Improved Generalization Bounds of Group Invariant / Equivariant Deep Networks via Quotient Feature Spaces (Supplementary material)

Akiyoshi Sannai ${ }^{1,2}$
Masaaki Imaizumi ${ }^{3,1}$
Makoto Kawano ${ }^{3}$
${ }^{1}$ RIKEN Center for Advanced Intelligence Project, Chuo, Tokyo, Japan
${ }^{2}$ Keio University, Minato, Tokyo, Japan
${ }^{3}$ The University of Tokyo, Bunkyo, Tokyo, Japan

A SUPPLEMENT

We provide the deferred proofs of each section.

A. 1 PROOF FOR SECTION 3

Proof of Lemma T For any $\epsilon>0$, there is a sequence of rational numbers $\left\{p_{i} / q_{i}\right\}$ such that $p_{i} / q_{i}<\epsilon$ and converges to ϵ. Assume that Lemma 1 holds for rational numbers, then we have $\mathcal{N}_{\varepsilon, \infty}\left(\Delta_{S_{n}}\right) \leq \mathcal{N}_{p_{i} / q_{i}, \infty}\left(\Delta_{S_{n}}\right) \leq C /\left(n!\left(p_{i} / q_{i}\right)^{n}\right)$. Since $1 / x^{n}$ is a continuous function and $\left\{p_{i} / q_{i}\right\}$ converges to ϵ, we obtain $\mathcal{N}_{\varepsilon, \infty}\left(\Delta_{S_{n}}\right) \leq C /\left(n!(\varepsilon)^{n}\right)$. Hence it is enough to show the case of rational numbers.

We assume $\varepsilon=p / q$ for some integers $p, q>0$. Let $\mathcal{C}(I)$ be the covering of I, which is a set of ε-cubes

$$
c_{j_{1}, \ldots, j_{n}}=\left\{x=\left(x_{i}\right) \in I \mid \varepsilon j_{i} \leq x_{i} \leq \varepsilon\left(j_{i}+1\right)\right\},
$$

for $j_{i}=1, . .,[q / p]+1$. We can easily see that $\mathcal{C}(I)$ attains the minimum number of ε-cubes covering I and the number is $\left(\varepsilon^{-1}+1\right)^{n}=\frac{\varepsilon^{-n}}{n!}+\mathcal{O}\left(\varepsilon^{-(n-1)}\right)$. We show that we can find a subset of $\mathcal{C}(I)$ which cover $\Delta_{S_{n}}$ and whose cardinality is $\frac{\varepsilon^{-n}}{n!}+\mathcal{O}\left(\varepsilon^{-(n-1)}\right)$. The proof is as follows. At first, we calculate the number A of cubes in $\mathcal{C}(I)$ which intersect with the boundary of $\sigma \cdot \Delta$. Then since the number of the orbit of the cubes which do not intersect with the boundary of $\sigma \cdot \Delta$ is $n!$, if A is $\mathcal{O}\left(\varepsilon^{-(n-1)}\right)$, we can find the covering whose cardinality is $\frac{\varepsilon^{-n}}{n!}+\mathcal{O}\left(\varepsilon^{-(n-1)}\right)$. Since $\sigma \cdot \Delta$ is $\left\{x \in I \mid x_{\sigma^{-1}(1)} \geq x_{\sigma^{-1}(2)} \geq \cdots \geq x_{\sigma^{-1}(n)}\right\}$, any boundary of $\sigma \cdot \Delta$ is of the form $\left\{x \in I \mid x_{\sigma^{-1}(1)} \geq \cdots x_{\sigma^{-1}(i)}=x_{\sigma^{-1}(i+1)} \geq \cdots \geq x_{\sigma^{-1}(n)}\right\}$.
From here, we fix σ and i. Consider the canonical projection $\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ which sends $x_{\sigma^{-1}(i)}$-axis to zero. π induces the map $\widetilde{\pi}: \mathcal{C}(I) \rightarrow \mathcal{C}(\pi(I))$, where $\mathcal{C}(\pi(I))$ is the covering of $\pi(I)$. Let $\mathcal{C}(I)_{B}$ denote the subset of cubes in $\mathcal{C}(I)$ which intersect with the set $B=\left\{x \in I \mid x_{\sigma^{-1}(i)}=x_{\sigma^{-1}(i+1)}\right\}$. Then we can see that $\widetilde{\pi}$ is injective on $\mathcal{C}(I)_{B}$ as follows. Assume that there are two cubes in $\mathcal{C}(I)_{B}$ whose images by $\widetilde{\pi}$ are equal. Let us denote the centers of two cubes by $c_{j_{1}, \ldots, j_{n}}$ and $c_{k_{1}, ., k_{n}}$.Then, since π only kills $x_{\sigma^{-1}(i)}, j_{p}=k_{p}$ holds for $p \neq \sigma^{-1}(i)$. But since $c_{j_{1}, \ldots, j_{n}}$ and $c_{k_{1}, \ldots, k_{n}}$ are in $\mathcal{C}(I)_{B}$, we have $j_{\sigma^{-1}(i)}=j_{\sigma^{-1}(i+1)}$ and $k_{\sigma^{-1}(i)}=k_{\sigma^{-1}(i+1)}$. Hence $j_{p}=k_{p}$ for any p and $\widetilde{\pi}$ is injective on $\mathcal{C}(I)_{B}$.
Next, let $\mathcal{C}(I)_{\widetilde{B}}$ be the subset of ε-cubes in $\mathcal{C}(I)$ which intersect a boundary of $\sigma \cdot \Delta$ for some σ. We see that the cardinality of $\mathcal{C}(I)_{\widetilde{B}}$ is bounded by $e \varepsilon^{-(n-1)}$ for some constant $e>0$. Since the number of components of the boundaries is finite, we prove the claim for a component B. As we see before, $\widetilde{\pi}_{\mathcal{C}(I)_{B}}$ is injective. This result implies that the number of cubes that intersect B is bounded by a number of ε-cubes in $\mathcal{C}(p(I))=\varepsilon^{-(n-1)}$. Put $\mathcal{C}(I)_{F}=\mathcal{C}(I)-\mathcal{C}(I)_{\widetilde{B}}$. Then we note that the action of S_{n} onC $(I)_{F}$ is free, namely the number of the orbit of any cube in $\mathcal{C}(I)_{F}$ is $\left|S_{n}\right|$. Hence,

