING-BASED
MCMC SCHEMES

3.1 ITERATED SAMPLING IMPORTANCE
RESAMPLING (ISIR)

Here we review ISIR [Andrieu et al., 2010], an MCMC
scheme that samples from the augmented posterior
pθ,φ(z1:K , ` |x) given by Eq. 7. Alternatively, ISIR can be
interpreted as an algorithm that targets the posterior pθ(z |x).
Indeed, if (z1:K , `) ∼ pθ,φ(z1:K , ` |x) is a sample from the
augmented posterior, then z` ∼ pθ(z |x).

The ISIR transition kernel, KISIR(·, · | z1:K , `), takes the cur-
rent state (z1:K , `) and outputs a new state by following
Algorithm 1. ISIR requires a proposal distribution; we use
qφ(z |x). It also requires to compute the importance weights
wθ,φ(·) in Eq. 3. Note that ISIR has a resampling step
(Line 4) that is distinct from the resampling step of sequen-
tial Monte Carlo, which would involve resampling multiple
times from the categorical before mutating the samples.

The kernel is invariant w.r.t. pθ,φ(z1:K , ` |x), as formalized
in Proposition 5 in Appendix C.1, if Assumption 3 below is
satisfied [Andrieu et al., 2010, 2018]. Assumption 3 holds
when the proposal is at least as heavy-tailed as the target.

Assumption 3 (The importance weights are bounded).
There exists wmax

θ,φ <∞ such that wθ,φ(z) ≤ wmax
θ,φ ∀z ∈ Z .

3 2 1 0 1 2
z

Target
Proposal
Weight function

(a) Target density, proposal, and weight function.

iterations t

2.5

0.0z

density

z

(b) A realization from the ISIR kernel.

iterations t

2.5

0.0z

density

z

(c) A realization from the DISIR kernel.

Figure 1: Qualitative comparison of ISIR and DISIR target-
ting a simple target distribution (a), and the realized chains
by sampling from ISIR (b) and DISIR (c) transition ker-
nels. Due to the poor proposal choice, the weight function
significantly varies across the space z. ISIR has a low ac-
ceptance probability, especially in high-weight states. In
contrast, DISIR is able to propose and accept local moves
around high-weight regions and explores the target better.

3.2 DEPENDENT ITERATED SAMPLING
IMPORTANCE RESAMPLING (DISIR)

For moderately high-dimensional z, ISIR can be inefficient.
Indeed, if the importance weights become dominated by the
weight of a single sample, then the corresponding Markov
chain will typically get “stuck” for a large number of iter-
ations. We illustrate this in Figure 1, which shows a one-
dimensional illustrative comparison. In this toy experiment,
we can observe that the ISIR chains gets stuck when the state
z(t) corresponds to a high-weight region.

To mitigate this problem, here we develop DISIR, an
extension of ISIR that uses dependent importance sam-
ples. Intuitively, this scheme proposes dependent samples
z?1:`aux−1, z

?
`aux+1:K that are close to the current sample

z?`aux = z` with high probability, in the spirit of Shestopaloff
and Neal [2018]. This modification increases the probability
that the chain transitions to one of the new proposed values.
As a result, in practice, the gradient estimators based on
DISIR have smaller variance than the ones based on ISIR.

To make samples dependent, we use the reparameterization
property (see Assumption 2) and introduce dependencies
among the auxiliary variables ξ1:K ; this induces dependen-
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Algorithm 1: ISIR kernel, KISIR(·, · | z1:K , `)

Input: Current state of the chain, (z1:K , `)
Output: Next state of the chain

1 Sample `aux ∼ Cat( 1
K , . . . ,

1
K )

2 Set z?`aux = z`
3 Sample z?k ∼ qφ(z |x) for k ∈ {1, . . . ,K}\{`aux}
4 Sample `? ∼ Cat(p1, . . . , pK) with pk ∝ wθ,φ(z?k)
5 Return (z?1:K , `

?)

cies among the samples in the original latent space z1:K .
That is, rather than sampling K − 1 importance samples
(ξ?1:`aux−1, ξ

?
`aux+1:K ) independently of ξ?`aux (see Line 3 of Al-

gorithm 1), we use two auxiliary Markov chains, each with
transition kernel pβ(ξ? | ξ). Specifically, given ξ?`aux , we sam-
ple ξ?k ∼ pβ(· | ξ?k−1) for k > `aux and ξ?k ∼ pβ(· | ξ?k+1) for
k < `aux. The kernel pβ(ξ? | ξ) must have invariant density
q(ξ), so that marginally ξ?k ∼ q(ξ) for all k if ξ?`aux ∼ q(ξ).
This construction with two Markov chains ensures the valid-
ity of the scheme (see Appendix C.2 for details).

