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STRUCTURE OF APPENDIX

Appendix 1 is devoted to the proof of Theorem 3.2. Appendix 2 reminds and proves auxiliary results that are used in the rest
of the supplementary material. The proof of Proposition 5.1 is split across Appendix 3 for the control of the reject rate and
Appendix 4 for the control of the demographic parity violation. Appendix 5 contains the proof of Proposition 5.2. Finally,
Appendix 6 provides a constructive proof of Proposition 6.1.

1 DERIVATION OF THE OPTIMAL PREDICTION

Recall that we are interested in solving the following optimization problem

min
g:Rd×[K]→{0,1,r}

P(g(X, S) 6= Y | g(X, S)) 6= r)

s.t.

{
P(g(X, S)) 6= r | S = s) = αs, ∀s ∈ [K]

P(g(X, S) = 1 | S = s, g(X, S) 6= r) = P(g(X, S) = 1 | g(X, S)) 6= r), ∀s ∈ [K]
.

(1)

Simplifications. First we simplify the quantities involved in the above problem. Set ᾱ =
∑K
s=1 psαs and recall that we

defined the random variable η(X, S) = E[Y |X, S]. Observe that for any g such that P(g(X, S) 6= r | s = s) = αs, we
can write

P(g(X, S) 6= Y | g(X, S) 6= r) =

K∑
s=1

ps
ᾱ
EX|S=s

[
(1− η(X, S)1g(X,S)=1 + η(X, S)1g(X,S)=0

]
,

P(g(X, S) 6= r|S = s) = EX|S=s

[
1g(X,S)=1 + 1g(X,S)=0

]
,

P(g(X, S) = 1 | g(X, S) 6= r) =

K∑
s=1

ps
ᾱ
EX|S=s

[
1g(X,S)=1

]
,

P(g(X, S) = 1|S = s, g(X, S) 6= r) =
1

αs
EX|S=s

[
1g(X,S)=1

]
.

Lagrangian. We introduce the Lagrangian L of the constrained minimization problem as

L(g,λ,γ) = P(g(X, S) 6= Y | g(X, S) 6= r) +

K∑
s=1

λs(P(g(X, S) 6= r|S = s)− αs)

+

K∑
s=1

γs(P(g(X, S) = 1|S = s, g(X, S) 6= r)− P(g(X, S) = 1|g(X, S) 6= r)) .

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

mailto:Nicolas Schreuder <nicolas.schreuder@ensae.fr>?Subject=Your UAI 2021 paper


Using the simpler expressions we derived in the previous paragraph and rather straight-forward algebraic manipulations, the
Lagrangian can be expressed as

L(g,λ,γ) =

K∑
s=1

EX|S=s

[
H(X,s)(g,λ,γ)

]
−

K∑
s=1

λsαs ,

where, setting γ̄ :=
∑K
s=1 γs, we defined the function

H(x,s)(g,λ,γ) =


0, if g(x, s) = r
ps
ᾱ η(x, s) + λs, if g(x, s) = 0
ps
ᾱ (1− η(x, s)− γ̄) + λs + γs

αs
, if g(x, s) = 1

. (2)

Using this Lagrangian, our initial problem in Eq. (1) can be expressed as the following min max problem

min
g

max
(λ,γ)∈RK×RK

L(g,λ,γ) ,

where the minimum is take w.r.t. all classifiers with abstention. Weak duality then implies that

min
g

max
(λ,γ)∈RK×RK

L(g,λ,γ) ≥ max
(λ,γ)∈RK×RK

min
g
L(g,λ,γ) .

Solving dual problem. In what follows we focus our attention on the dual max min problem, which can be solved
analytically. We first solve the inner minimization problem of the max min formulation for any (λ,γ),

min
g
L(g,λ,γ) , (3)

and then show that strong duality holds under our assumptions. Recall that the Lagrangian is given by L(g,λ,γ) =∑K
s=1 EX|S=s

[
H(X,s)(g,λ,γ)

]
−
∑K
s=1 λsαs (with H defined in Eq. (2)), hence the problem in Eq. (3) can be solved

point-wise (i.e., minimizing H(x,s) at every point (x, s)). Hence, it is sufficient to solve

min
z∈{0,1,r}

H(x,s)(z,λ,γ) ,

for any s ∈ [K] and any x ∈ Rd. One can check that, for any given couple (x, s) ∈ Rd × [K], the minimizer of the above
expression is given by

g̃(x, s) =

{
r, if 0 ≤ min(psᾱ η(x, s) + λs,

ps
ᾱ (1− η(x, s)− γ̄) + λs + γs

αs
)

1(psᾱ (1− 2η(x, s)− γ̄) + γs
αs

< 0), otherwise
.