$$
\left|\mathcal{C}(I)_{F} \cap \Delta\right|=|\{c \in \mathcal{C}(i) \mid c \subset \Delta\}|=1 /\left|S_{n}\right|\left|\mathcal{C}(I)_{F}\right| \leq \varepsilon^{-n} /\left|S_{n}\right| .
$$

Here, $\left(\mathcal{C}(I)_{F} \cap \Delta\right) \cup \mathcal{C}(I)_{\widetilde{B}}$ gives the covering of Δ. This covering gives

$$
\mathcal{N}_{\varepsilon, \infty}(\Delta) \leq \frac{\varepsilon^{-n}}{n!}+e \varepsilon^{-(n-1)}
$$

Proof of Lemma 2. By Proposition 3, we have $\widetilde{\Delta}_{G}$ satisfying two conditions above. Since the covering of $\widetilde{\Delta}_{G}$ induces the covering of Δ_{G} by the condition $2, \mathcal{N}_{\varepsilon, \infty}\left(\Delta_{G}\right) \leq \mathcal{N}_{\varepsilon, \infty}\left(\widetilde{\Delta}_{G}\right)$. On the other hand, by the condition 1 , we have $\mathcal{N}_{\varepsilon, \infty}\left(\widetilde{\Delta}_{G}\right) \leq\left|S_{n}\right| /|G| \cdot \mathcal{N}_{\varepsilon, \infty}\left(\Delta_{S_{n}}\right)$. Combining with Lemma 1 , we have the desired result.

Proof of Proposition 1. For the claim, assume that an action of G preserves distance, namely, $\left\|x-x^{\prime}\right\|_{2}=\left\|g(x)-g\left(x^{\prime}\right)\right\|_{2}$ holds. We show that $d_{G}\left(y, y^{\prime}\right)=\inf _{x, x^{\prime} \in \mathbb{R}^{n}}\left\{\left\|x-x^{\prime}\right\|_{2} \mid \phi_{G}(x)=y, \phi_{G}\left(x^{\prime}\right)=y^{\prime}\right\}$. Consider the sum $\left\|x-b_{1}\right\|_{2}+$ $\left\|a_{2}-b_{2}\right\|_{2}+\ldots+\left\|a_{n}-x^{\prime}\right\|_{2}$ and take an element $g \in G$ such that $a_{2}=g \cdot b_{1}$. Then, $\left\|x-b_{1}\right\|_{2}+\left\|a_{2}-b_{2}\right\|_{2}=$ $\left\|x-b_{1}\right\|_{2}+\left\|g \cdot b_{1}-b_{2}\right\|_{2}=\left\|x-b_{1}\right\|_{2}+\left\|b_{1}-g^{-1} \cdot b_{2}\right\|_{2} \geq\left\|x-g^{-1} \cdot b_{2}\right\|_{2}$. By repeating this process, we have $\left\|x-b_{1}\right\|_{2}+\left\|a_{2}-b_{2}\right\|_{2}+\ldots+\left\|a_{n}-x^{\prime}\right\|_{2} \geq\left\|x-g \cdot x^{\prime}\right\|_{2}$ for some $g \in G$. Hence, $d_{G}\left(y, y^{\prime}\right)=\inf _{x, x^{\prime} \in I}\left\{\left\|x-x^{\prime}\right\|_{2} \mid \phi_{G}(x)=\right.$ $\left.y, \phi_{G}\left(x^{\prime}\right)=y^{\prime}\right\}$. This implies $d_{G}\left(y, y^{\prime}\right)=0 \Rightarrow y=y^{\prime}$.

