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A SUPPLEMENT

We provide the deferred proofs of each section.

A.1 PROOF FOR SECTION 3

Proof of Lemma 1. For any ε > 0, there is a sequence of rational numbers {pi/qi} such that pi/qi < ε and converges to ε.
Assume that Lemma 1 holds for rational numbers, then we haveNε,∞(∆Sn) ≤ Npi/qi,∞(∆Sn) ≤ C/(n! (pi/qi)

n). Since
1/xn is a continuous function and {pi/qi} converges to ε, we obtain Nε,∞(∆Sn) ≤ C/(n! (ε)n). Hence it is enough to
show the case of rational numbers.

We assume ε = p/q for some integers p, q > 0. Let C(I) be the covering of I , which is a set of ε-cubes

cj1,..,jn = {x = (xi) ∈ I | εji ≤ xi ≤ ε(ji + 1)},

for ji = 1, .., [q/p] + 1. We can easily see that C(I) attains the minimum number of ε-cubes covering I and the
number is (ε−1 + 1)n = ε−n

n! + O(ε−(n−1)). We show that we can find a subset of C(I) which cover ∆Sn and
whose cardinality is ε−n

n! + O(ε−(n−1)). The proof is as follows. At first, we calculate the number A of cubes
in C(I) which intersect with the boundary of σ · ∆. Then since the number of the orbit of the cubes which do
not intersect with the boundary of σ · ∆ is n!, if A is O(ε−(n−1)), we can find the covering whose cardinality is
ε−n

n! + O(ε−(n−1)). Since σ ·∆ is
{
x ∈ I | xσ−1(1) ≥ xσ−1(2) ≥ · · · ≥ xσ−1(n)

}
, any boundary of σ ·∆ is of the form{

x ∈ I | xσ−1(1) ≥ · · ·xσ−1(i) = xσ−1(i+1) ≥ · · · ≥ xσ−1(n)

}
.

From here, we fix σ and i. Consider the canonical projection π : Rn → Rn−1 which sends xσ−1(i)-axis to zero. π induces
the map π̃ : C(I)→ C(π(I)), where C(π(I)) is the covering of π(I) . Let C(I)B denote the subset of cubes in C(I) which
intersect with the setB =

{
x ∈ I | xσ−1(i) = xσ−1(i+1)

}
. Then we can see that π̃ is injective on C(I)B as follows. Assume

that there are two cubes in C(I)B whose images by π̃ are equal. Let us denote the centers of two cubes by cj1,..,jn and
ck1,..,kn .Then, since π only kills xσ−1(i), jp = kp holds for p 6= σ−1(i). But since cj1,..,jn and ck1,..,kn are in C(I)B , we
have jσ−1(i) = jσ−1(i+1) and kσ−1(i) = kσ−1(i+1). Hence jp = kp for any p and π̃ is injective on C(I)B .

Next, let C(I)B̃ be the subset of ε-cubes in C(I) which intersect a boundary of σ ·∆ for some σ. We see that the cardinality
of C(I)B̃ is bounded by eε−(n−1) for some constant e > 0. Since the number of components of the boundaries is finite, we
prove the claim for a component B. As we see before, π̃�C(I)B is injective. This result implies that the number of cubes that
intersect B is bounded by a number of ε-cubes in C(p(I)) = ε−(n−1). Put C(I)F = C(I)− C(I)B̃ . Then we note that the
action of Sn onC(I)F is free, namely the number of the orbit of any cube in C(I)F is |Sn|. Hence,

|C(I)F ∩∆| = |{c ∈ C(i) | c ⊂ ∆}| = 1/|Sn||C(I)F | ≤ ε−n/|Sn|.
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Here, (C(I)F ∩∆) ∪ C(I)B̃ gives the covering of ∆. This covering gives

Nε,∞(∆) ≤ ε−n

n!
+ eε−(n−1).

Proof of Lemma 2. By Proposition 3, we have ∆̃G satisfying two conditions above. Since the covering of ∆̃G induces
the covering of ∆G by the condition 2, Nε,∞(∆G) ≤ Nε,∞(∆̃G). On the other hand, by the condition 1, we have
Nε,∞(∆̃G) ≤ |Sn|/|G| · Nε,∞(∆Sn). Combining with Lemma 1, we have the desired result.