Using the fact that 2 min(a, b) = a+ b− |a− b|, the minimum in the above system simplifies to

g̃(x, s) =

{
r, if

∣∣∣ ps2ᾱ (1− 2η(x, s)− γ̄) + γs
2αs

∣∣∣ ≤ λs + ps
2ᾱ (1− γ̄) + γs

2αs

1(psᾱ (1− 2η(x, s)− γ̄) + γs
αs
< 0), otherwise

.

Note that g̃ actually depends on (λ, γ), but we omit this dependency for the sake of simplicity. Plugging back the expression
for g̃ in the function H we get

H(x,s)(g̃,λ,γ) =

(
ps
2ᾱ

(1− γ̄) + λs +
γs

2αs
−
∣∣∣∣ ps2ᾱ

(1− 2η(x, s)− γ̄) +
γs

2αs

∣∣∣∣)
−

,

where (a)− := min(a, 0). Thus, for every fixed (λ, γ) we have ming L(g,λ,γ) = L(g̃,λ,γ). Maximizing the latter
expression over the dual variables (λ, γ), we derive the dual optimization problem, which reads as

max
(λ,γ)

{
K∑
s=1

EX|S=s

(
ps
2ᾱ

(1− γ̄) + λs +
γs

2αs
−
∣∣∣∣ ps2ᾱ

(1− 2η(x, s)− γ̄) +
γs

2αs

∣∣∣∣)
−
−

K∑
s=1

λsαs

}
.

Replacing the maximization problem above by its minimization analogue, we conclude that the optimal (for the dual)
Lagrange multipliers (λ∗,γ∗) are a solution of

min
(λ,γ)

{
K∑
s=1

EX|S=s

(∣∣∣∣ ps2ᾱ
(1− 2η(X, S)− 〈γ,1〉) +

〈γ, es〉
2αs

∣∣∣∣− ps
2ᾱ

(1− 〈γ,1〉)− 〈λ, es〉 −
〈γ, es〉

2αs

)
+

+ 〈λ,α〉

}
,

(4)

where for any real number y, (y)+ := max(x, 0) and for any s ∈ [K], es is the s-basis vector of RK .



Dual is jointly convex. Let us check that the objective function of the problem in Eq. (4) of the above optimization
problem is jointly convex in (λ,γ). First of all, the mappings

(λ,γ) 7→ ps
2ᾱ

(1− 2η(x, s)− 〈γ,1〉) +
〈γ, es〉

2αs
and (λ,γ) 7→ − ps

2ᾱ
(1− 〈γ,1〉)− 〈λ, es〉 −

〈γ, es〉
2αs

,

are affine. Since taking the absolute value of an affine mapping gives a convex mapping (as a maximum between two affine,
hence convex, functions), the sum of the absolute value of the first mapping with the second mapping is a convex function.
Furthermore, the composition with the positive part function preserves convexity since this operation can be expressed as
taking the maximum between two convex functions. Finally, by linearity of expectation, we notice that the objective is
expressed as a finite sum of jointly convex functions and conclude that it is jointly convex in (λ,γ).

Optimality conditions for (λ∗, γ∗). The objective function of problem in Eq. (4) is not smooth everywhere due to the
presence of absolute values and positive part functions. However, thanks to Assumption 3.1, the set of points at which the
objective function is not differentiable has zero Lebesgue measure and can thus be ignored. The First-Order Optimality
Conditions (FOOC) on the optimal Lagrange multipliers (λ∗,γ∗) then read as

αs = PX|S=s

(∣∣∣∣ ps2ᾱ
(1− 2η(X, s)− 〈γ∗,1〉) +

〈γ∗, es〉
2αs

∣∣∣∣ ≥ ps
2ᾱ

(1− 〈γ∗,1〉) + 〈λ∗, es〉+
〈γ∗, es〉

2αs

)
,∀s

0 =

K∑
s=1

(
ps
ᾱ
1− es

αs

)
PX|S=s

(
min

(
2η(X, S), η(X, S)− ᾱλs

ps

)
≥ ᾱγs
psαs

+ 1− γ̄
)

.