Under Assumption 2, we select a simple autoregressive nor-
mal kernel for pβ(ξ? | ξ), i.e., we set

pβ(ξ? | ξ) = N (ξ?;βξ, (1− β2)I). (9)

Equivalently, ξ? = βξ +
√

1− β2ξnew, where ξnew ∼
N (ξ; 0, I). The parameter β controls the strength of the
correlation; we discuss its effect below.

Using the kernel in Eq. 9, we develop DISIR, which is de-
scribed in Algorithm 2. DISIR replaces Line 3 of Algo-
rithm 1 with an application of the auxiliary kernel pβ(ξ? | ξ)
(see Lines 4 and 5 of Algorithm 2).

We refer to the coefficient β ∈ [0, 1) as the correlation
strength. When β = 0, we have ξ?k = ξnewk

iid∼ q(ξ) and this
approach is simply a reparameterized version of ISIR, which
favours exploration of new regions of the space. When β
approaches 1, all the proposed values ξ?k become closer to the
current state ξ` (which may correspond to the sample whose
importance weight currently dominates). This dependency
among the samples ξ?1:K induces dependencies among z?1:K ,
resulting in more uniform importance weights. Thus, we say
that this approach favours exploitation.

As given in Algorithm 2, DISIR is an MCMC scheme that
targets the augmented density provided below.

Proposition 1 (Invariant distribution of DISIR). Let As-
sumptions 1 and 2 hold. For anyK ≥ 2 and any β ∈ [0, 1),
the DISIR transition kernel KDISIR admits

pDISIRθ,φ (ξ1:K , ` |x) =
1

K

wθ,φ(gφ(ξ`, x))q(ξ`)

pθ(x)
(10)

×
`−1∏
k=1

pβ(ξk | ξk+1)

K∏
k=`+1

pβ(ξk | ξk−1)

Algorithm 2: DISIR kernel, KDISIR(·, · | ξ1:K , `)

Input: Current state of the chain (ξ1:K , `) and
correlation strength β

Output: New state of the chain
1 Sample `aux ∼ Cat( 1

K , . . . ,
1
K )

2 Set ξ?`aux = ξ`
3 Sample ξnewk ∼ q(ξ) for k ∈ {1, . . . ,K}\{`aux}
4 Set ξ?k = βξ?k−1 +

√
1− β2ξnewk for

k = `aux + 1, . . . ,K

5 Set ξ?k = βξ?k+1 +
√

1− β2ξnewk for
k = `aux − 1, . . . , 1

6 Set z?k = gφ(ξ?k, x) for k = 1, . . . ,K
7 Sample `? ∼ Cat(p1, . . . , pK) with pk ∝ wθ,φ(z?k)
8 Return (ξ?1:K , `

?)

as invariant distribution and is ergodic.

The proofs of all propositions and lemmas are provided in
Appendix C.

This target distribution has two desired properties. First,
when the correlation strength β ∈ [0, 1), the `-th sample
z` is distributed according to the posterior pθ(z |x). That
is, DISIR defines a Markov chain that targets Eq. 10, and
(z

(t)

`(t)
)t≥0 is a Markov chain that converges to pθ(z |x). Sec-

ond, when β = 0, DISIR becomes identical to a reparame-
terized version of ISIR. That is, it simulates a Markov chain
(ξ

(t)
1:K , `

(t))t≥0 such that, setting each z(t)
k = gφ(ξ

(t)
k , x), the

Markov chain (z
(t)
1:K , `

(t))t≥0 obeys a law that is identical to
the one simulated by ISIR. This is formalized below.

Lemma 1 (Distribution of DISIR samples). Let Assump-
tions 1 and 2 hold. For any β ∈ [0, 1), we have z` =
gφ(ξ`, x) ∼ pθ(z |x) under pDISIRθ,φ (ξ1:K , ` |x). Moreover,
for β = 0, if (ξ1:K , `) ∼ pDISIRθ,φ (ξ1:K , ` |x), then we have
(z1:K , `) ∼ pθ,φ(z1:K , ` |x), where each zk = gφ(ξk, x).