Proof of Proposition 3. We confirm that $\widetilde{\Delta}_{G}$ satisfies both the conditions 1 and 2. As the action of G preserves the distance, $g_{k}: \Delta_{S_{n}} \rightarrow g_{k} \cdot \Delta_{S_{n}}$ is an isomorphism on metric spaces. Hence, condition 1 is satisfied.

For condition 2, we consider $y \in \Delta_{G}=\phi_{G}(I)$. Then, there is an element $x \in I$ such that $y=\phi_{G}(x)$. As $I=\cup_{\sigma \in S_{n}} \sigma \cdot \Delta_{S_{n}}$, there exist $\sigma \in S_{n}$ and $z \in \Delta_{S_{n}}$ such that $x=\sigma \cdot z$.

In contrast, as $\left\{g_{1}, . ., g_{K} \mid g_{k} \in G\right\}$ is a complete system of representatives of $G \backslash S_{n}$, there exist $\tau \in G$ and g_{k} such as $\sigma=\tau \cdot g_{i}$. Then $\phi_{G}\left(g_{k} z\right)=\phi_{G}\left(\tau \cdot g_{k} z\right)=\phi_{G}(x)=y$ and $g_{k} \cdot z \in \widetilde{\Delta}_{G}$. Hence $\phi_{G}\left(\widetilde{\Delta}_{G}\right)=\Delta_{G}$.

A. 2 PROOF FOR SECTION 3.2

Proof of Proposition 4 . We prove $\widehat{\phi}_{G}$ is injective and surjective. Assume $f \in C\left(\Delta_{G}\right)$ and put $\widehat{\phi}_{G}(f)=f \circ \phi_{G}$. Then since ϕ_{G} is G-invariant, so is $\widehat{\phi}_{G}(f)$. Also, since ϕ_{G} is surjective, $\widehat{\phi}_{G}$ is injective. Take $g \in C^{G}(I)$, then we define $f \in C\left(\Delta_{G}\right)$ as follows; for any $y \in \Delta_{G}$, take $x \in I$ such that $\phi_{G}(x)=y$ and define $f(y)=g(x)$. This map is well defined because g is G-invariant. $\widehat{\phi}_{G}(f)(x)=f \circ \phi_{G}(x)=f(y)=g(x)$. Hence, we obtain the desired result.
Next, we prove the Lipschitz properties. Take $f \in C\left(\Delta_{G}\right)$ and assume f is K-Lipschitz. Then for any $x, x^{\prime} \in I$,

$$
d_{G}\left(\phi_{G}(x), \phi_{G}\left(x^{\prime}\right)\right) \geq K d\left(f\left(\phi_{G}(x)\right), f\left(\phi_{G}\left(x^{\prime}\right)\right)\right)
$$

by K-Lipschitz property of f. By the definition of d_{G}, we have $d_{G}\left(\phi_{G}(x), \phi_{G}\left(x^{\prime}\right)\right) \leq d\left(x, x^{\prime}\right)$. Hence, $\widehat{\phi}_{G}(f)$ is K Lipschitz continuous. Conversely, assume $\widehat{\phi}_{G}(f)$ is K-Lipschitz. Take any $y, y^{\prime} \in I$, then for any $x, x^{\prime} \in I$ satisfying $\phi_{G}(x)=y, \phi_{G}(x)=y^{\prime}$,

$$
d\left(x, x^{\prime}\right) \geq K d\left(f\left(\phi_{G}(x)\right), f\left(\phi_{G}\left(x^{\prime}\right)\right)\right)=d\left(f(y), f\left(y^{\prime}\right)\right)
$$

by K-Lipschitz property of $\widehat{\phi}_{G}(f)$. Hence by taking infimum of the left hand side, we have

$$
d_{G}\left(y, y^{\prime}\right)=\inf d_{G}\left(\phi_{G}(x), \phi_{G}\left(x^{\prime}\right)\right) \geq K d\left(f(y), f\left(y^{\prime}\right)\right)
$$

Hence, f is K-Lipschitz.