Proof of Proposition 1. For the claim, assume that an action of G preserves distance, namely, ‖x−x′‖2 = ‖g(x)− g(x′)‖2
holds. We show that dG(y, y′) = infx,x′∈Rn{‖x − x′‖2|φG(x) = y, φG(x′) = y′}. Consider the sum ‖x − b1‖2 +
‖a2 − b2‖2 + ... + ‖an − x′‖2 and take an element g ∈ G such that a2 = g · b1. Then, ‖x − b1‖2 + ‖a2 − b2‖2 =
‖x − b1‖2 + ‖g · b1 − b2‖2 = ‖x − b1‖2 + ‖b1 − g−1 · b2‖2 ≥ ‖x − g−1 · b2‖2. By repeating this process, we have
‖x−b1‖2+‖a2−b2‖2+...+‖an−x′‖2 ≥ ‖x−g ·x′‖2 for some g ∈ G. Hence, dG(y, y′) = infx,x′∈I{‖x−x′‖2|φG(x) =
y, φG(x′) = y′}. This implies dG(y, y′) = 0⇒ y = y′.

Proof of Proposition 3. We confirm that ∆̃G satisfies both the conditions 1 and 2. As the action of G preserves the distance,
gk : ∆Sn → gk ·∆Sn is an isomorphism on metric spaces. Hence, condition 1 is satisfied.

For condition 2, we consider y ∈ ∆G = φG(I). Then, there is an element x ∈ I such that y = φG(x). As I = ∪σ∈Snσ ·∆Sn

, there exist σ ∈ Sn and z ∈ ∆Sn such that x = σ · z.

In contrast, as {g1, .., gK |gk ∈ G} is a complete system of representatives of G\Sn, there exist τ ∈ G and gk such as
σ = τ · gi. Then φG(gkz) = φG(τ · gkz) = φG(x) = y and gk · z ∈ ∆̃G. Hence φG(∆̃G) = ∆G.

A.2 PROOF FOR SECTION 3.2

Proof of Proposition 4. We prove φ̂G is injective and surjective. Assume f ∈ C(∆G) and put φ̂G(f) = f ◦ φG. Then since
φG is G-invariant, so is φ̂G(f). Also, since φG is surjective, φ̂G is injective. Take g ∈ CG(I), then we define f ∈ C(∆G)
as follows; for any y ∈ ∆G, take x ∈ I such that φG(x) = y and define f(y) = g(x). This map is well defined because g is
G-invariant. φ̂G(f)(x) = f ◦ φG(x) = f(y) = g(x). Hence, we obtain the desired result.
Next, we prove the Lipschitz properties. Take f ∈ C(∆G) and assume f is K-Lipschitz. Then for any x, x′ ∈ I ,

dG(φG(x), φG(x′)) ≥ Kd(f(φG(x)), f(φG(x′))),

by K-Lipschitz property of f . By the definition of dG, we have dG(φG(x), φG(x′)) ≤ d(x, x′). Hence, φ̂G(f) is K-
Lipschitz continuous. Conversely, assume φ̂G(f) is K-Lipschitz. Take any y, y′ ∈ I , then for any x, x′ ∈ I satisfying
φG(x) = y, φG(x) = y′,

d(x, x′) ≥ Kd(f(φG(x)), f(φG(x′))) = d(f(y), f(y′)),

by K-Lipschitz property of φ̂G(f). Hence by taking infimum of the left hand side, we have

dG(y, y′) = inf dG(φG(x), φG(x′)) ≥ Kd(f(y), f(y′)).

Hence, f is K-Lipschitz.

Proof of Proposition 2. We first note that φ is the identity map on ∆, because elements in ∆ are sorted. This implies
∆ ∼= φ(∆). Therefore, it is sufficient to show ∆ ∼= ∆Sn . As ∆ is a subset of I , we have the distance preserving map
φSn�∆

: ∆→ ∆Sn .

Then, we show that φSn�∆
is a bijection. Injectivity: Ley us take any x, y ∈ ∆ such that φSn�∆

(x) = φSn�∆
(y). Then

x = g · y for some g ∈ Sn. However, as y is in ∆, {g · y|g ∈ Sn} ∩ ∆ = {y}. Hence, x = y. Surjectivity: Take any
z ∈ ∆Sn , then there is x ∈ I such that z = φSn(x). By the construction of ∆, there is g ∈ Sn and y ∈ ∆ that satisfies
x = g · y. Hence, z = φSn(x) = φSn(g · y) = φSn(y).



Proof of Proposition 5. Firstly, we show φ̂−1
G (f) ∈ F(I) with any f ∈ FG(I). For f ∈ FG(I), we consider φ̂−1

G (f) ∈
C(∆G) as Proposition 4. Suppose f and f ′ are K-Lipschitz continuous, then φ̂−1

G (f) is also K-Lipschitz continuous by
Proposition 4. Since Zhang et al. [2018] states that Lipschitz continuous functions are represented by DNNs, we have
φ̂−1
G (f) ∈ F(∆G).

