Improved Generalization Bounds of Group Invariant / Equivariant Deep Networks via Quotient Feature Spaces (Supplementary material)

Akiyoshi Sannai^{1,2} Masaa

Masaaki Imaizumi^{3,1}

Makoto Kawano³

¹RIKEN Center for Advanced Intelligence Project, Chuo, Tokyo, Japan ²Keio University, Minato, Tokyo, Japan ³ The University of Tokyo, Bunkyo, Tokyo, Japan

A SUPPLEMENT

We provide the deferred proofs of each section.

A.1 PROOF FOR SECTION 3

Proof of Lemma 1. For any $\epsilon > 0$, there is a sequence of rational numbers $\{p_i/q_i\}$ such that $p_i/q_i < \epsilon$ and converges to ϵ . Assume that Lemma 1 holds for rational numbers, then we have $\mathcal{N}_{\varepsilon,\infty}(\Delta_{S_n}) \leq \mathcal{N}_{p_i/q_i,\infty}(\Delta_{S_n}) \leq C/(n! (p_i/q_i)^n)$. Since $1/x^n$ is a continuous function and $\{p_i/q_i\}$ converges to ϵ , we obtain $\mathcal{N}_{\varepsilon,\infty}(\Delta_{S_n}) \leq C/(n! (\varepsilon)^n)$. Hence it is enough to show the case of rational numbers.

We assume $\varepsilon = p/q$ for some integers p, q > 0. Let $\mathcal{C}(I)$ be the covering of I, which is a set of ε -cubes

$$c_{j_1,\dots,j_n} = \{ x = (x_i) \in I \mid \varepsilon j_i \le x_i \le \varepsilon (j_i + 1) \},\$$

for $j_i = 1, ..., [q/p] + 1$. We can easily see that $\mathcal{C}(I)$ attains the minimum number of ε -cubes covering I and the number is $(\varepsilon^{-1} + 1)^n = \frac{\varepsilon^{-n}}{n!} + \mathcal{O}(\varepsilon^{-(n-1)})$. We show that we can find a subset of $\mathcal{C}(I)$ which cover Δ_{S_n} and whose cardinality is $\frac{\varepsilon^{-n}}{n!} + \mathcal{O}(\varepsilon^{-(n-1)})$. The proof is as follows. At first, we calculate the number A of cubes in $\mathcal{C}(I)$ which intersect with the boundary of $\sigma \cdot \Delta$. Then since the number of the orbit of the cubes which do not intersect with the boundary of $\sigma \cdot \Delta$ is n!, if A is $\mathcal{O}(\varepsilon^{-(n-1)})$, we can find the covering whose cardinality is $\frac{\varepsilon^{-n}}{n!} + \mathcal{O}(\varepsilon^{-(n-1)})$. Since $\sigma \cdot \Delta$ is $\{x \in I \mid x_{\sigma^{-1}(1)} \ge x_{\sigma^{-1}(2)} \ge \cdots \ge x_{\sigma^{-1}(n)}\}$, any boundary of $\sigma \cdot \Delta$ is of the form $\{x \in I \mid x_{\sigma^{-1}(1)} \ge \cdots \ge x_{\sigma^{-1}(n)}\}$.

From here, we fix σ and *i*. Consider the canonical projection $\pi : \mathbb{R}^n \to \mathbb{R}^{n-1}$ which sends $x_{\sigma^{-1}(i)}$ -axis to zero. π induces the map $\tilde{\pi} : \mathcal{C}(I) \to \mathcal{C}(\pi(I))$, where $\mathcal{C}(\pi(I))$ is the covering of $\pi(I)$. Let $\mathcal{C}(I)_B$ denote the subset of cubes in $\mathcal{C}(I)$ which intersect with the set $B = \{x \in I \mid x_{\sigma^{-1}(i)} = x_{\sigma^{-1}(i+1)}\}$. Then we can see that $\tilde{\pi}$ is injective on $\mathcal{C}(I)_B$ as follows. Assume that there are two cubes in $\mathcal{C}(I)_B$ whose images by $\tilde{\pi}$ are equal. Let us denote the centers of two cubes by $c_{j_1,..,j_n}$ and $c_{k_1,..,k_n}$. Then, since π only kills $x_{\sigma^{-1}(i)}, j_p = k_p$ holds for $p \neq \sigma^{-1}(i)$. But since $c_{j_1,..,j_n}$ and $c_{k_1,..,k_n}$ are in $\mathcal{C}(I)_B$, we have $j_{\sigma^{-1}(i)} = j_{\sigma^{-1}(i+1)}$ and $k_{\sigma^{-1}(i)} = k_{\sigma^{-1}(i+1)}$. Hence $j_p = k_p$ for any p and $\tilde{\pi}$ is injective on $\mathcal{C}(I)_B$.

