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A SUPPLEMENT

We provide the deferred proofs of each section.

A.1 PROOF FOR SECTION 3

Proof of Lemmal(l] For any e > 0, there is a sequence of rational numbers {p;/¢; } such that p; /¢; < € and converges to €.
Assume that Lemmaholds for rational numbers, then we haveN; o (As, ) <Ny, /4,,00(As,) < C/(n! (pi/q:)"). Since
1/2™ is a continuous function and {p;/q; } converges to €, we obtain N; - (Ag,) < C/(n! (¢)™). Hence it is enough to
show the case of rational numbers.

We assume € = p/q for some integers p, g > 0. Let C(I) be the covering of I, which is a set of e-cubes
Cirrnn = {0 = (i) €I | eji S wy <e(fi+ 1)},

for j; = 1,..,[q/p] + 1. We can easily see that C(I) attains the minimum number of e-cubes covering I and the
number is (e=! 4+ 1)* = £ + O(e~ (V). We show that we can find a subset of C(I) which cover Ag, and

n!

whose cardinality is ‘E;," + (9(5*(”’1)). The proof is as follows. At first, we calculate the number A of cubes

in C(I) which intersect with the boundary of o - A. Then since the number of the orbit of the cubes which do
not intersect with the boundary of o - A is n!, if A is O(e~(™~1), we can find the covering whose cardinality is

—n

[

+ O(e=(=1). Since o - A is {x €l To-1(1) 2 Tp-102) = +++ > x[,_l(n)}, any boundary of o - A is of the form

n:

{rel|aor) > Tom1() = To-1(i41) =+ = To—1(n) }

From here, we fix o and i. Consider the canonical projection 7 : R™ — R™~! which sends z,, -1 (1)-axis to zero. 7 induces
the map 7 : C(I) — C(w([I)), where C(w(I)) is the covering of 7(I) . Let C(I) g denote the subset of cubes in C(I) which
intersect with the set B = {m €llzo1()= xo-—l(i_;’_l)} . Then we can see that 7 is injective on C(I) g as follows. Assume
that there are two cubes in C(I) g whose images by 7 are equal. Let us denote the centers of two cubes by ¢;, ;. and
Chy,...k, -Then, since 7 only kills ,-1(;, j, = kp holds for p # o~ (i). But since ¢, . ;, and ¢y, ..k, are in C(I) 5, we
have j,-1(;y = jo—1(i+1) and k,—1(;y = k,—1(;11). Hence j, = k,, for any p and 7 is injective on C(/) p.

Next, let C(I) 5 be the subset of e-cubes in C(I) which intersect a boundary of o - A for some o. We see that the cardinality
of C(I) 5 is bounded by es~(™=1) for some constant e > 0. Since the number of components of the boundaries is finite, we
prove the claim for a component B. As we see before, ¢ (), is injective. This result implies that the number of cubes that

intersect B is bounded by a number of e-cubes in C(p(I)) = e~ ("~Y. Put C(I)p = C(I) — C(I) 5. Then we note that the
action of .S, onC([)F is free, namely the number of the orbit of any cube in C(I)r is | S, |. Hence,

IC(DrNA[=Heel@i) | e A} =1/[Su]|IC()r| <e"/|S].
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Here, (C(I)r N A) UC(I) 5 gives the covering of A. This covering gives

Neoo(A) < % Fee (D),
O

Proof of Lemma[2] By Proposition [3| we have EG satisfying two conditions above. Since the covering of AG induces
the covering of Ag by the condition 2, N o (Ag) < N:oo(Ag). On the other hand, by the condition 1, we have

Ng,oo(ﬁg) < [Snl/IG| - Nz 00 (Ag,, ). Combining with Lemma we have the desired result. O