Proof of Proposition 2. We first note that ϕ is the identity map on Δ, because elements in Δ are sorted. This implies $\Delta \cong \phi(\Delta)$. Therefore, it is sufficient to show $\Delta \cong \Delta_{S_{n}}$. As Δ is a subset of I, we have the distance preserving map $\phi_{S_{n} \upharpoonright_{\Delta}}: \Delta \rightarrow \Delta_{S_{n}}$.
Then, we show that $\phi_{\left.S_{n}\right|_{\Delta}}$ is a bijection. Injectivity: Ley us take any $x, y \in \Delta$ such that $\phi_{S_{n} \upharpoonright_{\Delta}}(x)=\phi_{S_{n} \upharpoonright_{\Delta}}$ (y). Then $x=g \cdot y$ for some $g \in \stackrel{S}{S}_{n}$. However, as y is in Δ, $\left\{g \cdot y \mid g \in S_{n}\right\} \cap \Delta=\{y\}$. Hence, $x=y$. Surjectivity: Take any $z \in \Delta_{S_{n}}$, then there is $x \in I$ such that $z=\phi_{S_{n}}(x)$. By the construction of Δ, there is $g \in S_{n}$ and $y \in \Delta$ that satisfies $x=g \cdot y$. Hence, $z=\phi_{S_{n}}(x)=\phi_{S_{n}}(g \cdot y)=\phi_{S_{n}}(y)$.

Proof of Proposition 5. Firstly, we show $\widehat{\phi}_{G}^{-1}(f) \in \mathcal{F}(I)$ with any $f \in \mathcal{F}^{G}(I)$. For $f \in \mathcal{F}^{G}(I)$, we consider $\widehat{\phi}_{G}^{-1}(f) \in$ $C\left(\Delta_{G}\right)$ as Proposition 4 . Suppose f and f^{\prime} are K-Lipschitz continuous, then $\widehat{\phi}_{G}^{-1}(f)$ is also K-Lipschitz continuous by Proposition 4 . Since Zhang et al. [2018] states that Lipschitz continuous functions are represented by DNNs, we have $\widehat{\phi}_{G}^{-1}(f) \in \mathcal{F}\left(\Delta_{G}\right)$.
Fix $f_{1}, f_{2} \in \mathcal{F}^{G}(I)$. Then, there exist $f_{1}^{\prime}, f_{2}^{\prime} \in \mathcal{F}\left(\Delta_{G}\right)$ such as $f_{1}=\widehat{\phi}_{G}\left(f_{1}^{\prime}\right)$ and $f_{2}=\widehat{\phi}_{G}\left(f_{2}^{\prime}\right)$. Then, we have

$$
\left\|f_{1}-f_{2}\right\|_{L^{\infty}(I)}=\left\|\widehat{\phi}_{G}\left(f_{1}^{\prime}\right)-\widehat{\phi}_{G}\left(f_{1}^{\prime}\right)\right\|_{L^{\infty}(I)}=\left\|f_{1}^{\prime} \circ \phi_{G}-f_{2}^{\prime} \circ \phi_{G}\right\|_{L^{\infty}(I)} \leq\left\|f_{1}^{\prime}-f_{2}^{\prime}\right\|_{L^{\infty}\left(\Delta_{G}\right)}
$$

Based on the result, we can bound $\mathcal{N}_{\varepsilon, \infty}\left(\mathcal{F}^{G}(I)\right)$ by $\mathcal{N}_{\varepsilon, \infty}\left(\mathcal{F}\left(\Delta_{G}\right)\right)$. Let us define $N:=\mathcal{N}_{\varepsilon, \infty}\left(\mathcal{F}\left(\Delta_{G}\right)\right)$. Then, there exist $f_{1}^{\prime}, \ldots, f_{N}^{\prime}$ such that for any $f^{\prime} \in \mathcal{F}\left(\Delta_{G}\right)$, there exists $j \in\{1, \ldots, N\}$ such as $\left\|f_{j}^{\prime}-f^{\prime}\right\|_{L^{\infty}\left(\Delta_{G}\right)} \leq \varepsilon$. Here, for any $f \in \mathcal{F}^{G}(I)$, there exists $f_{j}:=\widehat{\phi}_{G}^{-1}\left(f_{j}^{\prime}\right) \in \mathcal{F}^{G}(I)$ and it satisfies $\left\|f-f_{j}\right\|_{L^{\infty}(I)} \leq\left\|\widehat{\phi}_{G}(f)-\widehat{\phi}_{G}\left(f_{j}\right)\right\|_{L^{\infty}\left(\Delta_{G}\right)} \leq \varepsilon$. Then, we obtain the statement.

Proof of Theorem 2. Combining Proposition 5 and 6 , we obtain a bound for $\log \mathcal{N}_{2 C_{\Delta} \delta, \infty}\left(\mathcal{F}^{G}(I)\right)$. Then, we substitute it into (3) and obtain the statement of Theorem 2

A. 3 PROOF FOR SECTION 4

Proof of Proposition 6. We bound a covering number of a set of C_{Δ}-Lipschitz continuous functions on Δ. Let $\left\{x_{1}, \ldots, x_{K}\right\} \subset \Delta$ by a set of centers of δ-covering set for Δ. By Lemma 1 , we set $K=C /\left(|G| \delta^{n}\right)$ with δ with a parameter $\delta>0$, where $C>0$ is a constant.
We will define a set of vectors to bound the covering number. We define a discretization operator $A: \mathcal{F}\left(\Delta_{G}\right) \rightarrow \mathbb{R}^{K}$ as

$$
A f=\left(f\left(x_{1}\right) / \delta, \ldots, f\left(x_{K}\right) / \delta\right)^{\top}
$$