In practice, we interleave DISIR steps for which β > 0 with
steps for which β = 0. Specifically, we define a composed
kernel that consists of the consecutive application of two
steps of Algorithm 2. The first step has β = 0 and favours
exploration; the second step has β > 0 and favours exploita-
tion. It is possible to interleave the two kernels since both
can be reinterpreted as MCMC kernels targeting pθ(z |x).
We denote the composed kernel as KISIR-DISIR.

Choice of the correlation strength. For the second step of
the composed kernel, we wish to use a value β close to 1 to
achieve exploitation, but not too close because then we will
effectively have one importance sample repeatedK times.
We set β following a heuristic that is based on the effective
sample size (ESS), defined as ESS = (

∑K
k=1(w̃

(k)
θ,φ)2)−1.

As β becomes closer to 1, the ESS becomes closer to K.
We set the target ESS to 0.3K, and we update β after each
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step of the kernel, so that the ESS becomes closer to the
target value. In particular, we apply the update rule β ←
β − 0.01(ESS − 0.3K). We also constrain the resulting
β ∈ [10−6, 1− 10−6] to avoid numerical issues.

Since we only modify β between iterations of the algorithm
(and not while running the algorithm), the invariance of the
Markov kernel w.r.t. to the target still holds. This also implies
that the estimators that we derive in Section 4 are unbiased
despite the adaptation of β.

3.3 DISIR ESTIMATES OF EXPECTATIONS

The DISIR samples (z
(t)

`(t)
)t≥0 are distributed asymptotically

as pθ(z |x) and, in the limit of infinite samples, we can esti-
mate expectations under pθ(z |x), as 1

T+1

∑T
t=0 h(z

(t)

`(t)
)→

Epθ(z | x)[h(z)] almost surely.

However, it may seem wasteful to generateK − 1 proposals
at each iteration of Algorithm 2 and then use only the `-th im-
portance sample to estimate an expectation. The proposition
below shows that it is possible to use all theK importance
samples: we can estimate an expectationEpθ(z | x)[h(z)]with
a weighted average of the importance samples.

Proposition 2 (TheK importance samples can be used for
estimating expectations). For any function h : Z → R such
that Epθ(z | x)[|h(z)|] <∞, we have the identity

Epθ(z | x)[h(z)] = EpDISIRθ,φ (ξ1:K ,` | x)

[
K∑
k=1

w̃
(k)
θ,φh(zk)

]
, (11)

where zk = gφ(ξk, x) and the normalized importance
weights are w̃(k)

θ,φ ∝ wθ,φ(zk) with
∑K
k=1 w̃

(k)
θ,φ = 1. Setting

h(z) = ∇θ log pθ(x, z), and given that the DISIR kernel is
ergodic, it follows from Eq. 2 that

1
T+1

T∑
t=0

[
K∑
k=1

w̃
(k,t)
θ,φ ∇θ log pθ(x, z

(t)
k )

]
→ ∇θL (12)

almost surely as T → ∞ for any K ≥ 2, where z(t)
k =

gφ(ξ
(t)
k , x) and w̃(k,t)

θ,φ ∝ wθ,φ(z
(t)
k ).

3.4 CHOICE OF THE PROPOSAL

Both ISIR and DISIR require a proposal distribution to sam-
ple the states z?k , for which we use qφ(z |x) (DISIR addi-
tionally requires the proposal to be reparameterizable). Here
we discuss how to set the parameters φ of the proposal.

Like for IWAE, in our case qφ(z |x) is a proposal distribu-
tion rather than a variational posterior. We fit φ via stochastic
optimization of the IWAE bound in Eq. 4. To estimate the
gradient w.r.t. φ, we use the doubly reparameterized estima-
tor [Tucker et al., 2019], which addresses some issues of

the estimator of Burda et al. [2016] for large values of K
[Rainforth et al., 2019].

Alternatively, we could fit the encoder using the forward
Kullback-Leibler (KL) divergence. This would imply to max-
imize Epθ(z | x) [log qφ(z |x)] w.r.t. φ, for which we can ap-
ply the unbiased estimators of Section 4 to estimate the
expectation w.r.t. pθ(z |x). We leave this for future work.

4 UNBIASED GRADIENT ESTIMATION
WITH MCMC COUPLINGS

4.1 UNBIASED ESTIMATION WITH COUPLINGS

In this section, we review how to obtain an unbiased gradient
estimator using two coupled Markov chains. We use the
notation u ∈ U to refer to a generic random variable, keeping
in mind that we will later set u = [ξ1:K , `], i.e., the latent
variables in the augmented space.