(FOOC)

Feasibility of g̃ for the primal problem Let us check that g̃ with (λ∗, γ∗) is actually feasible for the primal problem.
Using the definition of g̃ and the first-order optimal condition on λ∗ we obtain, for any s ∈ [K],

P(g̃(X, S) 6= r | S = s) = PX|S=s

(∣∣∣∣ ps2ᾱ
(1− 2η(X, s)− 〈γ,1〉) +

〈γ, es〉
2αs

∣∣∣∣ ≥ ps
2ᾱ

(1− 〈γ,1〉) + 〈λ, es〉+
〈γ, es〉

2αs

)
= αs ,

which proves that g̃ satisfies the first set of constraints (i.e., controlled reject rate). For the demographic parity constraints,
one obtains

PX|S=s(g̃(X, S) = 1 | g̃(X, S) 6= r) =
1

αs
PX|S=s(g̃(X, S) = 1)

=
1

αs
PX|S=s

(
min

(
2η(X, S), η(X, S)− ᾱλs

ps

)
≥ αγs
psαs

+ 1− γ̄
)

,

P(X,S)(g̃(X, S) = 1 | g̃(X, S) 6= r) =

K∑
s=1

ps
ᾱ
PX|S=s

(
min

(
2η(X, S), η(X, S)− ᾱλs

ps

)
≥ ᾱγs
psαs

+ 1− γ̄
)

.

The second equation of the first-order optimality conditions (FOOC) guarantees that for, any s ∈ [K],

PX|S=s(g̃(X, S) = 1 | g̃(X, S) 6= r) = P(X,S)(g̃(X, S) = 1 | g̃(X, S) 6= r) ,

that is, it guarantees that the classifier g̃ satisfies the demographic parity constraint.

We conclude that the classifier g̃ is feasible for the primal problem and thus that the strong duality holds, implying the
claimed expression for the optimal classifier with abstention.

2 AUXILIARY RESULTS

We will need a tight control on the sup-norm of the difference between CDF and empirical CDF. The next result is [Massart,
1990, Corollary 1].

Theorem 2.1. Let Z,Z1, . . . ,Zn be n+ 1 i.i.d. continuous random variable sampled from P on Z , then for any δ > 0,
with probability at least 1− δ,

sup
z∈R

∣∣∣∣∣ 1n
n∑
i=1

1 (Zi ≤ z)− P(Z ≤ z)

∣∣∣∣∣ ≤
√

log(2/δ)

2n
.



3 CONTROL OF REJECT RATE

In this section we derive a finite sample control on the reject rate of the proposed procedure claimed in the main body. We
start by recalling the result that we want to prove.

Proposition 3.1. For all δ ∈ (0, 1), the proposed algorithm satisfies with probability at least 1− δ that

|P(ĝ(X, S) 6= r | S = s)− αs| ≤

√
2 log(2K/δ)

ns
+

2

ns
, ∀s ∈ [K] .

The rest of this section is devoted to the proof of this result. In what follows, all the derivations should be understood
conditionally on η̂. In simple words, the estimator η̂ is treated as fixed and the only randomness comes from the unlabeled
data. According to the definition of our estimator,

PX|S=s (ĝ(X, s) 6= r) = PX|S=s

(
Ĝ(X, s, λ̂, γ̂) > 0

)
,

where Ĝ was defined in Section 4.

Using the triangle inequality we can upper bound |PX|S=s

(
Ĝ(X, s, λ̂, γ̂) > 0

)
− αs| by two terms∣∣∣PX|S=s

(
Ĝ(X, s, λ̂, γ̂) > 0

)
− P̂X|S=s

(
Ĝ(X, s, λ̂, γ̂) > 0

)∣∣∣︸ ︷︷ ︸
T1

+
∣∣∣P̂X|S=s

(
Ĝ(X, s, λ̂, γ̂) > 0

)
− αs

∣∣∣︸ ︷︷ ︸
T2

,
(5)

which are treated separately.

Control of T1. The first term T1 can be controlled using tools from empirical process theory. One can directly observe by
definition of Ĝ that

T1 ≤ sup
(λ,γ)∈RK×RK

∣∣∣PX|S=s

(
Ĝ(X, s,λ,γ) > 0

)
− P̂X|S=s

(
Ĝ(X, s,λ,γ) > 0

)∣∣∣
≤ sup

(a,b)∈R×R

∣∣∣PX|S=s

(∣∣∣ ps
2ᾱ
η̂(X, S)− a

∣∣∣− a+ b > 0
)
− P̂X|S=s

(∣∣∣ ps
2ᾱ
η̂(X, S)− a

∣∣∣− a+ b > 0
)∣∣∣

≤ sup
(a,c)∈R×R

∣∣∣PX|S=s

(∣∣∣ ps
2ᾱ
η̂(X, S)− a

∣∣∣ > c
)
− P̂X|S=s

(∣∣∣ ps
2ᾱ
η̂(X, S)− a

∣∣∣ > c
)∣∣∣

≤ 2 sup
a∈R

∣∣∣PX|S=s(η̂(X, S) ≤ a)− P̂X|S=s(η̂(X, S) ≤ a)
∣∣∣ ,

(6)

where we used the triangle inequality and the fact that (η̂(X, S) | S = s) is a continuous random variable to obtain the last
inequality.