Let $\mathcal{B}_{\delta}(x)$ be a ball with radius δ in terms of the $\|\cdot\|_{\infty}$-norm. For two functions $f, f^{\prime} \in \mathcal{F}\left(\Delta_{G}\right)$ such as $A f=A f^{\prime}$, we obtain

$$
\begin{aligned}
\left\|f-f^{\prime}\right\|_{L^{\infty}(I)} & =\max _{k=1, \ldots, K} \sup _{x \in \mathcal{B}_{\delta}\left(x_{k}\right)}\left|f(x)-f^{\prime}(x)\right| \\
& \leq \max _{k=1, \ldots, K} \sup _{x \in \mathcal{B}_{\delta}\left(x_{k}\right)}\left|f(x)-f\left(x_{k}\right)\right|+\left|f^{\prime}\left(x_{k}\right)-f\left(x_{k}\right)\right| \\
& \leq 2 C_{\Delta} \delta
\end{aligned}
$$

where the second inequality follows $f\left(x_{k}\right)=f^{\prime}\left(x_{k}\right)$ for all $k=1, \ldots, K$ and the last inequality follows the C_{Δ}-Lipschitz continuity of f and f^{\prime}. By the relation, we can claim that $\mathcal{F}\left(\Delta_{G}\right)$ is covered by $2 C_{\Delta} \delta$ balls whose center is characterized by a vector $b \in \mathbb{R}^{K}$ such as $b=A f$ for $f \in \mathcal{F}\left(\Delta_{G}\right)$. Namely, $\mathcal{N}_{2 C \Delta \delta, \infty}\left(\mathcal{F}\left(\Delta_{G}\right)\right)$ is bounded by a number of possible b.

Then, we construct a specific set of b to cover $\mathcal{F}\left(\Delta_{G}\right)$. Without loss of generality, assume that x_{1}, \ldots, x_{K} are ordered satisfies such as $\left\|x_{k}-x_{k+1}\right\|_{\infty} \leq 2 \delta$ for $k=1, \ldots, K-1$. By the definition, $f \in \mathcal{F}\left(\Delta_{G}\right)$ satisfies $\|f\|_{L^{\infty}(\Delta)} \leq B$. $b_{1}=f\left(x_{1}\right)$ can take values in $[-B / \delta, B / \delta]$. For $b_{2}=f\left(x_{2}\right)$, since $\left\|x_{1}-x_{2}\right\|_{\infty} \leq 2 \delta$ and hence $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq 2 C_{\Delta} \delta$, a possible value for b_{2} is included in $\left[\left(b_{1}-2 \delta\right) / \delta,\left(b_{1}+2 \delta\right) / \delta\right]$. Hence, b_{2} can take a value from an interval with length 4 given b_{1}. Recursively, given b_{k} for $k=1, \ldots, K-1, b_{k+1}$ can take a value in an interval with length 4 .
Then, we consider a combination of the possible b. Simply, we obtain the number of vectors is $(2 c B / \delta) \cdot(4 c)^{K-1} \leq$ $\left(8 c^{2} B / \delta\right)^{K-1}$ with a universal constant $c \geq 1$. Then, we obtain that

$$
\log \mathcal{N}_{2 C \Delta \delta, \infty}\left(\mathcal{F}\left(\Delta_{G}\right)\right) \leq(K-1) \log \left(8 c^{2} B / \delta\right)
$$

Then, we specify K which describe a size of Δ through the set of covering centers.

A. 4 PROOF FOR SECTION 5

Proposition 7. Suppose G is transitive. Then, for any $\varepsilon>0$, we have

$$
\mathcal{N}_{\varepsilon, \infty}\left(\widetilde{\mathcal{F}}^{G}(I)\right) \leq \mathcal{N}_{\varepsilon, \infty}\left(\mathcal{F}^{\operatorname{St}(G)}(I)\right)
$$

Proof of Proposition 7 The first statement simply follows Proposition 11 with setting $J=1$, since $g \in G$ is transitive. In the case of S_{n}, we have $J=1$ and $\operatorname{Stab}(1) \cong S_{n-1}$. This gives the second statement.

Proof of Theorem 3 and Corollary 2. For Theorem3, we combine the bound (3), Lemma 2 and Proposition 5. Thus, we obtain the statement.

For Corollary 2 , since S_{n} is transitive, the statement obviously holds with $|\operatorname{St}(G)|=\left|S_{n-1}\right|=(n-1)$!.