Consider the estimation of the expectation

H := Eπ(u) [h(u)] , (13)

for some distribution π(u) and function h(u). As discussed
in Section 2, a direct approximation π̂(u) of π(u) viaMCMC
leads to a biased estimator.

We can obtain an unbiased estimator based on two coupled
MCMC chains, each with invariant distribution π(·) [Glynn
and Rhee, 2014, Jacob et al., 2020b]. The two chains have
the same marginals at any time instant t, but they evolve
according to a joint transition kernel KC. Let K(· |u) be the
marginal transition kernel of each chain, and letKC(·, · |u, ū)
be a joint kernel that takes the state of both chains (denoted
u and ū) and produces the new state of both chains.1

We next review the unbiased estimator of Vanetti and Doucet
[2020] which reduces the variance of the estimator of Jacob
et al. [2020b]. The main idea is to consider a lag L ≥ 1
and jointly sample the states of both chains (u(t), ū(t−L))
conditioned on their previous states, i.e., (u(t−1), ū(t−L−1)).
We then use (a finite number of) the samples from each
chain to obtain the unbiased estimator (Appendix A shows
how to derive it). Practically, we initialize the first Markov
chain from some (arbitrary) initial distribution π0(·), i.e.,
u(0) ∼ π0(u). We then sample this Markov chain us-
ing the marginal kernel K, i.e., u(t) ∼ K(u |u(t−1)) for
t = 1, . . . , L. After L steps, we draw the initial state of
the second Markov chain ū(0) (potentially conditionally
upon u(L−1), u(L)), such that marginally ū(0) ∼ π0(u).
Afterwards, for t > L, we draw both states jointly as
(u(t), ū(t−L)) ∼ KC(u, ū |u(t−1), ū(t−L−1)).

The joint kernelKC is chosen such that, after some time, both
chains produce the same exact realizations of the random

1The joint kernel is such that KC(A,U |u, ū) = K(A |u) and
KC(U , A |u, ū) = K(A | ū) for any measurable set A.
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variables, i.e., u(t) = ū(t−L) for t ≥ τ . Here, τ is the
meeting time, defined as the first time instant in which both
chains meet, τ = inf{t ≥ L : u(t) = ū(t−L)} (it could be
infinite, but we design the joint kernel so that τ is a random
variable of finite expected value).

Based on this coupling procedure, the unbiased estimator of
Eq. 13 by Vanetti and Doucet [2020] is (see Appendix A)

Ĥ=
1

L

(
t0+L−1∑
t=t0

h(u(t))+

τ−1∑
t=t0+L

(
h(u(t))−h(ū(t−L))

))
, (14)

where t0 is a constant that plays the role of the burn-in period,
although it is not a burn-in period in the usual sense, since
we do not require the Markov chains to converge. Indeed, the
estimator in Eq. 14 requires us to run the coupled Markov
chains until they meet each other. Given that we design the
joint kernel such that the meeting time τ is finite, this implies
that we obtain the unbiased estimator in finite time.

We can also think of this unbiased coupling procedure as
providing an empirical approximation2 π̂(·) of π(·),

π̂(u)=
1

L

(
t0+L−1∑
t=t0

δu(t)(u)+

τ−1∑
t=t0+L

(δu(t)(u)−δū(t−L)(u))

)
.

(15)

We next provide sufficient conditions that ensure that the
estimator in Eq. 14 can be computed in expected finite time
and has finite variance. These conditions are similar as for
the original estimator of [Jacob et al., 2020b, Middleton
et al., 2020] but the proof is slightly different.

Proposition 3 (The unbiased estimator can be computed in
finite time and has finite variance). Assume the following
conditions hold:

a. (Convergence of the Markov chain.) Each of the two
chains marginally starts from a distribution π0, evolves
according to a transition kernel K and is such that
E
[
h(u(t))

]
→ Eπ(u) [h(u)] as t→∞.

b. (Finite high-order moment.) There exist η > 0 and D <

∞ such that E
[∣∣h(u(t))

∣∣2+η
]
≤ D ∀t ≥ 0.

c. (Distribution of the meeting time.) There exists an almost
surely finite meeting time τ = inf{t ≥ L : u(t) =
ū(t−L)} such that P(τ > t) ≤ Ct−κ for some C < ∞
and κ > 2(2η−1 + 1), where η appears in Condition (b).

d. (The chains stay together after meeting.) We have u(t) =
ū(t−L) for all t ≥ τ .

Then, Eq. 14 is an unbiased estimator ofEπ(u)[h(u)] that can
be computed in finite expected time and has finite variance.