Next, let $\mathcal{C}(I)_{\widetilde{B}}$ be the subset of ε -cubes in $\mathcal{C}(I)$ which intersect a boundary of $\sigma \cdot \Delta$ for some σ . We see that the cardinality of $\mathcal{C}(I)_{\widetilde{B}}$ is bounded by $e\varepsilon^{-(n-1)}$ for some constant e > 0. Since the number of components of the boundaries is finite, we prove the claim for a component B. As we see before, $\widetilde{\pi}_{|\mathcal{C}(I)_B}$ is injective. This result implies that the number of cubes that intersect B is bounded by a number of ε -cubes in $\mathcal{C}(p(I)) = \varepsilon^{-(n-1)}$. Put $\mathcal{C}(I)_F = \mathcal{C}(I) - \mathcal{C}(I)_{\widetilde{B}}$. Then we note that the action of S_n on $\mathcal{C}(I)_F$ is free, namely the number of the orbit of any cube in $\mathcal{C}(I)_F$ is $|S_n|$. Hence,

$$|\mathcal{C}(I)_F \cap \Delta| = |\{c \in \mathcal{C}(i) \mid c \subset \Delta\}| = 1/|S_n||\mathcal{C}(I)_F| \le \varepsilon^{-n}/|S_n|.$$

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

Here, $(\mathcal{C}(I)_F \cap \Delta) \cup \mathcal{C}(I)_{\widetilde{B}}$ gives the covering of Δ . This covering gives

$$\mathcal{N}_{\varepsilon,\infty}(\Delta) \le \frac{\varepsilon^{-n}}{n!} + e\varepsilon^{-(n-1)}.$$

Proof of Lemma 2. By Proposition 3, we have $\widetilde{\Delta}_G$ satisfying two conditions above. Since the covering of $\widetilde{\Delta}_G$ induces the covering of Δ_G by the condition 2, $\mathcal{N}_{\varepsilon,\infty}(\Delta_G) \leq \mathcal{N}_{\varepsilon,\infty}(\widetilde{\Delta}_G)$. On the other hand, by the condition 1, we have $\mathcal{N}_{\varepsilon,\infty}(\widetilde{\Delta}_G) \leq |S_n|/|G| \cdot \mathcal{N}_{\varepsilon,\infty}(\Delta_{S_n})$. Combining with Lemma 1, we have the desired result. \Box

Proof of Proposition 1. For the claim, assume that an action of *G* preserves distance, namely, $||x - x'||_2 = ||g(x) - g(x')||_2$ holds. We show that $d_G(y, y') = \inf_{x,x' \in \mathbb{R}^n} \{ ||x - x'||_2 | \phi_G(x) = y, \phi_G(x') = y' \}$. Consider the sum $||x - b_1||_2 + ||a_2 - b_2||_2 = ||x - b_1||_2 + ||a_1 - x'||_2$ and take an element $g \in G$ such that $a_2 = g \cdot b_1$. Then, $||x - b_1||_2 + ||a_2 - b_2||_2 = ||x - b_1||_2 + ||b_1 - g^{-1} \cdot b_2||_2 \geq ||x - g^{-1} \cdot b_2||_2$. By repeating this process, we have $||x - b_1||_2 + ||a_2 - b_2||_2 = ||x - b_1||_2 + ||a_1 - x'||_2 \geq ||x - g \cdot x'||_2$ for some $g \in G$. Hence, $d_G(y, y') = \inf_{x,x' \in I} \{ ||x - x'||_2 | \phi_G(x) = y, \phi_G(x') = y' \}$. This implies $d_G(y, y') = 0 \Rightarrow y = y'$.