Proof of Proposition([I} For the claim, assume that an action of G preserves distance, namely, ||z — 2|2 = ||g(z) — g(2’) |2
holds. We show that dg(y,y’) = inf, pern{|lz — 2'|2|¢c(z) = y,da(z’) = y'}. Consider the sum ||z — by]|2 +
laz — ba|l2 + ... + ||an — 2|2 and take an element g € G such that ax = g - by. Then, ||z — b1]|2 + ||jaz — b2]l2 =
lz — bill2 + |lg - b1 — ball2 = ||& — bil2 + [[b1 — g~ % - ba|l2 > ||z — g~ - ba|2. By repeating this process, we have
lz—=b1|l2+]lag —ball2+ ...+ ||an—2'||2 > ||z —g-2’||2 for some g € G. Hence, dg(y,y") = inf, per{l|z—2'|2|dc(z) =
y, dc(x') = y'}. This implies dg(y,y') = 0=y =¢/. O

Proof of Proposition[3] We confirm that AG satisfies both the conditions 1 and 2. As the action of G preserves the distance,
gk : As, — gr - Ag, is an isomorphism on metric spaces. Hence, condition 1 is satisfied.

For condition 2, we consider y € Ag = ¢¢(I). Then, there is an element x € I suchthaty = ¢g(x). AsI = Uyes, 0-As,
,there exist o € S, and z € Ag, suchthatz =0 - 2.

In contrast, as {¢g1,..,9x|gr € G} is a complete system of representatives of G\S,,, there exist 7 € G and gj, such as
o =1 -g;. Then ¢c(gr2) = ¢c (7 - grz) = ¢a(x) = yand g - z € Ag. Hence ¢ (Ag) = Ag. O

A.2 PROOF FOR SECTION 3.2

Proof of Proposition[d] We prove QASG is injective and surjective. Assume f € C(Aq) and put ngbg( f) = f o ¢. Then since
¢ is G-invariant, so is (gg(f). Also, since ¢ is surjective, (EG is injective. Take g € C'“(I), then we define f € C(Ag)
as follows; for any y € Ag, take = € I such that ¢ (x) = y and define f(y) = g(«). This map is well defined because g is
G-invariant. ¢ (f)(z) = f o da(z) = f(y) = g(x). Hence, we obtain the desired result.

Next, we prove the Lipschitz properties. Take f € C'(A¢) and assume f is K -Lipschitz. Then for any z, 2’ € I,

da(dc(x), pa(a')) > Kd(f(éc(@)), f(dc(2)),

by K-Lipschitz property of f. By the definition of dg, we have dg(dc(z), ¢ (z')) < d(z,2’). Hence, o (f) is K-
Lipschitz continuous. Conversely, assume q/ﬁ\g( f) is K-Lipschitz. Take any y,y’ € I, then for any x,2’ € T satisfying
pc(z) =y,dc(z) =y,

d(z,2") = Kd(f(¢a(x)), f(da(a')) = d(f(y), f)),

by K-Lipschitz property of (Zg( f). Hence by taking infimum of the left hand side, we have

de(y,y') = inf dg(dc (), ¢c(2') = Kd(f(y), f(y))-

Hence, f is K-Lipschitz. O

Proof of Proposition[2] We first note that ¢ is the identity map on A, because elements in A are sorted. This implies
A = ¢(A). Therefore, it is sufficient to show A = Ag . As A is a subset of I, we have the distance preserving map
¢S” IA A = AS".

Then, we show that ¢g,, is a bijection. Injectivity: Ley us take any z,y € A such that ¢s,,, (z) = ¢s,,, (y). Then
x = g -y for some g € S,,. However, as y is in A, {g - ylg € S,} N A = {y}. Hence, x = y. Surjectivity: Take any
z € Ag, , then there is « € I such that z = ¢g, (z). By the construction of A, there is g € S, and y € A that satisfies
x = g-y.Hence, z = ¢, (2) = ¢s,(9 - y) = ¢s, (¥). 0



Proof of Proposition[] Firstly, we show ggal(f) € F(I) with any f € F&(I). For f € F&(I), we consider 5(_;1 (f) €
C(Ag) as Proposition@ Suppose f and f’ are K-Lipschitz continuous, then ¢ (f) is also K-Lipschitz continuous by
Proposition 4} Since Zhang et al.| [2018]] states that Lipschitz continuous functions are represented by DNNs, we have

o' (f) € F(Ac).
Fix f1, f» € F(I). Then, there exist f], f} € F(Ag) suchas f1 = e (f]) and f = d(f}). Then, we have