Conditions (a) and (d) can be satisfied by careful design
of the joint kernel KC. Condition (b) is a mild integrability

2Eq. 15 is a signed measure, i.e., we can have Eπ̂(u)[h(u)] < 0
even for a positive function h(·).

Algorithm 3: C-DISIR kernel for two coupled chains,
KC-DISIR((·, ·), (·, ·) | (ξ1:K , `), (ξ̄1:K , ¯̀))

Input: Current state of both chains, (ξ1:K , `) and
(ξ̄1:K , ¯̀), and correlation strength β

Output: New state of both chains
1 Sample `aux ∼ Cat( 1

K , . . . ,
1
K )

2 Set ξ?`aux = ξ` and ξ̄?`aux = ξ̄¯̀

3 Sample ξnewk ∼ q(ξ) for k ∈ {1, . . . ,K}\{`aux}
4 Set ξ?k = βξ?k−1 +

√
1− β2ξnewk and

ξ̄?k = βξ̄?k−1 +
√

1− β2ξnewk for k = `aux + 1, . . . ,K

5 Set ξ?k = βξ?k+1 +
√

1− β2ξnewk and
ξ̄?k = βξ̄?k+1 +

√
1− β2ξnewk for k = `aux − 1, . . . , 1

6 Set z?k = gφ(ξ?k, x) and z̄?k = gφ(ξ̄?k, x) for
k = 1, . . . ,K

7 Sample
`?, ¯̀? ∼ KC-Cat(`, ¯̀| (wθ,φ(z?1), . . . , wθ,φ(z?K)),
(wθ,φ(z̄?1), . . . , wθ,φ(z̄?K))) from the maximal
coupling kernel (Algorithm 5 in Appendix B)

8 Return ((ξ?1:K , `
?), (ξ̄?1:K ,

¯̀?))

condition. Condition (c) can be satisfied if the marginal
kernelK is (only) polynomially ergodic and some additional
mild irreducibility and aperiodicity conditions on the joint
kernel KC hold [Middleton et al., 2020].

4.2 COUPLING DISIR

Here we describe the main algorithm of this paper: an esti-
mator based on two coupled Markov chains, each evolv-
ing according to the DISIR transition kernel from Sec-
tion 3.2. That is, we build a joint kernel KC for unbi-
ased gradient estimation. We denote the joint kernel as
KC-DISIR((·, ·), (·, ·) | (ξ1:K , `), (ξ̄1:K , ¯̀)). It inputs the cur-
rent state of both Markov chains, (ξ1:K , `) and (ξ̄1:K , ¯̀),
and returns their new states.

The coupled DISIR kernel (C-DISIR) is given in Algo-
rithm 3. It resembles the DISIR kernel of Algorithm 2,
and in fact, as required, it behaves as KDISIR(·, · | ξ1:K , `)
marginally if we ignore one of the two Markov chains. Thus,
Algorithm 3 guarantees that the marginal stationary distri-
bution of each chain is pDISIRθ,φ (ξ1:K , ` |x) (Eq. 10).

The indicators (`?, ¯̀?) are sampled jointly from a kernel
KC-Cat (Line 7 of Algorithm 3), which is given in Appendix B.
This corresponds to the maximal coupling kernel3 for two
categorical distributions [Lindvall, 2002].

When the correlation strength β = 0, i.e., when DISIR is
equivalent to ISIR, coupling may occur; that is, Algorithm 3
may return the same state for both chains. To see this, note

3A coupling procedure is maximal if it maximizes the proba-
bility that both chains meet.
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Algorithm 4: Unbiased estimation with C-ISIR-DISIR
Input: The constant t0 and the lag L
Output: An unbiased estimator of ∇θL

1 Initialize ξk ∼ q(ξ) and ξ̄k ∼ q(ξ) for k = 1, . . . ,K

2 Initialize ` ∼ Cat( 1
K , . . . ,

1
K ) and ¯̀∼ Cat( 1

K , . . . ,
1
K )

3 for t = 1, . . . , L do
4 Sample

(ξ
(t)
1:K , `

(t)) ∼ KISIR-DISIR(·, · | ξ(t−1)
1:K , `(t−1)) (two

steps of Algorithm 2, with β = 0 then β > 0)
5 end
6 Set the iteration t = L
7 while t < t0 +L− 1 or the two chains have not met do
8 Sample ((ξ