A. 5 PROOF FOR SECTION 6

To prove Theorem 4 , we consider a Sort map and show that DNNs can represent the map. Let $\max ^{(k)}\left(x_{1}, \ldots, x_{n}\right)$ be a map which returns the k-th largest value of inputted elements x_{1}, \ldots, x_{n} for $k=1, \ldots, n$. Then, we provide a form of Sort as

$$
\operatorname{Sort}\left(x_{1}, \ldots, x_{n}\right)=\left(\max ^{(1)}\left(x_{1}, \ldots, x_{n}\right), \ldots, \max ^{(n)}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

To represent it, we provide the following propositions.
Proposition 8. $\max ^{(j)}\left(z_{1}, \ldots, z_{N}\right)$ and $\min ^{(j)}\left(z_{1}, \ldots, z_{N}\right)$ are represented by an existing deep neural networks with an ReLU activation for any $j=1, \ldots, N$.

Proof of Proposition 8 Firstly, since

$$
\max \left(z_{1}, z_{2}\right)=\max \left(z_{1}-z_{2}, 0\right)+z_{2}
$$

and

$$
\min \left(z_{1}, z_{2}\right)=-\max \left(z_{1}-z_{2}, 0\right)+z_{1}
$$

hold, we see the case of $j=1, N=2$. By repeating $\max \left(z_{1}, z_{2}\right)$, we construct $\max ^{(1)}\left(z_{1}, \ldots, z_{N}\right)$ and $\min ^{(1)}\left(z_{1}, \ldots, z_{N}\right)$. Namely, we prove the claim in the case of $j=1$ and arbitrary N. At first, we assume N is even without loss of generality, then we divide the set $\left\{z_{1}, \ldots z_{N}\right\}$ into sets of pairs $\left\{\left(z_{1}, z_{2}\right), \ldots\left(z_{N-1}, z_{N}\right)\right\}$. Then, by taking a max operation for each of the pairs, we have $\left\{y_{1}=\max \left(z_{1}, z_{2}\right), \ldots, y_{N / 2}=\max \left(z_{N-1}, z_{N}\right)\right\}$. We repeat this process to terminate. Then we have $\max ^{(1)}\left(z_{1}, \ldots, z_{N}\right)$, which is represented by an existing deep neural network. Similarly, we have $\min ^{(1)}\left(z_{1}, \ldots, z_{N}\right)$. Finally, we prove the claim on $j=2, \ldots, N$ by induction. Assume that for any N and $\ell<j$, $\max ^{(\ell)}\left(z_{1}, \ldots, z_{N}\right)$ is represented by a deep neural network. We construct $\max ^{(j)}\left(z_{1}, \ldots, z_{N}\right)$ as follows: since

$$
\max ^{(j-1)}\left(z_{-\ell}\right)= \begin{cases}\max ^{(j-1)}\left(z_{1}, \ldots, z_{N}\right) & \left(\text { if } z_{\ell} \leq \max ^{(j)}\left(z_{1}, \ldots, z_{N}\right)\right) \\ \max ^{(j)}\left(z_{1}, \ldots, z_{N}\right) & (\text { otherwise })\end{cases}
$$

holds, we have $\max ^{(j)}\left(z_{1}, \ldots, z_{N}\right)=\min \left(\left\{\max ^{(j-1)}\left(Z_{\ell}\right) \mid \ell=1, \ldots, N\right\}\right)$. By inductive hypothesis, the right hand side is represented by a deep neural network.

Further, we provide the following result for a technical reason.
Proposition 9. The restriction map

$$
\Lambda: \mathcal{F}^{S_{n}}(I) \rightarrow \mathcal{F}\left(\Delta_{S_{n}}\right)
$$

is bijective, where $\Lambda(f)=f_{\upharpoonright_{S_{S_{n}}}}$.

Proof of Proposition 4 To show the Proposition, we firstly define sorting layers which is an S_{n}-invariant network map from I to Δ. Then by Proposition 8 , $\operatorname{Sort}\left(x_{1}, \ldots, x_{n}\right)$ is also a function by an S_{n}-invariant deep neural network and $\operatorname{Sort}\left(x_{1}, \ldots, x_{n}\right)$ is the function from I to Δ.

By using this function, we define the inverse of Λ. For any function f by a deep neural network on Δ, we define $\Phi(f)=f \circ$ Sort. We confirm $\Lambda \circ \Phi=\mathrm{id}_{\mathcal{F}_{\Delta}}$ and $\Phi \circ \Lambda=\mathrm{id}_{\mathcal{F}_{S_{n}}}$. Since we have

$$
\Lambda \circ \Phi(f)=\Lambda \circ f \circ \text { Sort }=(f \circ \text { Sort })_{\upharpoonright_{\Delta}}=f
$$