Proof of Proposition 3. We confirm that $\widetilde{\Delta}_G$ satisfies both the conditions 1 and 2. As the action of G preserves the distance, $g_k : \Delta_{S_n} \to g_k \cdot \Delta_{S_n}$ is an isomorphism on metric spaces. Hence, condition 1 is satisfied.

For condition 2, we consider $y \in \Delta_G = \phi_G(I)$. Then, there is an element $x \in I$ such that $y = \phi_G(x)$. As $I = \bigcup_{\sigma \in S_n} \sigma \cdot \Delta_{S_n}$, there exist $\sigma \in S_n$ and $z \in \Delta_{S_n}$ such that $x = \sigma \cdot z$.

In contrast, as $\{g_1, ..., g_K | g_k \in G\}$ is a complete system of representatives of $G \setminus S_n$, there exist $\tau \in G$ and g_k such as $\sigma = \tau \cdot g_i$. Then $\phi_G(g_k z) = \phi_G(\tau \cdot g_k z) = \phi_G(x) = y$ and $g_k \cdot z \in \widetilde{\Delta}_G$. Hence $\phi_G(\widetilde{\Delta}_G) = \Delta_G$.

A.2 PROOF FOR SECTION 3.2

Proof of Proposition 4. We prove $\hat{\phi}_G$ is injective and surjective. Assume $f \in C(\Delta_G)$ and put $\hat{\phi}_G(f) = f \circ \phi_G$. Then since ϕ_G is *G*-invariant, so is $\hat{\phi}_G(f)$. Also, since ϕ_G is surjective, $\hat{\phi}_G$ is injective. Take $g \in C^G(I)$, then we define $f \in C(\Delta_G)$ as follows; for any $y \in \Delta_G$, take $x \in I$ such that $\phi_G(x) = y$ and define f(y) = g(x). This map is well defined because g is *G*-invariant. $\hat{\phi}_G(f)(x) = f \circ \phi_G(x) = f(y) = g(x)$. Hence, we obtain the desired result.

Next, we prove the Lipschitz properties. Take $f \in C(\Delta_G)$ and assume f is K-Lipschitz. Then for any $x, x' \in I$,

$$d_G(\phi_G(x), \phi_G(x')) \ge K d(f(\phi_G(x)), f(\phi_G(x'))),$$

by K-Lipschitz property of f. By the definition of d_G , we have $d_G(\phi_G(x), \phi_G(x')) \leq d(x, x')$. Hence, $\widehat{\phi}_G(f)$ is K-Lipschitz continuous. Conversely, assume $\widehat{\phi}_G(f)$ is K-Lipschitz. Take any $y, y' \in I$, then for any $x, x' \in I$ satisfying $\phi_G(x) = y, \phi_G(x) = y'$,

$$d(x, x') \ge Kd(f(\phi_G(x)), f(\phi_G(x'))) = d(f(y), f(y'))$$

by K-Lipschitz property of $\widehat{\phi}_G(f)$. Hence by taking infimum of the left hand side, we have

$$d_G(y, y') = \inf d_G(\phi_G(x), \phi_G(x')) \ge Kd(f(y), f(y')).$$

Hence, f is K-Lipschitz.

Proof of Proposition 2. We first note that ϕ is the identity map on Δ , because elements in Δ are sorted. This implies $\Delta \cong \phi(\Delta)$. Therefore, it is sufficient to show $\Delta \cong \Delta_{S_n}$. As Δ is a subset of I, we have the distance preserving map $\phi_{S_n \uparrow \Delta} : \Delta \to \Delta_{S_n}$.