(t+1)
1:K , `(t+1)), (ξ̄

(t−L+1)
1:K , ¯̀(t−L+1))) ∼

KC-ISIR-DISIR((·, ·), (·, ·) | (ξ(t)
1:K , `

(t)), (ξ̄
(t−L)
1:K , ¯̀(t−L)))

(two steps of Algorithm 3, with β = 0 then β > 0)
9 Increase t← t+ 1

10 end
11 Return the estimator from Eq. 14 using the function

h(ξ1:K , `) :=
∑K
k=1 w̃

(k)
θ,φ∇θ log pθ(x, zk)

that when β = 0, Algorithm 3 shares the same values of
the noise values generating the importance samples for both
chains, i.e., ξ?k = ξ̄?k for k 6= `aux, while the `aux-th impor-
tance sample is set to the current state of each chain, i.e.,
ξ?`aux = ξ` and ξ̄?`aux = ξ̄¯̀. Thus, if the indicators sampled in
Line 7 take the same value (i.e., `? = ¯̀?) and this value is
different from `aux, then both chains meet. After meeting,
for any future iteration of the joint kernel, the states of both
chains are guaranteed to be identical to each other. On the
contrary, when the correlation strength β 6= 0, coupling
cannot occur. However, for any β ∈ [0, 1), Algorithm 3 guar-
antees that the chains remain equal to each other once they
have previously met.

We use a composed kernel that consists of the consecutive
application of two steps of Algorithm 3. The first step has
β = 0; in this step the chains may meet each other. The
second step has β > 0, which favours exploitation. As dis-
cussed in Section 3.2, it is valid to combine these two kernels.
We denote this composed joint kernel as KC-ISIR-DISIR.

Unbiased gradient estimation with C-ISIR-DISIR. Al-
gorithm 4 describes the procedure that provides an unbiased
estimator of∇θL. It samples twoMarkov chains, (ξ(t)

1:K , `
(t))

and (ξ̄
(t)
1:K ,

¯̀(t)), by inducing a coupling between the state of
the first chain at time t and the state of the second chain at
time t− L, where L ≥ 1 is the lag. After both chains meet,
it returns the unbiased gradient estimator using Eq. 14 for
the function h(ξ1:K , `) :=

∑K
k=1 w̃

(k)
θ,φ∇θ log pθ(x, zk) (ap-

plying Proposition 2), where zk = gφ(ξk, x) and the normal-
ized importance weights are w̃(k)

θ,φ ∝ wθ,φ(zk). Algorithm 4
provides a practical unbiased estimator, as we show next.

Proposition 4. Let Assumptions 1 to 3 hold and condition
(b) of Proposition 3 be satisfied. For anyK ≥ 2, Algorithm 4
returns an unbiased estimator of∇θL of finite variance that
can be computed in finite expected time. Additionally, E[τ ]
can be upper bounded by a quantity decreasing withK.

5 RELATED WORK

Our estimator builds on previous work discussed in the for-
mer sections. We now review other related works.

ISIR, as well as other particle MCMC algorithms, has been
previously used for smoothing in state-space models [An-
drieu et al., 2010] and for (biased) estimation of∇θL [Naes-
seth et al., 2020]. Coupled variants of these algorithms have
also been previously developed for unbiased smoothing [Ja-
cob et al., 2020a, Middleton et al., 2019]. Indeed, Algo-
rithm 3 for β = 0 has been used by Jacob et al. [2020a]
(without reparameterization). However, we found experi-
mentally that the unbiased estimators based on coupled ISIR
suffer from high variance for moderately high dimensions,
making them impractical for VAEs. The estimators based
on coupled DISIR with β ≈ 1 address this issue.

An unbiased estimator based on a coupled Gibbs sampler has
also been presented for restricted Boltzmann machines [Qiu
et al., 2019], but this method is not applicable for VAEs. An
alternative unbiased gradient estimator for VAEs, based on
Russian roulette ideas, was developed by Luo et al. [2020].
However, this estimator suffers from high variance (poten-
tially infinite), and requires additional variance reduction
methods such as gradient clipping, which defeats the pur-
pose of unbiased gradient estimation. In our experiments,
we use RMSProp and no gradient clipping is needed.

Dieng and Paisley [2019] maximize the marginal log-
likelihood of the data using an expectation maximization
scheme that gives a consistent (but not unbiased) estimator.

