
The Neural Moving Average Model for Scalable Variational Inference of State
Space Models: Supplementary Material

Thomas Ryder1,2 Dennis Prangle1 Andrew Golightly1 Isaac Matthews1

1School of Mathematics Statistics and Physics, Newcastle University, Newcastle, United Kingdom
2Huawei Noah’s Ark Lab

A MCMC ALGORITHM FOR AR(1) VIA
FORWARD-FILTER RECURSION

Here we present an MCMC method for the AR(1) model in
the main paper,

xi+1 = θ1 + θ2xi + θ3ε. (1)

Recall that we take ε ∼ N(0, 1) and x0 = 10. We assume
observations yi ∼ N(xi, 1) for i ∈ 0:T , and independent
N(0, 102) priors on θ1, θ2, log θ3.

Assuming T observations, the marginal parameter posterior
is given by

p(θ|y0:T) ∝ p(θ)p(y0:T |θ), (2)

where p(y0:T |θ) is the marginal likelihood obtained from
integrating out the latent variables from p(θ, x0:T |y0:T). We
sample the marginal parameter posterior p(θ|y0:T) using a
random walk Metropolis-Hastings scheme.

This appendix describes the key step of evaluating the mar-
ginal likelihood given θ, which is achieved using a forward
filter. See West and Harrison [2006] for a general introduc-
tion to forward-filtering algorithms for linear state space
models. We adapt this as follows.

As can be seen from (1), the AR(1) model is linear and
Gaussian. Hence, for a Gaussian observation model with
variance σ2, the marginal likelihood is tractable and can
be efficiently computed via a forward-filter recursion. This
utilises the factorisation

p(y0:T |θ) = p(y0|θ)
T∏
i=1

p(yi|y0:i−1, θ), (3)

by recursively evaluating each term.

Suppose that xi|y0:i ∼ N(ai, ci). Since x0 = 10 we can
take a0 = 10, c0 = 0. It follows that

xi+1

∣∣y0:i ∼ N (θ1 + θ2ai, θ
2
2ci + θ23

)
, (4)

which, from the observation model, gives us the one-step-
ahead forecast

yi+1

∣∣y0:i ∼ N (θ1 + θ2ai, θ
2
2ci + θ23 + σ2

)
. (5)

Hence the marginal likelihood can be recursively updated
using

p(y0:i+1|θ) = p(y0:i|θ)p(yi+1|y0:i, θ), (6)

where p(yi+1|y0:i, θ) is the density of (5).

The next filtering distribution is obtained as xi+1|y0:i+1 ∼
N(ai+1, ci+1) where

ai+1 =θ1+ θ2ai+

(
θ22ci + θ23

)
(yi+1 − θ1 − θ2ai)

(θ22ci + θ23 + σ2)
(7)

ci+1 =θ22ci + θ23 −
(
θ22ci + θ23

)2
(θ22ci + θ23 + σ2)

. (8)

Evaluation of (4)-(8) for i = 0, 1, . . . , T − 1 gives the mar-
ginal likelihood p(y0:T |θ).

B MINI-BATCH SAMPLING

Algorithm A describes how to sample a subsequence xa:b
from q(x|θ;φx) without needing to sample the entire x
sequence.

Let z0 be the base random sequence and zj be the sequence
after j affine layers. We assume no layers permuting the
sequence order (but do allow layers permuting the compon-
ents within each vector in the sequence). Suppose there are
m affine layers, so the output is x = zm.

Algorithm A presents the multivariate case where
xi, z

j
i , µ

j
i , σ

j
i are all vectors in Rd. This includes d = 1

as a special case. We denote the kth entry of σji as σiik.
Recall that ϕ is the N(0, Id) log density function.

Each iteration of the algorithm (except the last) must sample
zji vectors over an interval of i which is wider than simply

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

mailto:Tom Ryder <T.Ryder2@newcastle.ac.uk>?Subject=Your UAI 2021 paper

Algorithm A Sampling a subsequence from a nMA model

1: Sample z0i for a − c0 ≤ i ≤ b. These are sampled
from independent N(0, Id) distributions except when
i 6∈ 1:T . In the latter case z0i is a vector of zeros.