I1f1 = follery = 16c(f1) = dc(fDllzem) = 11 0 dc — o0 dclli=m) < IIfi — folle(ac)-

Based on the result, we can bound N o (F%(I)) by M. o (F(Ag)). Let us define N := N o (F(Ag)). Then, there
exist f1,..., f such that for any f’ € F(Ag), there exists j € {1,..., N} suchas || f] — f'||L=~(as) < €. Here, for any

f € FE(I), there exists f; := $5l(fj’) € FY(I) and it satisfies || f — f; || Lo (1) < b (f) - QZG(fj)”LOO(AG) < . Then,
we obtain the statement. O

Proof of Theorem[2] Combining Proposition and@ we obtain a bound for log Nac . 5,00 (F€ (I)). Then, we substitute it
into (3) and obtain the statement of Theorem 2} O

A.3 PROOF FOR SECTION 4

Proof of Proposition[f] We bound a covering number of a set of Ca-Lipschitz continuous functions on A. Let
{z1,...,2x} C A by a set of centers of d-covering set for A. By Lemmal[I] we set K = C/(|G| 6™) with § with a
parameter § > 0, where C' > 0 is a constant.

We will define a set of vectors to bound the covering number. We define a discretization operator A : F(Ag) — RX as

Af = (f(21)/8,... f(zx)/8) "

Let Bs(x) be a ball with radius ¢ in terms of the || - ||o-norm. For two functions f, f’ € F(A¢g) suchas Af = Af’, we
obtain

If— f/HLOC(I) = , max sup |f(z) — f’(x)\

=1,...,.K z€Bs (1)

< o o 5 = Jn)| 1 ) - Fen)

< 2CA5a

where the second inequality follows f(x) = f/(zx) forall k = 1, ..., K and the last inequality follows the Ca-Lipschitz
continuity of f and f’. By the relation, we can claim that F(A¢) is covered by 2C A ¢ balls whose center is characterized by
a vector b € RE suchas b = Af for f € F(Ag). Namely, Noc,s5.00(F(Ag)) is bounded by a number of possible b.

Then, we construct a specific set of b to cover F (A ). Without loss of generality, assume that 21, ..., x ¢ are ordered satisfies
such as ||z — Tx41(ce < 20 for k = 1,..., K — 1. By the definition, f € F(Ag) satisfies || f||p~(a) < B. by = f(z1)
can take values in [—B/d, B/d]. For by = f(x2), since |21 — Z2]|oo < 26 and hence |f(x1) — f(z2)| < 2Ca0, a possible
value for by is included in [(by — 20)/4, (b1 + 26)/d]. Hence, by can take a value from an interval with length 4 given b;.

Recursively, given by, for k = 1, ..., K — 1, by can take a value in an interval with length 4.

Then, we consider a combination of the possible b. Simply, we obtain the number of vectors is (2¢B/§) - (4c)K~1 <

(8¢2B/§)% 1 with a universal constant ¢ > 1. Then, we obtain that
log Vo s.00(F(AG)) < (K — 1) log(8¢*B/§).

Then, we specify K which describe a size of A through the set of covering centers. O



A4 PROOF FOR SECTION 5

Proposition 7. Suppose G is transitive. Then, for any € > 0, we have

Newoo(FOI)) < Neoo(FSUO (D)),

Proof of Proposition7} The first statement simply follows Proposition [TT] with setting J = 1, since g € G is transitive. In
the case of S, we have J = 1 and Stab(1) 2 S,,_;. This gives the second statement. O

Proof of Theorem[3|and Corollary[2] For Theorem 3} we combine the bound (3), Lemma 2] and Proposition [5} Thus, we
obtain the statement.