Finally, note that the coupling estimators approximate the
gradient w.r.t. θ, and are orthogonal to the methods that
improve the expressiveness of the encoder qφ(z |x), such
as semi-implicit methods [Yin and Zhou, 2018, Titsias and
Ruiz, 2019] or normalizing flows [Rezende and Mohamed,
2015, Kingma et al., 2016, Papamakarios et al., 2017, Tom-
czak and Welling, 2016, 2017, Dinh et al., 2017], to name a
few. These methods could be used together with the coupling
estimators to obtain a more flexible proposal distribution,
which could improve the mixing of the Markov chains.

6 EXPERIMENTS

In Section 6.1, we study the bias and variance of different
estimators in an experiment where we have access to the
exact gradient ∇θL. In Section 6.2, we study the predictive
performance of VAEs trained with coupled DISIR and show
that models fitted with unbiased estimators outperform those
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Figure 2: Boxplot representation of the error of different
estimators for the gradient w.r.t. one of the intercepts of the
PPCA model. The estimators based on variational bounds
(ELBO and IWAE) are biased. Among the two unbiased
estimators based on couplings, the one based on Algorithm 4
(C-ISIR-DISIR) exhibits lower variance.

fitted via ELBO or IWAE maximization. We implement all
the estimators in JAX [Babuschkin et al., 2020].

6.1 Probabilistic principal component analysis

We first consider probabilistic principal component analysis
(PPCA), as for this model we have access to the exact gra-
dient ∇θL. The model is pθ(x, z) = N (z; 0, I)N (x; θ0 +
θ>1 z, 0.1I), where z ∈ R100. We randomly set the model
parameters θ and fit a variational distribution qφ(z |x) by
maximizing the IWAE bound w.r.t. φ with K = 100 im-
portance samples on binarized MNIST [Salakhutdinov and
Murray, 2008]. The distribution qφ(z |x) is a fully factorized
Gaussian whose parameters depend linearly on x.

We obtain the exact gradient,∇θL =
∑N
n=1∇θ log pθ(xn),

for a batch of N = 100 datapoints, and we compare it
against four gradient estimators. Two estimators are the
gradients of the ELBO and IWAE bounds (∇̂θLELBO and
∇̂θLIWAE). The third one is the unbiased estimator obtained
with coupled ISIR, i.e., a variant of Algorithm 4 where
we replace the KC-ISIR-DISIR kernel with KC-ISIR (which is
equivalent to KC-DISIR with correlation strength β = 0).
The fourth estimator is based on Algorithm 4. For all the
estimators, we use the same (fixed) distribution qφ(z |x).
For the coupling estimators, we set t0 = 1 and lag L = 10.

We obtain 50,000 samples from each estimator, and
compute the (signed) error ∇̂θL − ∇θL for each sample.
We show in Figure 2 the boxplot representation of the
error for a randomly chosen component of the gradient
w.r.t. the intercept term. (In Appendix D.1, we show a
randomly chosen weight term in Figure 5, and the average
over components in Figure 6.) As expected, the estimators
of the ELBO and IWAE gradients are biased. The boxplots
for C-ISIR and C-ISIR-DISIR are consistent with the
unbiasedness of the estimators, and the one based on
C-ISIR-DISIR has smaller variance. This property is key
for fitting more complex models such as VAEs.

6.2 Variational auto-encoder

Now we apply the coupling estimators to fit VAEs and com-
pare the predictive performance to the maximization of the
ELBO and IWAE objectives. (We also implemented the
method of Luo et al. [2020], but we found it led to unstable
optimization despite using gradient clipping.) We provide
further details on the experimental setup in Appendix D.2.

Binarized MNIST. We first fit a VAE on the statically
binarized MNIST dataset. We useK = 10 importance sam-
ples and explore the dimensionality D = {20, 100, 300} of
z ∈ RD. We use RMSProp [Tieleman and Hinton, 2012]
in the stochastic optimization procedure. For the coupling
estimators, we set t0 = 1 step and the lag L = 10.

Following Wu et al. [2017], we estimate the predictive log-
likelihood using annealed importance sampling (AIS) [Neal,
2001]. Specifically, we use 16 independent AIS chains, with
10,000 intermediate annealing distributions, and a transition
operator consisting of one Hamiltonian Monte Carlo (HMC)
trajectory with 10 leapfrog steps and adaptive acceptance
rate tuned to 0.65. For CIFAR-10, we use 4 AIS chains
with 7,500 intermediate distributions and 5 HMC leapfrog
steps. As this procedure is computationally intensive, we
only evaluate the train log-likelihood on the current data
batch, but we evaluate the log-likelihood on the entire test
set at the end of the optimization.