$\Lambda \circ \Phi$ is equal to $\operatorname{id}_{\mathcal{F}_{\Delta}}$. Similarly,

$$
\Phi \circ \Lambda(f)=\Phi \circ f_{\upharpoonright \Delta}=f_{\upharpoonright \Delta} \circ \text { Sort }=f
$$

where the last equality follows from the S_{n}-invariance of f. Hence, we have the desired result.
Now, we are ready to prove Theorem 4 .
Proof of Theorem 4. Let f^{*} be an S_{n}-invariant function on I. Then by Proposition 9 , we have a function f on $\Delta_{S_{n}}$ such that $f^{*}=f \circ$ Sort holds. By Theorem 5 in Schmidt-Hieber [2017], for enough big N, there exists a constant $c>0$ and a neural network f^{\prime} with at most $\mathcal{O}(\log (N))$ layers and at most $\mathcal{O}(N \log (N))$ nonzero weights such that $\left\|f-f^{\prime}\right\|_{L^{\infty}(I)} \leq c N^{-\alpha / p}$. Then, we have

$$
\left\|f^{*}-f^{\prime} \circ \operatorname{Sort}\right\|_{L^{\infty}(I)}=\left\|f \circ \operatorname{Sort}-f^{\prime} \circ \operatorname{Sort}\right\|_{L^{\infty}(I)} \leq\left\|f-f^{\prime}\right\|_{L^{\infty}(\Delta)} \leq\left\|f-f^{\prime}\right\|_{L^{\infty}(I)} \leq c N^{-\alpha / p}
$$

where $f \circ$ Sort is a neural network with at most $\mathcal{O}(\log (N))+K_{1}$ layers and at most $\mathcal{O}(N \log (N))+K_{2}$ nonzero weights, where K_{1} and K_{2} are the number of layers and the number of nonzero weights of the neural network expressing Sort respectively. By replacing N^{-1} with ε, we have the desired inequality.

B GENERALIZATION BOUND FOR EQUIVALENT DNN WITHOUT TRANSITIVE ASSUMPTION

In this section, we provide a general version of the result in Section 5 Namely, we relax the transitive assumption in the section. To the goal, we newly define a general version of a stabilizer subgroup.
Let $[n]=\{1,2, \ldots, n\}$ be an index set and G be a finite group action on $[n]$. For $i \in[n]$, we define the stabilizer subgroup $\operatorname{Stab}_{G}(i)$ associated with G as

$$
\operatorname{Stab}_{G}(i)=\{\sigma \in G \mid \sigma \cdot i=i\}
$$

We also consider the following decomposition of $[n]$ as

$$
[n]=\bigsqcup_{j \in \mathcal{J}} \mathcal{O}_{j}
$$

where $\mathcal{J} \subset I$ and \mathcal{O}_{j} is a G-orbit of j, namely the set of the form $G \cdot j$. Any G-orbit $G \cdot j$ is isomorphic to the set $G / \operatorname{Stab}(j)$. We denote $|\mathcal{J}|$ by J and $\left|\mathcal{O}_{j}\right|$ by l_{j}. For each $j \in \mathcal{J}$, let $G=\bigsqcup_{j \in \mathcal{J}} \bigsqcup_{k=1}^{l_{j}} \operatorname{Stab}_{G}(j) \tau_{j, k}$ be the coset decomposition by $\operatorname{Stab}_{G}(j)$. Then, we may assume that $\tau_{j, k} \in G$ satisfies $\tau_{j, k}^{-1}(j)=j+k$.
Then, we provide another representation for equivariant functions from the following study.:
Proposition 10 (Representation for Equivariant Functions Sannai et al.|2019]). A map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is G-equivariant if and only if F can be represented by $F=\left(f_{1} \circ \tau_{1,1}, f_{1} \circ \tau_{1,2}, \ldots, f_{1} \circ \tau_{1, l_{1}}, f_{2} \circ \tau_{2,1} \ldots, f_{J} \circ \tau_{J, l_{J}}\right)^{\top}$ for some Stab ${ }_{G}(j)$-invariant functions $f_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Here, $\tau_{j, k} \in G$ is regarded as a linear map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
Proposition 11. For any $\varepsilon>0$, we have

$$
\widetilde{\mathcal{N}}_{\varepsilon, \infty}\left(\widetilde{\mathcal{F}}^{G}(I)\right) \leq \prod_{j \in \mathcal{J}} \mathcal{N}_{\varepsilon, \infty}\left(\mathcal{F}^{\operatorname{Stab}_{G}(j)}\left(I_{l_{j}}\right)\right)
$$

where $I_{l_{j}}=[0,1]^{l_{j}}$. Further, if $G=S_{n}$,

$$
\tilde{\mathcal{N}}_{\varepsilon, \infty}\left(\widetilde{\mathcal{F}}^{S_{n}}(I)\right) \leq \mathcal{N}_{\varepsilon, \infty}\left(\mathcal{F}^{S_{n-1}}(I)\right)
$$