2: for 1 ≤ j ≤ m do
3: Apply the CNN with input zj−1a−cj−1:b

. This outputs

µja−cj :b and σja−cj :b.

4: Calculate zja−cj :b using affine transformation zji =

µji + σji � z
j−1
i .

5: Permute components in zj if necessary.
6: end for
7: Return sampled subsequence xa:b = zma:b, and log dens-

ity contributions λa:b, where

λi = ϕ(z0i)−
d∑
k=1

m∑
j=1

log σjik.

a:b. The number of extra zji s required at the lower end of
this interval is

cj = (m− j)`. (9)

In other words, at each iteration the required interval shrinks
by `, the length of the receptive field for z.

C ORDER-REVERSING PERMUTATIONS

The main paper mentions that affine flow layers could be
alternated with layers which reverse the order of the x1:T
sequence. This can be accomplished by replacing Algorithm
A above with Algorithm B. We state this algorithm using
only the original sequence ordering. To do so we introduce
an operation R which reverses the order of a sequence.

As before, each iteration (except the last) samples zji vectors
over an interval of i wider than a:b. However now we need
extra entries at both ends of this interval, c−j and c+j at the
lower and upper ends respectively. These can be defined
recursively by c−m = c+m = 0 and

(c−j , c
+
j) = (c−j+1, c

+
j+1) +

{
(`, 0) j odd
(0, `) j even

(10)

D SIDE INFORMATION

Here we give more details of what side information we in-
ject into our nMA model for x. We inject this information
into the first layer of the CNN for each of our affine trans-
formations. Recall that firstly we include the parameters
θ as global side information. Also we provide local side
information, encoding information in y local to i which is
useful for inferring the state xi.

Algorithm B Sampling a subsequence from a nMA model,
with order-reversing permutations

1: Sample z0i for a− c0 ≤ i ≤ b as in Algorithm A.
2: for 1 ≤ j ≤ m do
3: if j odd then
4: Apply the CNN with input zj−1

a−c−j−1:b+c
+
j−1

. This

outputs µj
a−c−j :b+c+j

and σj
a−c−j :b+c+j

.

5: else
6: Apply the CNN with input R(zj−1

a−c−j−1:b+c
−
j−1

).

This outputs R(µj
a−c−j :b+c+j

) and R(σj
a−c−j :b+c+j

).

7: end if
8: Calculate zj

a−c−j :b+c+j
using affine transformation

zji = µji + σji � z
j−1
i .

9: Permute components in zj if necessary.
10: end for
11: Return sampled subsequence xa:b = zma:b, and log dens-

ity contributions λa:b, where

λi = ϕ(z0i)−
d∑
k=1

m∑
j=1

log σjik.

In more detail, first we define si to be a vector of data
features relevant to xi. We pick these so that si exists for all
i even if (1) no yi observations exist for xi or (2) i is outside
the range 0:T . The data features we use in our examples are
listed in the next section.

The side information corresponding to the ith position in
the sequence processed by the CNN is θ and the vector
si−`′:i+`′ . The tuning parameter `′ is a receptive field length
(like ` earlier). This receptive field extends in both directions
from the sequence position i, so it can take account of both
recent and upcoming observations. The side information is
encoded using a feed-forward network, and this vector is
then used as part of the input to the first layer of the CNN.

E IMPLEMENTATION DETAILS FOR
ALGORITHM 1

Optimisation We use the AdaMax optimiser [Kingma
and Ba, 2015], due to its robustness to occasional large
gradient estimates. These sometimes occurred in our train-
ing procedure when different batches of the time series had
significantly different properties. See Section F for its tuning
choices. To stabilise optimisation, we also follow Pascanu
et al. [2013] and clip gradients using the global L1 norm.

Variational Approximation for θ For q(θ;φθ) we use a
masked IAF as described in Section 3.1 of the main paper.
In all our examples, this alternates between 5 affine layers

and random permutations. Each affine transformation is
based on a masked feed-forward network of 3 layers with
10 hidden units.