By our assumption (see Remark 3.3), the random variables η̂(Xi, s), (η̂(X, S) | S = s) for i ∈ Is are i.i.d. continuous
conditionally on η̂. Thus, applying Theorem 2.1 we conclude that with probability at least 1− δ it holds that

T1 ≤

√
2 log(2/δ)

ns
. (7)

Control of T2. The control of the second term T2 requires a more involved analysis. Since λ̂ is a minimizer of (3), the first
order optimality condition for convex non-smooth minimization problems states that for any s ∈ [K], there exists ρs ∈ [0, 1]
such that

αs = P̂X|S=s

(
Ĝ(X, s, λ̂, γ̂) > 0

)
+ ρsP̂X|S=s

(
Ĝ(X, s, λ̂, γ̂) = 0

)
.

Thus, the second term of Eq. (5) can be bounded as

T2 =
∣∣∣P̂X|S=s

(
Ĝ(X, s, λ̂, γ̂) > 0

)
− αs

∣∣∣ ≤ P̂X|S=s

(
Ĝ(X, s, λ̂, γ̂) = 0

)
. (8)

The control of P̂X|S=s

(
Ĝ(X, s, λ̂, γ̂) = 0

)
is provided by the following result.



Lemma 3.2. Assume that (η̂(X, S) | S = s, η̂) is almost surely continuous, then for any s ∈ [K], for any (λ,γ),

P̂X|S=s

(
Ĝ(X, s,λ,γ) = 0

)
≤ 2

ns
, a.s.

Proof. Fix some arbitrary (λ,γ) ∈ RK × RK . We recall that by definition of the empirical measure P̂X|s we have

P̂X|S=s

(
Ĝ(X, s,λ,γ) = 0

)
=

1

ns

ns∑
i=1

1(Ĝ(Xi, s,λ,γ) = 0) . (9)

The proof goes by contradiction. Assume that the event

Ω :=

{
1

ns

ns∑
i=1

1(Ĝ(Xi, s,λ,γ) = 0) ≥ 3

ns

}
, (10)

happens with positive probability. Then, on Ω, there exist three indexes i1, i2, i3 such that

Ĝ(Xij , s,λ,γ) = 0 , j = 1, 2, 3 .

Furthermore, Ĝ(X, s,λ,γ) = 0 implies that either

p̂s
ᾱ
η̂(X, s) + 〈λ, es〉 = 0 or

p̂s
ᾱ

(η̂(X, s) + 〈γ, 1〉 − 1)− 〈λ, es〉+
〈γ, es〉
αs

= 0 .

By the pigeonhole principle, on Ω, there exist i, j ∈ {i1, i2, i3}, i 6= j such that

η̂(Xi, s) = η̂(Xj , s) ,

which contradicts our assumption that (η̂(X, S) | S = s, η̂) is continuous almost surely, hence the event Ω has zero
probability.

Remark 3.3. Recall that the assumption of continuity of (η̂(X, S) | S = s, η̂) can always be fulfilled with the help of
additional randomization. More formally, one needs to replace η̂ by its smoothed version using additional randomization such
as in Algorithm 1. To keep things simple, we avoid this technicality in our proof and simply assume that (η̂(X, S) | S = s, η̂)
is indeed continuous. The statement of this result is straightforwardly adapted to the perturbed version of η̂.

Lemma 3.2 allows to control the second term in Eq. (5) yielding

T2 ≤
2

ns
. (11)

Putting together. Substituting Eqs. (7) and (11) into Eq. (6), we deduce that for all s ∈ [K] we have, with probability at
least 1− δ,

∣∣∣PX|S=s

(
Ĝ(X, s, λ̂, γ̂) > 0

)
− αs

∣∣∣ ≤
√

2 log(2/δ)

ns
+

2

ns
.

Finally, taking the union bound we deduce that, with probability at least 1− δ, we have for all s ∈ [K]

∣∣∣PX|S=s

(
Ĝ(X, s, λ̂, γ̂) > 0

)
− αs

∣∣∣ ≤
√

2 log(2K/δ)

ns
+

2

ns
.

The proof of Proposition 3.1 is concluded.



4 CONTROL OF DEMOGRAPHIC PARITY VIOLATION

In this section we derive a finite sample control on the demographic parity violation of the proposed procedure, claimed in
the main body. We start by recalling the result that we want to prove.