Proof of Proposition 11. We put $N_{j}=\mathcal{N}_{\varepsilon, \infty}\left(\mathcal{F}^{\operatorname{Stab}}{ }_{G}(j)(I)\right)$. For each $j \in \mathcal{J}$, by the definition of covering numbers, there exist $f_{j}^{(1)}, . ., f_{j}^{\left(N_{j}\right)} \in \mathcal{F}^{\operatorname{Stab}_{G}(j)}\left(I_{l_{j}}\right)$ such that for any $f^{\prime} \in \mathcal{F}^{\operatorname{Stab}_{G}(j)}\left(I_{l_{j}}\right)$, there exists $f_{j}^{(p)}$ satisfying $\left\|f^{\prime}-f_{j}^{(p)}\right\|_{\infty}<\varepsilon$. With a tuple $\left(p_{1}, \ldots, p_{J}\right)$, we consider a map $F_{p_{1}, \ldots, p_{J}}: I \rightarrow \mathbb{R}^{n}$ from $\widetilde{\mathcal{F}}^{G}(I)$ and claim that balls $\mathcal{B}_{\varepsilon}\left(F_{p_{1}, \ldots, p_{J}}\right)$ give a covering set of $\widetilde{\mathcal{F}}(I)$. Put $F_{p_{1}, . ., p_{J}}=\left(f_{1}^{\left(p_{1}\right)} \circ \tau_{1,1}, f_{1}^{\left(p_{1}\right)} \circ \tau_{1,2}, \ldots, f_{1}^{p_{1}} \circ \tau_{1, l_{1}}, f_{2}^{\left(p_{2}\right)} \circ \tau_{2,1} \ldots, f_{J}^{\left(p_{J}\right)} \circ \tau_{J, l_{J}}\right)^{\top}$. Then $F_{p_{1}, . ., p_{J}}$ is a G-equivariant map. Also, since $\tau_{j, k}$ is a linear map by Proposition 10 , we can represent $\tau_{j, k}$ by DNNs. Hence, $F_{p_{1}, \ldots, p_{J}} \in \widetilde{\mathcal{F}}^{G}(I)$ holds.
Fix $F^{\prime} \in \widetilde{\mathcal{F}}^{G}(I)$ arbitrary. We have the representation $F^{\prime}=\left(f_{1}^{\prime} \circ \tau_{1,1}, f_{1}^{\prime} \circ \tau_{1,2}, \ldots, f_{1}^{\prime} \circ \tau_{1, l_{1}}, f_{2}^{\prime} \circ \tau_{2,1} \ldots, f_{J}^{\prime} \circ \tau_{j, l_{J}}\right)^{\top}$ by Propositior 10 . Then, we can find a corresponding $F_{p_{1}, \ldots, p_{J}}$ such as

$$
\begin{aligned}
\left\|F_{p_{1}, \ldots, p_{J}}-F^{\prime}\right\|_{L^{\infty}(I)} & =\max \left\{\left\|f_{j}^{\left(p_{j}\right)} \circ \tau_{j, k_{j}}-f_{j}^{\prime} \circ \tau_{j, k_{j}}\right\|_{\infty}\left|1 \leq k_{j} \leq\left|G / \operatorname{Stab}_{G}(j)\right|, 1 \leq p_{j} \leq N_{j}\right\}\right. \\
& =\max \left\{\left\|f_{j}^{\left(p_{j}\right)}-f_{j}^{\prime}\right\|_{\infty} \mid 1 \leq p_{j} \leq N_{j}\right\} \\
& \leq \varepsilon
\end{aligned}
$$

Hence, we have the first statement.
In the case of S_{n}, we have $J=1$ and $\operatorname{Stab}(1) \cong S_{n-1}$. This gives the second statement.

Then, we obtain the following general bound:
Theorem 5 (Generalization of Equivariant DNN). Suppose $\tilde{f}^{G} \in \widetilde{\mathcal{F}}^{G}(I)$ is uniformly bounded by 1 . Then, for any $\varepsilon>0$, the following inequality holds with probability at least $1-2 \varepsilon$:

$$
R\left(\widetilde{f}^{G}\right) \leq R_{m}\left(\widetilde{f}^{G}\right)+\sqrt{\sum_{j \in \mathcal{J}} \frac{\widetilde{c}}{\left|\operatorname{Stab}_{G}(j)\right| m^{2 / n}}}+\sqrt{\frac{2 \log (2 / \varepsilon)}{m}}
$$

where $\widetilde{c}>0$ is a constant which are independent of n and m.

We omit rigorous proof of Theorem (5], because it is almost same to that of Theorem 3 .

References

Akiyoshi Sannai, Yuuki Takai, and Matthieu Cordonnier. Universal approximations of permutation invariant/equivariant functions by deep neural networks. arXiv preprint arXiv:1903.01939, 2019.

Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with relu activation function. arXiv preprint arXiv:1708.06633, 2017.

Liwen Zhang, Gregory Naitzat, and Lek-Heng Lim. Tropical geometry of deep neural networks. arXiv preprint arXiv:1805.07091, 2018.