Unequal Batch Sizes The main paper assumes the train-
ing batch is split into batches B1, B2, . . . , Bb of equal
length. Recall that in this case a batch Bκ is sampled at
random to use in a training iteration where κ is drawn uni-
formly from 1:b.

Often the length of the data will require batches of unequal
lengths to be used. To do so, simply take Pr(κ) = |Bκ|/T ,
and replace T/M in (15) (in the main paper) with T/|Bκ|.

Pre-Training We found that pre-training our variational
approximation to sensible initial values reduced the training
time. A general framework for this is to train q(θ;φθ) to be
close to the prior, and q(x|θ;φx) to be close to the observa-
tions, or some other reasonable initial value. See Section F
of for details of how we implemented this in our examples.

One of our examples required more complex pre-training,
described below in Section G.2. Although our method does
sometimes require such non-trivial tuning choices, so do
most other competing methods for Bayesian inference of
SSMs (see e.g. Sherlock et al., 2015).

Local Side Information Our local side information vector
si is made up of:

• Time i.
• Binary variable indicating whether or not i ∈ S

(i.e. whether there is an observation of xi).
• Vector of observations yi if i ∈ S. Replaced by the

next recorded observation vector if i 6∈ S, or by a
vector of zeros if there is no next observation.

• Time until next observation (omitted in settings where
every i has an observation).

• Binary variable indicating whether i ∈ 0:T (as the si
receptive field can stretch beyond this).

Choice of `′ Throughout we use `′ = 10. We found that
this relatively short receptive field length for local side in-
formation was sufficient to give good results for our ex-
amples.

F EXPERIMENTAL DETAILS

This section lists tuning choices for our examples. In all of
our examples we set both n (number of samples used in
ELBO gradient estimate) and M (batch length) equal to 50,
and use m = 3 affine layers in our flow for x.

Each affine layer has a CNN with 4 layers of one-
dimensional convolutional networks. Each intermediate
layer has 50 filters, uses ELU activation and batch normal-
isation (except the output layer). Before being injected to

the first CNN layer, side information vectors (see Section D)
are processed through a feed-forward network to produce an
encoded vector of length 50. We use a vanilla feed-forward
network of 50 hidden units by 3 layers, with ELU activation.

We use the AdaMax optimiser with tuning parameters β1 =
0.95 (non-default choice) and β2 = 0.999 (default choice).
See the tables below for learning rates used.

Each experiment uses a small number of pre-training SGD
iterations for φθ optimising Eθ∼q[p(θ)], the expected prior
density. We separately pre-train φx to optimise an objective
detailed in the tables below. As discussed above (Section
E), where possible we aim to initialise x to be close to the
observations, or some other reasonable initial value.

Choices specific to each experiment are listed below.

AR(1)

Learning rate 10−3

Pre-training for x 500 iterations minimising
Eθ,x∼q[||x − ŷ||2], where ŷ is
the observed data.

` 10

LOTKA-VOLTERRA: DATA SETTING (A)

Learning rate 10−3

Pre-training for x 500 iterations minimising
Eθ,x∼q[||x − ŷ||2], where ŷ is
linear interpolation of the data.

` 20

LOTKA-VOLTERRA: DATA SETTING (B)

Learning rate 5× 10−4

Pre-training for x 500 iterations maxim-
ising Ex∼q[p(x|θ∗)] where
θ∗ = (0.5, 0.0025, 0.3). See
Section G.2 for more details.

` 20

FITZHUGH-NAGUMO

Learning rate 5× 10−4

Pre-training for x 500 iterations minimising
Eθ,x∼q[||x||2]. Here the model
has some unobserved components,
so we cannot initialise x close to
the observations. Instead we simply
encourage x to take small initial
values.

` 20

G LOTKA-VOLTERRA DETAILS

Here we discuss some methodology specific to the Lotka-
Volterra example in more detail.