Then, we show that $\phi_{S_n \uparrow_\Delta}$ is a bijection. *Injectivity*: Ley us take any $x, y \in \Delta$ such that $\phi_{S_n \uparrow_\Delta}(x) = \phi_{S_n \uparrow_\Delta}(y)$. Then $x = g \cdot y$ for some $g \in S_n$. However, as y is in Δ , $\{g \cdot y | g \in S_n\} \cap \Delta = \{y\}$. Hence, x = y. *Surjectivity*: Take any $z \in \Delta_{S_n}$, then there is $x \in I$ such that $z = \phi_{S_n}(x)$. By the construction of Δ , there is $g \in S_n$ and $y \in \Delta$ that satisfies $x = g \cdot y$. Hence, $z = \phi_{S_n}(x) = \phi_{S_n}(g \cdot y) = \phi_{S_n}(y)$.

Proof of Proposition 5. Firstly, we show $\widehat{\phi}_G^{-1}(f) \in \mathcal{F}(I)$ with any $f \in \mathcal{F}^G(I)$. For $f \in \mathcal{F}^G(I)$, we consider $\widehat{\phi}_G^{-1}(f) \in C(\Delta_G)$ as Proposition 4. Suppose f and f' are K-Lipschitz continuous, then $\widehat{\phi}_G^{-1}(f)$ is also K-Lipschitz continuous by Proposition 4. Since Zhang et al. [2018] states that Lipschitz continuous functions are represented by DNNs, we have $\widehat{\phi}_G^{-1}(f) \in \mathcal{F}(\Delta_G)$.

Fix $f_1, f_2 \in \mathcal{F}^G(I)$. Then, there exist $f'_1, f'_2 \in \mathcal{F}(\Delta_G)$ such as $f_1 = \widehat{\phi}_G(f'_1)$ and $f_2 = \widehat{\phi}_G(f'_2)$. Then, we have

$$\|f_1 - f_2\|_{L^{\infty}(I)} = \|\widehat{\phi}_G(f_1') - \widehat{\phi}_G(f_1')\|_{L^{\infty}(I)} = \|f_1' \circ \phi_G - f_2' \circ \phi_G\|_{L^{\infty}(I)} \le \|f_1' - f_2'\|_{L^{\infty}(\Delta_G)}$$

Based on the result, we can bound $\mathcal{N}_{\varepsilon,\infty}(\mathcal{F}^G(I))$ by $\mathcal{N}_{\varepsilon,\infty}(\mathcal{F}(\Delta_G))$. Let us define $N := \mathcal{N}_{\varepsilon,\infty}(\mathcal{F}(\Delta_G))$. Then, there exist $f'_1, ..., f'_N$ such that for any $f' \in \mathcal{F}(\Delta_G)$, there exists $j \in \{1, ..., N\}$ such as $\|f'_j - f'\|_{L^{\infty}(\Delta_G)} \leq \varepsilon$. Here, for any $f \in \mathcal{F}^G(I)$, there exists $f_j := \hat{\phi}_G^{-1}(f'_j) \in \mathcal{F}^G(I)$ and it satisfies $\|f - f_j\|_{L^{\infty}(I)} \leq \|\hat{\phi}_G(f) - \hat{\phi}_G(f_j)\|_{L^{\infty}(\Delta_G)} \leq \varepsilon$. Then, we obtain the statement.

Proof of Theorem 2. Combining Proposition 5 and 6, we obtain a bound for $\log \mathcal{N}_{2C_{\Delta}\delta,\infty}(\mathcal{F}^G(I))$. Then, we substitute it into (3) and obtain the statement of Theorem 2.

A.3 PROOF FOR SECTION 4

Proof of Proposition 6. We bound a covering number of a set of C_{Δ} -Lipschitz continuous functions on Δ . Let $\{x_1, ..., x_K\} \subset \Delta$ by a set of centers of δ -covering set for Δ . By Lemma 1, we set $K = C/(|G| \delta^n)$ with δ with a parameter $\delta > 0$, where C > 0 is a constant.