Fix f1, f2 ∈ FG(I). Then, there exist f ′1, f
′
2 ∈ F(∆G) such as f1 = φ̂G(f ′1) and f2 = φ̂G(f ′2). Then, we have

‖f1 − f2‖L∞(I) = ‖φ̂G(f ′1)− φ̂G(f ′1)‖L∞(I) = ‖f ′1 ◦ φG − f ′2 ◦ φG‖L∞(I) ≤ ‖f ′1 − f ′2‖L∞(∆G).

Based on the result, we can bound Nε,∞(FG(I)) by Nε,∞(F(∆G)). Let us define N := Nε,∞(F(∆G)). Then, there
exist f ′1, ..., f

′
N such that for any f ′ ∈ F(∆G), there exists j ∈ {1, ..., N} such as ‖f ′j − f ′‖L∞(∆G) ≤ ε. Here, for any

f ∈ FG(I), there exists fj := φ̂−1
G (f ′j) ∈ FG(I) and it satisfies ‖f − fj‖L∞(I) ≤ ‖φ̂G(f)− φ̂G(fj)‖L∞(∆G) ≤ ε. Then,

we obtain the statement.

Proof of Theorem 2. Combining Proposition 5 and 6, we obtain a bound for logN2C∆δ,∞(FG(I)). Then, we substitute it
into (3) and obtain the statement of Theorem 2.

A.3 PROOF FOR SECTION 4

Proof of Proposition 6. We bound a covering number of a set of C∆-Lipschitz continuous functions on ∆. Let
{x1, ..., xK} ⊂ ∆ by a set of centers of δ-covering set for ∆. By Lemma 1, we set K = C/(|G| δn) with δ with a
parameter δ > 0, where C > 0 is a constant.

We will define a set of vectors to bound the covering number. We define a discretization operator A : F(∆G)→ RK as

Af = (f(x1)/δ, ..., f(xK)/δ)>.

Let Bδ(x) be a ball with radius δ in terms of the ‖ · ‖∞-norm. For two functions f, f ′ ∈ F(∆G) such as Af = Af ′, we
obtain

‖f − f ′‖L∞(I) = max
k=1,...,K

sup
x∈Bδ(xk)

|f(x)− f ′(x)|

≤ max
k=1,...,K

sup
x∈Bδ(xk)

|f(x)− f(xk)|+ |f ′(xk)− f(xk)|

≤ 2C∆δ,

where the second inequality follows f(xk) = f ′(xk) for all k = 1, ...,K and the last inequality follows the C∆-Lipschitz
continuity of f and f ′. By the relation, we can claim that F(∆G) is covered by 2C∆δ balls whose center is characterized by
a vector b ∈ RK such as b = Af for f ∈ F(∆G). Namely, N2C∆δ,∞(F(∆G)) is bounded by a number of possible b.

Then, we construct a specific set of b to cover F(∆G). Without loss of generality, assume that x1, ..., xK are ordered satisfies
such as ‖xk − xk+1‖∞ ≤ 2δ for k = 1, ...,K − 1. By the definition, f ∈ F(∆G) satisfies ‖f‖L∞(∆) ≤ B. b1 = f(x1)
can take values in [−B/δ,B/δ]. For b2 = f(x2), since ‖x1 − x2‖∞ ≤ 2δ and hence |f(x1)− f(x2)| ≤ 2C∆δ, a possible
value for b2 is included in [(b1 − 2δ)/δ, (b1 + 2δ)/δ]. Hence, b2 can take a value from an interval with length 4 given b1.
Recursively, given bk for k = 1, ...,K − 1, bk+1 can take a value in an interval with length 4.

Then, we consider a combination of the possible b. Simply, we obtain the number of vectors is (2cB/δ) · (4c)K−1 ≤
(8c2B/δ)K−1 with a universal constant c ≥ 1. Then, we obtain that

logN2C∆δ,∞(F(∆G)) ≤ (K − 1) log(8c2B/δ).

Then, we specify K which describe a size of ∆ through the set of covering centers.



A.4 PROOF FOR SECTION 5

Proposition 7. Suppose G is transitive. Then, for any ε > 0, we have

Nε,∞(F̃G(I)) ≤ Nε,∞(FSt(G)(I)).

Proof of Proposition7. The first statement simply follows Proposition 11 with setting J = 1, since g ∈ G is transitive. In
the case of Sn, we have J = 1 and Stab(1) ∼= Sn−1. This gives the second statement.