For Corollary 2] since S,, is transitive, the statement obviously holds with [St(G)| = |S,—1] = (n — 1)\. O

A.5 PROOF FOR SECTION 6

To prove Theorem we consider a Sort map and show that DNNs can represent the map. Let max(*) (21, ..., ) be a map
which returns the k-th largest value of inputted elements x4, ..., x,, for k = 1,.., n. Then, we provide a form of Sort as

Sort(z1, ..., x,) = (maxM (z1, ..., 2,), ..., max"™(zy,... z,)).
To represent it, we provide the following propositions.

Proposition 8. max()(zy,...,zy) and min®) (#1,...,2N) are represented by an existing deep neural networks with an
RelLU activation for any j = 1, ..., N.

Proof of Proposition|§] Firstly, since
max(z1, z2) = max(z; — 22,0) + 22,
and
min(z1,20) = —max(z; — 22,0) + 21
hold, we see the case of j = 1, N = 2. By repeating max(z1, z3), we construct max" (21, . .., zy) and min® (zq, ..., zn).
Namely, we prove the claim in the case of j = 1 and arbitrary V. At first, we assume N is even without loss of generality,

then we divide the set {21, ...z} into sets of pairs {(z1, 22),...(2x—-1, 2n5) }. Then, by taking a max operation for each
of the pairs, we have {y; = max(z1, 22), ..., yn/2 = max(zy_1,2n)} . We repeat this process to terminate. Then we

have max(V (2, ..., zx), which is represented by an existing deep neural network. Similarly, we have min (215, 2N)-
Finally, we prove the claim on j = 2,..., N by induction. Assume that for any N and ¢ < j, max(f)(zl, ..., 2ZN) 18
represented by a deep neural network. We construct max/)(zy, ..., zy) as follows: since
maxG=1 (z_y) = max(J:’l)(zl, cozn) (i 2 § maxU)(z1,..., 2xn))
maxU)(z1,..., 2n) (otherwise)

holds, we have max?)(zy, ..., zy) = min({max~1(Z,) | £ = 1,..., N}). By inductive hypothesis, the right hand side
is represented by a deep neural network. L
Further, we provide the following result for a technical reason.

Proposition 9. The restriction map
A Fo5(I) - F(As,)

is bijective, where A(f) = f,

Asyp”



Proof of Proposition[d] To show the Proposition, we firstly define sorting layers which is an .S, -invariant network map
from I to A. Then by Proposition [8| Sort(z1,...,x,) is also a function by an S, -invariant deep neural network and
Sort(z1, ..., x,) is the function from I to A.

By using this function, we define the inverse of A. For any function f by a deep neural network on A, we define
®(f) = f o Sort. We confirm A o ® =idx, and ® o A = idrs,.. Since we have

Ao®(f) =Ao foSort=(foSort);, =f,

A o @ is equal to id £, . Similarly,
Do A(f) =Po fi, = fia oSort = f,

where the last equality follows from the .S,,-invariance of f. Hence, we have the desired result. U
Now, we are ready to prove Theorem 4}

Proof of Theorem[d Let f* be an S,-invariant function on I. Then by Proposition[9] we have a function f on Ag, such that
f* = f o Sort holds. By Theorem 5 in|Schmidt-Hieber| [2017]], for enough big N, there exists a constant ¢ > 0 and a neural
network f’ with at most O(log(IN)) layers and at most O(NN log(IN')) nonzero weights such that || f — f'|| oo (r) < cN /P,
Then, we have

| f* = f"oSort|| Loy = || f o Sort — f" o Sort|| ooy < ||f = f'llzecay < f = fllneery < eN™ a/p,

where f o Sort is a neural network with at most O(log(N)) + K layers and at most O(N log(N)) + K> nonzero weights,
where K and K> are the number of layers and the number of nonzero weights of the neural network expressing Sort
respectively. By replacing N ~! with &, we have the desired inequality. O

B GENERALIZATION BOUND FOR EQUIVALENT DNN WITHOUT TRANSITIVE
ASSUMPTION

In this section, we provide a general version of the result in Section [5] Namely, we relax the transitive assumption in the
section. To the goal, we newly define a general version of a stabilizer subgroup.