We will define a set of vectors to bound the covering number. We define a discretization operator $A : \mathcal{F}(\Delta_G) \to \mathbb{R}^K$ as

$$Af = (f(x_1)/\delta, ..., f(x_K)/\delta)^\top$$

Let $\mathcal{B}_{\delta}(x)$ be a ball with radius δ in terms of the $\|\cdot\|_{\infty}$ -norm. For two functions $f, f' \in \mathcal{F}(\Delta_G)$ such as Af = Af', we obtain

$$\|f - f'\|_{L^{\infty}(I)} = \max_{k=1,...,K} \sup_{x \in \mathcal{B}_{\delta}(x_k)} |f(x) - f'(x)|$$

$$\leq \max_{k=1,...,K} \sup_{x \in \mathcal{B}_{\delta}(x_k)} |f(x) - f(x_k)| + |f'(x_k) - f(x_k)|$$

$$\leq 2C_{\Delta}\delta,$$

where the second inequality follows $f(x_k) = f'(x_k)$ for all k = 1, ..., K and the last inequality follows the C_{Δ} -Lipschitz continuity of f and f'. By the relation, we can claim that $\mathcal{F}(\Delta_G)$ is covered by $2C_{\Delta}\delta$ balls whose center is characterized by a vector $b \in \mathbb{R}^K$ such as b = Af for $f \in \mathcal{F}(\Delta_G)$. Namely, $\mathcal{N}_{2C_{\Delta}\delta,\infty}(\mathcal{F}(\Delta_G))$ is bounded by a number of possible b.

Then, we construct a specific set of b to cover $\mathcal{F}(\Delta_G)$. Without loss of generality, assume that $x_1, ..., x_K$ are ordered satisfies such as $||x_k - x_{k+1}||_{\infty} \leq 2\delta$ for k = 1, ..., K - 1. By the definition, $f \in \mathcal{F}(\Delta_G)$ satisfies $||f||_{L^{\infty}(\Delta)} \leq B$. $b_1 = f(x_1)$ can take values in $[-B/\delta, B/\delta]$. For $b_2 = f(x_2)$, since $||x_1 - x_2||_{\infty} \leq 2\delta$ and hence $|f(x_1) - f(x_2)| \leq 2C_{\Delta}\delta$, a possible value for b_2 is included in $[(b_1 - 2\delta)/\delta, (b_1 + 2\delta)/\delta]$. Hence, b_2 can take a value from an interval with length 4 given b_1 . Recursively, given b_k for k = 1, ..., K - 1, b_{k+1} can take a value in an interval with length 4.

Then, we consider a combination of the possible b. Simply, we obtain the number of vectors is $(2cB/\delta) \cdot (4c)^{K-1} \leq (8c^2B/\delta)^{K-1}$ with a universal constant $c \geq 1$. Then, we obtain that

$$\log \mathcal{N}_{2C_{\Lambda}\delta,\infty}(\mathcal{F}(\Delta_G)) \le (K-1)\log(8c^2B/\delta).$$

Then, we specify K which describe a size of Δ through the set of covering centers.

A.4 PROOF FOR SECTION 5

Proposition 7. Suppose G is transitive. Then, for any $\varepsilon > 0$, we have

$$\mathcal{N}_{\varepsilon,\infty}(\widetilde{\mathcal{F}}^G(I)) \leq \mathcal{N}_{\varepsilon,\infty}(\mathcal{F}^{\mathrm{St}(G)}(I)).$$

Proof of Proposition7. The first statement simply follows Proposition 11 with setting J = 1, since $g \in G$ is transitive. In the case of S_n , we have J = 1 and $Stab(1) \cong S_{n-1}$. This gives the second statement.

Proof of Theorem 3 and Corollary 2. For Theorem 3, we combine the bound (3), Lemma 2 and Proposition 5. Thus, we obtain the statement.

For Corollary 2, since S_n is transitive, the statement obviously holds with $|St(G)| = |S_{n-1}| = (n-1)!$.

A.5 PROOF FOR SECTION 6

To prove Theorem 4, we consider a Sort map and show that DNNs can represent the map. Let $\max^{(k)}(x_1, ..., x_n)$ be a map which returns the k-th largest value of inputted elements $x_1, ..., x_n$ for k = 1, ..., n. Then, we provide a form of Sort as

$$Sort(x_1, ..., x_n) = (max^{(1)}(x_1, ..., x_n), ..., max^{(n)}(x_1, ..., x_n)).$$

To represent it, we provide the following propositions.