Proof of Theorem 3 and Corollary 2. For Theorem 3, we combine the bound (3), Lemma 2 and Proposition 5. Thus, we
obtain the statement.

For Corollary 2, since Sn is transitive, the statement obviously holds with |St(G)| = |Sn−1| = (n− 1)!.

A.5 PROOF FOR SECTION 6

To prove Theorem 4, we consider a Sort map and show that DNNs can represent the map. Let max(k)(x1, ..., xn) be a map
which returns the k-th largest value of inputted elements x1, ..., xn for k = 1, .., n. Then, we provide a form of Sort as

Sort(x1, . . . , xn) = (max(1)(x1, . . . , xn), . . . ,max(n)(x1, . . . , xn)).

To represent it, we provide the following propositions.

Proposition 8. max(j)(z1, . . . , zN ) and min(j)(z1, . . . , zN ) are represented by an existing deep neural networks with an
ReLU activation for any j = 1, ..., N .

Proof of Proposition 8. Firstly, since

max(z1, z2) = max(z1 − z2, 0) + z2,

and

min(z1, z2) = −max(z1 − z2, 0) + z1

hold, we see the case of j = 1, N = 2. By repeating max(z1, z2), we construct max(1)(z1, . . . , zN ) and min(1)(z1, . . . , zN ).
Namely, we prove the claim in the case of j = 1 and arbitrary N . At first, we assume N is even without loss of generality,
then we divide the set {z1, ...zN} into sets of pairs {(z1, z2), ...(zN−1, zN )}. Then, by taking a max operation for each
of the pairs, we have {y1 = max(z1, z2), ..., yN/2 = max(zN−1, zN )} . We repeat this process to terminate. Then we
have max(1)(z1, . . . , zN ), which is represented by an existing deep neural network. Similarly, we have min(1)(z1, . . . , zN ).
Finally, we prove the claim on j = 2, ..., N by induction. Assume that for any N and ` < j, max(`)(z1, . . . , zN ) is
represented by a deep neural network. We construct max(j)(z1, . . . , zN ) as follows: since

max(j−1)(z−`) =

{
max(j−1)(z1, . . . , zN ) (if z` ≤ max(j)(z1, . . . , zN ))

max(j)(z1, . . . , zN ) (otherwise)

holds, we have max(j)(z1, . . . , zN ) = min({max(j−1)(Z`) | ` = 1, ..., N}). By inductive hypothesis, the right hand side
is represented by a deep neural network.

Further, we provide the following result for a technical reason.

Proposition 9. The restriction map
Λ : FSn(I)→ F(∆Sn)

is bijective, where Λ(f) = f�∆Sn
.



Proof of Proposition 4. To show the Proposition, we firstly define sorting layers which is an Sn-invariant network map
from I to ∆. Then by Proposition 8, Sort(x1, . . . , xn) is also a function by an Sn-invariant deep neural network and
Sort(x1, . . . , xn) is the function from I to ∆.

By using this function, we define the inverse of Λ. For any function f by a deep neural network on ∆, we define
Φ(f) = f ◦ Sort. We confirm Λ ◦ Φ = idF∆

and Φ ◦ Λ = idFSn . Since we have

Λ ◦ Φ(f) = Λ ◦ f ◦ Sort = (f ◦ Sort)�∆ = f,

Λ ◦ Φ is equal to idF∆ . Similarly,

Φ ◦ Λ(f) = Φ ◦ f�∆
= f�∆

◦ Sort = f,

where the last equality follows from the Sn-invariance of f . Hence, we have the desired result.

Now, we are ready to prove Theorem 4.

Proof of Theorem 4. Let f∗ be an Sn-invariant function on I . Then by Proposition 9, we have a function f on ∆Sn such that
f∗ = f ◦ Sort holds. By Theorem 5 in Schmidt-Hieber [2017], for enough big N , there exists a constant c > 0 and a neural
network f ′ with at mostO(log(N)) layers and at mostO(N log(N)) nonzero weights such that ‖f − f ′‖L∞(I) ≤ cN−α/p.
Then, we have

‖f∗ − f ′ ◦ Sort‖L∞(I) = ‖f ◦ Sort− f ′ ◦ Sort‖L∞(I) ≤ ‖f − f ′‖L∞(∆) ≤ ‖f − f ′‖L∞(I) ≤ cN−α/p,

where f ◦ Sort is a neural network with at most O(log(N)) +K1 layers and at most O(N log(N)) +K2 nonzero weights,
where K1 and K2 are the number of layers and the number of nonzero weights of the neural network expressing Sort
respectively. By replacing N−1 with ε, we have the desired inequality.