Figure 3(a) shows the evolution of the train log-likelihood;
the error bars correspond to the standard deviation of 10
independent runs. (Figure 7 in Appendix D.3 shows similar
plots for varyingD.) Table 1(a) shows the test log-likelihood
after 300 epochs. The VAE models fitted with the unbiased
estimator of Algorithm 4 have better predictive performance.

The KC-ISIR-DISIR kernel in Algorithm 4 is key for obtaining
this improved performance. As a comparison, replacing it
withKC-ISIR leads to a test log-likelihood value of−90.70±
0.08 for D = 20, i.e., it is worse than using the standard
ELBO (and the gap with the ELBO gets larger for increasing
dimensionality D). Moreover, KC-ISIR-DISIR alleviates the
computational complexity of KC-ISIR, as measured by the
number of MCMC iterations it requires. Figure 4 compares
the histograms of the meeting time τ for both kernels; C-
ISIR-DISIR requires significantly fewer iterations. (Figure 8
in Appendix D.4 shows that the histograms behave similarly
across different values of D.)

The improved performance over IWAE comes at the expense
of computational complexity. The cost of Algorithm 4 is
roughly 10 times the cost of computing ∇̂θLIWAE.

Fashion-MNIST and CIFAR-10. The estimator based on
Algorithm 4 leads to improved models but it is also com-
putationally more expensive. We now study the effect of
switching to Algorithm 4 after fitting a VAE using the IWAE
objective. That is, we first fit the VAE using the IWAE
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(a) Results on binarized MNIST for D = 100. The unbiased
estimator from Algorithm 4 provides better performance.
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(b) Results on fashion-MNIST. After switching from the IWAE to
the unbiased estimator at epoch 200, the performance improves.

Figure 3: Train log-likelihood for a VAE.

objective for 200 epochs, and then refine the result with
the unbiased estimator based on KC-ISIR-DISIR. We use two
datasets, fashion-MNIST [Xiao et al., 2017] and CIFAR-10
[Krizhevsky, 2009], and set D = 100.

Figure 3(b) shows the train log-likelihood during optimiza-
tion for fashion-MNIST. After switching from the IWAE
objective to the unbiased estimator of Algorithm 4, it im-
proves. Additionally, Table 1(b) shows the test log-likelihood
on both fashion-MNIST and CIFAR-10 after 300 epochs. We
can conclude that switching to an unbiased gradient estima-
tor boosts the predictive performance of the VAE.

7 DISCUSSION

We have developed a practical algorithm to obtain unbiased
estimators of the gradient of the log-likelihood for intractable
models, and we have shown empirically that VAEs fitted with
unbiased estimators exhibit better predictive performance.
Compared to ELBO or IWAE gradients, the main limitation
of this approach is its higher computational cost and the fact
that the running time is random. While one could obtain
more accurate estimators simply by increasing the number
of samples of the IWAE bound, this would significantly
increase the memory requirement, making it unpractical for
datasets like CIFAR-10, and it would also remain biased for
any (finite) number of samples.

The topic of coupling estimators is currently an active re-
search field. We expect future work will improve the practi-
cal applicability of such estimators using methods like, e.g.,

Table 1: Test log-likelihood for the VAE. The unbiased esti-
mators obtained via the coupled ISIR-DISIR kernel produce
models with better predictive performance.

(a) Binarized MNIST.
dimensionality of z

20 100 300

ELBO −90.05± 0.21 −89.96± 0.14 −90.63± 0.12
IWAE −88.06± 0.08 −88.07± 0.06 −89.05± 0.08

C-ISIR-DISIR −87.29± 0.08 −86.75± 0.10 −88.10± 0.08

(b) Fashion-MNIST and CIFAR-10.
Fashion-MNIST CIFAR-10

ELBO −173.36± 0.40 −152.06± 0.30
IWAE −170.50± 0.30 −149.72± 0.39

IWAE + C-ISIR-DISIR −168.19± 0.32 −148.40± 0.27

0 200 400 600 800 1000
meeting time ( )

101

102

103

104

105

C-ISIR

10 20 30 40
meeting time ( )

C-ISIR-DISIR

Figure 4: Histogram of the meeting time for a VAE fitted
on binarized MNIST with D = 300. The histogram corre-
sponding to C-ISIR has significantly heavier tails, which
results in higher computational complexity of the overall
estimator. Moreover, C-ISIR occasionally (1%) reaches the
maximum allowed number of MCMC iterations (hard-coded
at around 1,000), which induces a small bias in the estimator.
C-ISIR-DISIR does not suffer from this issue.

control variates [Craiu and Meng, 2020].
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