Proposition 8. $\max^{(j)}(z_1, \ldots, z_N)$ and $\min^{(j)}(z_1, \ldots, z_N)$ are represented by an existing deep neural networks with an *ReLU* activation for any j = 1, ..., N.

Proof of Proposition 8. Firstly, since

$$\max(z_1, z_2) = \max(z_1 - z_2, 0) + z_2,$$

and

$$\min(z_1, z_2) = -\max(z_1 - z_2, 0) + z_1$$

hold, we see the case of j = 1, N = 2. By repeating $\max(z_1, z_2)$, we construct $\max^{(1)}(z_1, \ldots, z_N)$ and $\min^{(1)}(z_1, \ldots, z_N)$. Namely, we prove the claim in the case of j = 1 and arbitrary N. At first, we assume N is even without loss of generality, then we divide the set $\{z_1, \ldots z_N\}$ into sets of pairs $\{(z_1, z_2), \ldots (z_{N-1}, z_N)\}$. Then, by taking a max operation for each of the pairs, we have $\{y_1 = \max(z_1, z_2), \ldots, y_{N/2} = \max(z_{N-1}, z_N)\}$. We repeat this process to terminate. Then we have $\max^{(1)}(z_1, \ldots, z_N)$, which is represented by an existing deep neural network. Similarly, we have $\min^{(1)}(z_1, \ldots, z_N)$. Finally, we prove the claim on $j = 2, \ldots, N$ by induction. Assume that for any N and $\ell < j, \max^{(\ell)}(z_1, \ldots, z_N)$ is represented by a deep neural network. We construct $\max^{(j)}(z_1, \ldots, z_N)$ as follows: since

$$\max^{(j-1)}(z_{-\ell}) = \begin{cases} \max^{(j-1)}(z_1, \dots, z_N) & \text{(if } z_\ell \le \max^{(j)}(z_1, \dots, z_N)) \\ \max^{(j)}(z_1, \dots, z_N) & \text{(otherwise)} \end{cases}$$

holds, we have $\max^{(j)}(z_1, \ldots, z_N) = \min(\{\max^{(j-1)}(Z_\ell) \mid \ell = 1, \ldots, N\})$. By inductive hypothesis, the right hand side is represented by a deep neural network.

Further, we provide the following result for a technical reason.

Proposition 9. The restriction map

$$\Lambda: \mathcal{F}^{S_n}(I) \to \mathcal{F}(\Delta_{S_n})$$

is bijective, where $\Lambda(f) = f_{\upharpoonright \Delta_{S_n}}$.

Proof of Proposition 4. To show the Proposition, we firstly define sorting layers which is an S_n -invariant network map from I to Δ . Then by Proposition 8, Sort (x_1, \ldots, x_n) is also a function by an S_n -invariant deep neural network and Sort (x_1, \ldots, x_n) is the function from I to Δ .

By using this function, we define the inverse of Λ . For any function f by a deep neural network on Δ , we define $\Phi(f) = f \circ \text{Sort.}$ We confirm $\Lambda \circ \Phi = \text{id}_{\mathcal{F}_{\Lambda}}$ and $\Phi \circ \Lambda = \text{id}_{\mathcal{F}_{S_n}}$. Since we have

$$\Lambda \circ \Phi(f) = \Lambda \circ f \circ \text{Sort} = (f \circ \text{Sort})_{\uparrow_{\Lambda}} = f,$$

 $\Lambda \circ \Phi$ is equal to $id_{\mathcal{F}_{\Delta}}$. Similarly,

$$\Phi \circ \Lambda(f) = \Phi \circ f_{\uparrow \Delta} = f_{\uparrow \Delta} \circ \text{Sort} = f,$$

where the last equality follows from the S_n -invariance of f. Hence, we have the desired result.

Now, we are ready to prove Theorem 4.