Let [n] = {1,2,...,n} be an index set and G be a finite group action on [n]. For i € [n], we define the stabilizer subgroup
Stabg () assomated with G as

Stabg(i) ={oc € G|o-i=1i}.
We also consider the following decomposition of [n] as
= |_| 0,
JjeT
where J C I and Oj is a G-orbit of j, namely the set of the form G - 5. Any G-orbit G - j is isomorphic to the set G/Stab(j).

We denote | 7| by J and |O}] by l;. Foreach j € J,let G = | |;c 7 |_|k 1 Stabg () 75,1 be the coset decomposition by
Stabg (). Then, we may assume that 7;, € G satisfies 7 ) =4+ k.

Then, we provide another representation for equivariant functions from the following study.:

Proposition 10 (Representation for Equivariant Functions|Sannai et al.|[2019])). A map F': R™ — R" is G-equivariant if and
only if F can be represented by F = (f1071 1, f10T1,2,- -+, f10T11,, fo0To1 ..., fro7s1,) " for some Stabg(j)-invariant
functions f;: R™ — R. Here, 7, € G is regarded as a linear map R™ — R".

Proposition 11. For any € > 0, we have

Newo FED)) < T Neo(FS1800) (1)),
jeTJ

where I;, = [0,1]%5. Further, if G = S,

/\75700('%8” (1) < NE,OO(-FS”A(I))'



Proof of Proposition[I1] We put N; = N oo (F Stabe (7) (I)). For each j € J, by the definition of covering numbers, there
exist f;l), - f;Nj) € FStabc() (1, ) such that for any f’ € F5taPc () (], ), there exists fﬁp) satisfying || f' — f;p)Hoo <e.

With a tuple (p1,...,ps), we consider a map F,, , : I — R" from FE(I) and claim that balls Be(Fp,,..p,) give
a covering set of F(I). Put F,, _,, = (f") o7y 1, f(p1 0 Tiosn s [P oriy, [P omay .., L(]p") o7s1,) . Then

Fy,,...p, is @ G-equivariant map. Also, since 7; , is a linear map by Proposition[I0] we can represent 7;,; by DNNs. Hence,
Fpy,.ps € FE(I) holds.

Fix I’ € fG(I) arbitrary. We have the representation F/' = (f{ o711, fioT12,.- -, floTiu, foomar..., froTi,)T
by Proposition[I0} Then, we can find a corresponding F, .., such as

e P max{|[ £ o rju, — fiomin oo | 1< k; <|G/Stab ()], 1 < p; < Ny}
= max{|| ") — il | 1< p; < N;}

<e.

Hence, we have the first statement.

In the case of S,,, we have J = 1 and Stab(1) =2 S,,_;. This gives the second statement. O

Then, we obtain the following general bound:

Theorem 5 (Generalization of Equivariant DNN). Suppose fG eF G (1) is uniformly bounded by 1. Then, for any £ > 0,
the following inequality holds with probability at least 1 — 2¢:

~ ~ 21og(2
R(FC) < R(F%) + ZlSmbG s Oii/s)-

where ¢ > 0 is a constant which are independent of n and m.

We omit rigorous proof of Theorem (3)), because it is almost same to that of Theorem 3]

References

Akiyoshi Sannai, Yuuki Takai, and Matthieu Cordonnier. Universal approximations of permutation invariant/equivariant
functions by deep neural networks. arXiv preprint arXiv:1903.01939, 2019.

Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with relu activation function. arXiv
preprint arXiv:1708.06633, 2017.

Liwen Zhang, Gregory Naitzat, and Lek-Heng Lim. Tropical geometry of deep neural networks. arXiv preprint
arXiv:1805.07091, 2018.



	Supplement
	Proof for Section 3
	Proof for Section 3.2
	Proof for Section 4
	Proof for Section 5
	Proof for Section 6

	Generalization Bound for Equivalent DNN without Transitive Assumption 