B GENERALIZATION BOUND FOR EQUIVALENT DNN WITHOUT TRANSITIVE
ASSUMPTION

In this section, we provide a general version of the result in Section 5. Namely, we relax the transitive assumption in the
section. To the goal, we newly define a general version of a stabilizer subgroup.

Let [n] = {1, 2, . . . , n} be an index set and G be a finite group action on [n]. For i ∈ [n], we define the stabilizer subgroup
StabG(i) associated with G as

StabG(i) = {σ ∈ G | σ · i = i} .

We also consider the following decomposition of [n] as

[n] =
⊔
j∈J
Oj ,

where J ⊂ I andOj is a G-orbit of j, namely the set of the form G · j. Any G-orbit G · j is isomorphic to the set G/Stab(j).
We denote |J | by J and |Oj | by lj . For each j ∈ J , let G =

⊔
j∈J

⊔lj
k=1 StabG(j)τj,k be the coset decomposition by

StabG(j). Then, we may assume that τj,k ∈ G satisfies τ−1
j,k (j) = j + k.

Then, we provide another representation for equivariant functions from the following study.:

Proposition 10 (Representation for Equivariant Functions Sannai et al. [2019]). A map F : Rn → Rn isG-equivariant if and
only if F can be represented by F = (f1◦τ1,1, f1◦τ1,2, . . . , f1◦τ1,l1 , f2◦τ2,1 . . . , fJ ◦τJ,lJ )> for some StabG(j)-invariant
functions fj : Rn → R. Here, τj,k ∈ G is regarded as a linear map Rn → Rn.

Proposition 11. For any ε > 0, we have

Ñε,∞(F̃G(I)) ≤
∏
j∈J
Nε,∞(FStabG(j)(Ilj )),

where Ilj = [0, 1]lj . Further, if G = Sn,

Ñε,∞(F̃Sn(I)) ≤ Nε,∞(FSn−1(I)).



Proof of Proposition 11. We put Nj = Nε,∞(FStabG(j)(I)). For each j ∈ J , by the definition of covering numbers, there
exist f (1)

j , .., f
(Nj)
j ∈ FStabG(j)(Ilj ) such that for any f ′ ∈ FStabG(j)(Ilj ), there exists f (p)

j satisfying ‖f ′ − f (p)
j ‖∞ < ε.

With a tuple (p1, ..., pJ), we consider a map Fp1,..,pJ : I → Rn from F̃G(I) and claim that balls Bε(Fp1,..,pJ ) give
a covering set of F̃(I). Put Fp1,..,pJ = (f

(p1)
1 ◦ τ1,1, f (p1)

1 ◦ τ1,2, . . . , fp1

1 ◦ τ1,l1 , f
(p2)
2 ◦ τ2,1 . . . , f (pJ )

J ◦ τJ,lJ )>. Then
Fp1,..,pJ is a G-equivariant map. Also, since τj,k is a linear map by Proposition 10, we can represent τj,k by DNNs. Hence,
Fp1,..,pJ ∈ F̃G(I) holds.

Fix F ′ ∈ F̃G(I) arbitrary. We have the representation F ′ = (f ′1 ◦ τ1,1, f ′1 ◦ τ1,2, . . . , f ′1 ◦ τ1,l1 , f ′2 ◦ τ2,1 . . . , f ′J ◦ τj,lJ )>

by Proposition10. Then, we can find a corresponding Fp1,..,pJ such as

|||Fp1,..,pJ − F ′|||L∞(I) = max{‖f (pj)
j ◦ τj,kj − f ′j ◦ τj,kj‖∞ | 1 ≤ kj ≤ |G/StabG(j)|, 1 ≤ pj ≤ Nj}

= max{‖f (pj)
j − f ′j‖∞ | 1 ≤ pj ≤ Nj}

≤ ε.

Hence, we have the first statement.

In the case of Sn, we have J = 1 and Stab(1) ∼= Sn−1. This gives the second statement.

Then, we obtain the following general bound:

Theorem 5 (Generalization of Equivariant DNN). Suppose f̃G ∈ F̃G(I) is uniformly bounded by 1. Then, for any ε > 0,
the following inequality holds with probability at least 1− 2ε:

R(f̃G) ≤ Rm(f̃G) +

√√√√∑
j∈J

c̃

|StabG(j)|m2/n
+

√
2 log(2/ε)

m
.

where c̃ > 0 is a constant which are independent of n and m.

We omit rigorous proof of Theorem (5), because it is almost same to that of Theorem 3.
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