Proof of Theorem 4. Let f^* be an S_n -invariant function on I. Then by Proposition 9, we have a function f on Δ_{S_n} such that $f^* = f \circ \text{Sort}$ holds. By Theorem 5 in Schmidt-Hieber [2017], for enough big N, there exists a constant c > 0 and a neural network f' with at most $\mathcal{O}(\log(N))$ layers and at most $\mathcal{O}(N \log(N))$ nonzero weights such that $||f - f'||_{L^{\infty}(I)} \leq cN^{-\alpha/p}$. Then, we have

$$\|f^* - f' \circ \text{Sort}\|_{L^{\infty}(I)} = \|f \circ \text{Sort} - f' \circ \text{Sort}\|_{L^{\infty}(I)} \le \|f - f'\|_{L^{\infty}(\Delta)} \le \|f - f'\|_{L^{\infty}(I)} \le cN^{-\alpha/p},$$

where $f \circ \text{Sort}$ is a neural network with at most $\mathcal{O}(\log(N)) + K_1$ layers and at most $\mathcal{O}(N \log(N)) + K_2$ nonzero weights, where K_1 and K_2 are the number of layers and the number of nonzero weights of the neural network expressing Sort respectively. By replacing N^{-1} with ε , we have the desired inequality.

B GENERALIZATION BOUND FOR EQUIVALENT DNN WITHOUT TRANSITIVE ASSUMPTION

In this section, we provide a general version of the result in Section 5. Namely, we relax the transitive assumption in the section. To the goal, we newly define a general version of a stabilizer subgroup.

Let $[n] = \{1, 2, ..., n\}$ be an index set and G be a finite group action on [n]. For $i \in [n]$, we define the stabilizer subgroup $Stab_G(i)$ associated with G as

$$\operatorname{Stab}_G(i) = \{ \sigma \in G \mid \sigma \cdot i = i \}.$$

We also consider the following decomposition of [n] as

$$[n] = \bigsqcup_{j \in \mathcal{J}} \mathcal{O}_j,$$

where $\mathcal{J} \subset I$ and \mathcal{O}_j is a *G*-orbit of *j*, namely the set of the form $G \cdot j$. Any *G*-orbit $G \cdot j$ is isomorphic to the set $G/\operatorname{Stab}(j)$. We denote $|\mathcal{J}|$ by *J* and $|\mathcal{O}_j|$ by l_j . For each $j \in \mathcal{J}$, let $G = \bigsqcup_{j \in \mathcal{J}} \bigsqcup_{k=1}^{l_j} \operatorname{Stab}_G(j) \tau_{j,k}$ be the coset decomposition by $\operatorname{Stab}_G(j)$. Then, we may assume that $\tau_{j,k} \in G$ satisfies $\tau_{j,k}^{-1}(j) = j + k$.

Then, we provide another representation for equivariant functions from the following study.:

Proposition 10 (Representation for Equivariant Functions Sannai et al. [2019]). A map $F : \mathbb{R}^n \to \mathbb{R}^n$ is *G*-equivariant if and only if *F* can be represented by $F = (f_1 \circ \tau_{1,1}, f_1 \circ \tau_{1,2}, \ldots, f_1 \circ \tau_{1,l_1}, f_2 \circ \tau_{2,1}, \ldots, f_J \circ \tau_{J,l_J})^\top$ for some $Stab_G(j)$ -invariant functions $f_j : \mathbb{R}^n \to \mathbb{R}$. Here, $\tau_{j,k} \in G$ is regarded as a linear map $\mathbb{R}^n \to \mathbb{R}^n$.

Proposition 11. *For any* $\varepsilon > 0$ *, we have*

$$\widetilde{\mathcal{N}}_{\varepsilon,\infty}(\widetilde{\mathcal{F}}^G(I)) \leq \prod_{j \in \mathcal{J}} \mathcal{N}_{\varepsilon,\infty}(\mathcal{F}^{Stab_G(j)}(I_{l_j})),$$

where $I_{l_i} = [0, 1]^{l_j}$. Further, if $G = S_n$,

$$\widetilde{\mathcal{N}}_{\varepsilon,\infty}(\widetilde{\mathcal{F}}^{S_n}(I)) \leq \mathcal{N}_{\varepsilon,\infty}(\mathcal{F}^{S_{n-1}}(I))$$

Proof of Proposition 11. We put $N_j = \mathcal{N}_{\varepsilon,\infty}(\mathcal{F}^{\operatorname{Stab}_G(j)}(I))$. For each $j \in \mathcal{J}$, by the definition of covering numbers, there exist $f_j^{(1)}, ..., f_j^{(N_j)} \in \mathcal{F}^{\operatorname{Stab}_G(j)}(I_{l_j})$ such that for any $f' \in \mathcal{F}^{\operatorname{Stab}_G(j)}(I_{l_j})$, there exists $f_j^{(p)}$ satisfying $\|f' - f_j^{(p)}\|_{\infty} < \varepsilon$.