G.1 RESTRICTING x TO POSITIVE VALUES

For our Lotka-Volterra model, xi = (ui, vi) represents two
population sizes. Negative values don’t have a natural in-
terpretation, and also cause numerical errors in the model
i.e. the matrix β in (17) may no longer be positive definite
so that a Cholesky factor, required in (2), is not available1.

Therefore we wish to restrict the support of q(x|θ;φx) to
positive values. We so by the following method, which can
be applied more generally, beyond this specific model. We
add a final elementwise softplus bijection to our nMA model.
Let x̃ be the output before this final bijection. The log dens-
ity (7) gains an extra term to become

log q(x) =

T∑
i=1

ϕ(zi)−
d∑
k=1

m∑
j=1

T∑
i=1

log σjik−
d∑
k=1

T∑
i=1

γ(x̃ik),

(11)
where γ is the derivative of the softplus function (i.e. the lo-
gistic function). The ELBO calculations remain unchanged
except for taking

λi = ϕ(zi)−
d∑
k=1

m∑
j=1

log σjik −
d∑
k=1

γ(x̃ik). (12)

We implement our method as before with this modification
to λi.

G.2 MULTIPLE MODES AND PRE-TRAINING

Observation setting (b) of our Lotka-Volterra example has
multiple posterior modes. Without careful initialisation of
q(x|θ), the variational approach typically finds a mode
with high frequency oscillations in x. An example is dis-
played in Figure 1. The corresponding estimated maximum
a-posteriori parameter values are θ̂ = (4.428, 0.029, 2.957).

Ideally we would aim to find the most likely modes and
evaluate their posterior probabilities, but this is infeasible
for our method. (It could be feasible to design a reversible
jump MCMC algorithm, following Green, 1995, to do this,
but we are unaware of such a method for this application.)
Instead we attempt to constrain our analysis to find the
mode we expect to be most plausible – that giving a single
oscillation between each pair of data points. It is difficult
to encode this belief in our prior distribution, so instead we
use pretraining so that VI concentrates on this mode. This

1Note all equation references in Section G.1 are to the main
paper.

is comparable to the common MCMC tuning strategy of
choosing a plausible initial value.

We use 500 pretraining iterations maximising the likelihood
of p(x|θ∗), where θ∗ = 0.1θ̂. The basis for this choice is
that periodic Lotka-Volterra dynamics roughly correspond
to cycles in (u, v) space. Multiplying θ, the rate constants
of the dynamics, by ξ should give similar dynamics but
increase the frequency by a factor of ξ. Based on Figure 1 we
wish to reduce the frequency by a factor of 10, so we choose
ξ = 0.1. Using this pre-training approach, we obtain the
results shown in the main paper (Figure 3), corresponding
to a more plausible mode.

References

Peter J. Green. Reversible jump Markov chain Monte Carlo
computation and Bayesian model determination. Biomet-
rika, 82(4):711–732, 1995.

Durk P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In International Conference on
Learning Representations, 2015.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On
the difficulty of training recurrent neural networks. In
International Conference on Machine Learning, 2013.

Chris Sherlock, Alexandre H. Thiery, Gareth O. Roberts,
and Jeffrey S. Rosenthal. On the efficiency of pseudo-
marginal random walk Metropolis algorithms. The Annals
of Statistics, 43(1):238–275, 2015.

Mike West and Jeff Harrison. Bayesian forecasting and
dynamic models. Springer, 2006.

0 10 20 30 40 50

t

0

50

100

150

200

250

300

350

u

Figure 1: Lotka-Volterra results finding a high-frequency mode. This shows the latent path (dashed line), available observa-
tions (crosses) and 50 samples of the variational posterior for x. Here, for ease of presentation, we present results for u only.
The horizontal axis shows t = 0.1i.

	MCMC Algorithm for AR(1) via Forward-Filter Recursion
	Mini-Batch Sampling
	Order-Reversing Permutations
	Side Information
	Implementation Details for Algorithm 1
	Experimental Details
	Lotka-Volterra Details
	Restricting x to Positive Values
	Multiple Modes and Pre-Training