With a tuple $(p_1, ..., p_J)$, we consider a map $F_{p_1,..,p_J} : I \to \mathbb{R}^n$ from $\widetilde{\mathcal{F}}^G(I)$ and claim that balls $\mathcal{B}_{\varepsilon}(F_{p_1,..,p_J})$ give a covering set of $\widetilde{\mathcal{F}}(I)$. Put $F_{p_1,..,p_J} = (f_1^{(p_1)} \circ \tau_{1,1}, f_1^{(p_1)} \circ \tau_{1,2}, ..., f_1^{p_1} \circ \tau_{1,l_1}, f_2^{(p_2)} \circ \tau_{2,1} ..., f_J^{(p_J)} \circ \tau_{J,l_J})^{\top}$. Then $F_{p_1,..,p_J}$ is a *G*-equivariant map. Also, since $\tau_{j,k}$ is a linear map by Proposition 10, we can represent $\tau_{j,k}$ by DNNs. Hence, $F_{p_1,..,p_J} \in \widetilde{\mathcal{F}}^G(I)$ holds.

Fix $F' \in \widetilde{\mathcal{F}}^G(I)$ arbitrary. We have the representation $F' = (f'_1 \circ \tau_{1,1}, f'_1 \circ \tau_{1,2}, \dots, f'_1 \circ \tau_{1,l_1}, f'_2 \circ \tau_{2,1}, \dots, f'_J \circ \tau_{j,l_J})^\top$ by Proposition10. Then, we can find a corresponding F_{p_1,\dots,p_J} such as

$$\begin{split} \||F_{p_1,\dots,p_J} - F'|\|_{L^{\infty}(I)} &= \max\{ \|f_j^{(p_j)} \circ \tau_{j,k_j} - f_j' \circ \tau_{j,k_j}\|_{\infty} \mid 1 \le k_j \le |G/\operatorname{Stab}_G(j)|, 1 \le p_j \le N_j \} \\ &= \max\{ \|f_j^{(p_j)} - f_j'\|_{\infty} \mid 1 \le p_j \le N_j \} \\ &\le \varepsilon. \end{split}$$

Hence, we have the first statement.

In the case of S_n , we have J = 1 and $\text{Stab}(1) \cong S_{n-1}$. This gives the second statement.

Then, we obtain the following general bound:

Theorem 5 (Generalization of Equivariant DNN). Suppose $\tilde{f}^G \in \tilde{\mathcal{F}}^G(I)$ is uniformly bounded by 1. Then, for any $\varepsilon > 0$, the following inequality holds with probability at least $1 - 2\varepsilon$:

$$R(\widetilde{f}^G) \le R_m(\widetilde{f}^G) + \sqrt{\sum_{j \in \mathcal{J}} \frac{\widetilde{c}}{|Stab_G(j)| \ m^{2/n}}} + \sqrt{\frac{2\log(2/\varepsilon)}{m}}.$$

where $\tilde{c} > 0$ is a constant which are independent of n and m.

We omit rigorous proof of Theorem (5), because it is almost same to that of Theorem 3.

References

- Akiyoshi Sannai, Yuuki Takai, and Matthieu Cordonnier. Universal approximations of permutation invariant/equivariant functions by deep neural networks. *arXiv preprint arXiv:1903.01939*, 2019.
- Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with relu activation function. *arXiv* preprint arXiv:1708.06633, 2017.
- Liwen Zhang, Gregory Naitzat, and Lek-Heng Lim. Tropical geometry of deep neural networks. *arXiv preprint* arXiv:1805.07091, 2018.