Proposition 4.1. For any δ ∈ (0, 1), the proposed algorithm satisfies with probability at least 1− δ, for any s ∈ [K],

∣∣PX|S=s (ĝ(X, s) = 1 | ĝ(X, s) 6= r)− P(X,S) (ĝ(X, S) = 1 | ĝ(X, S) 6= r)
∣∣ ≤ 1

αs
vδ,Kns +

1

ᾱ

K∑
s=1

psv
δ,K
ns ,

where

vδ,Kn :=

(
3

√
log(4K/δ)

n
+

4

n

)
.

Remark 4.2. One can observe from the proof that the event on which Proposition 4.1 holds is contained in the event on
which Proposition 3.1 holds, thus both hold simultaneously with high probability.

The rest of this section is devoted to the proof of this result.

Problem splitting. Similarly to the control of the reject rate, we start by splitting our problem in several parts. Let us set

(DPs) :=
∣∣PX|S=s (ĝ(X, s) = 1 | ĝ(X, s) 6= r)− P(X,S) (ĝ(X, S) = 1 | ĝ(X, S) 6= r)

∣∣ ,
for all s ∈ [K]. The triangle inequality yields that (DPs) can be bounded by five terms as follows

(DPs) ≤
∣∣PX|S=s (ĝ(X, s) = 1 | ĝ(X, s) 6= r)− α−1

s PX|S=s (ĝ(X, s) = 1)
∣∣

+
∣∣∣α−1
s PX|S=s (ĝ(X, s) = 1)− α−1

s P̂X|S=s (ĝ(X, s) = 1)
∣∣∣

+

∣∣∣∣∣∣α−1
s P̂X|S=s (ĝ(X, s) = 1)− ᾱ−1

∑
s∈[K]

psP̂X|S=s (ĝ(X, s) = 1)

∣∣∣∣∣∣
+

∣∣∣∣∣∣ᾱ−1
∑
s∈[K]

psP̂X|S=s (ĝ(X, s) = 1)− ᾱ−1
∑
s∈[K]

psPX|S=s (ĝ(X, s) = 1)

∣∣∣∣∣∣
+

∣∣∣∣∣∣ᾱ−1
∑
s∈[K]

psPX|S=s (ĝ(X, s) = 1)− P(X,S) (ĝ(X, S) = 1 | ĝ(X, S) 6= r)

∣∣∣∣∣∣
= (DPs1) + (DPs2) + (DPs3) + (DP4) + (DP5) .

The second and the fourth terms will be controlled using empirical process theory. We can get a bound on the first and
fifth terms through our control of the reject rate. The third term is controlled via the first-order optimality condition on γ̂,
similarly to Lemma 3.2.

High-probability event. Let us describe in details the high-probability event on which we will place ourselves for
controlling all the terms appearing in the bound for (DPs), uniformly over the groups s ∈ [K].

Proposition 3.1 states that there exists an event Ωr that holds with probability at least 1 − Kδ and on which, for any
δ ∈ (0, 1/K), the proposed algorithm satisfies with probability at least 1−Kδ that

|P(ĝ(X, S) 6= r | S = s)− αs| ≤ uδns , ∀s ∈ [K], where uδn :=

√
2 log(2/δ)

n
+

2

n
, ∀n ≥ 1 .

Furthermore, for any s ∈ [K], using the fact that the random variable (η(X, S) | S = s) is continuous, the event

ΩMs :=

sup
a∈R

∣∣∣PX|S=s (η(X, s) > a)− P̂X|S=s (η(X, s) > a)
∣∣∣ ≤

√
log(2/δ)

2ns

 ,



holds with probability at least 1− δ (by Massart’s bound, recalled in Theorem 2.1). By a simple union bound argument, the
intersection of those events, denoted by ΩM := ∩s∈[K]Ω

M
s , then holds with probability at least 1− 2Kδ.

In what follows we place ourselves on the event

Ω0 := Ωr ∩ ΩM ,

which holds with probability at least 1− 2Kδ.

First-order optimality condition for γ̂. Recall that (λ̂, γ̂) is a solution of

min
(λ,γ)

{
〈λ,α〉+ ÊX|S=s(Ĝ(X, s,λ,γ))+

}
,

where the function Ĝ is defined as

Ĝ(x, s,λ,γ) =

∣∣∣∣ p̂s2ᾱ
(1− 2η̂(x, s)− 〈γ,1〉) +

〈γ, es〉
2αs

∣∣∣∣− p̂s
2ᾱ

(1− 〈γ,1〉)− 〈λ, es〉 −
〈γ, es〉

2αs
.

The positive part of Ĝ can be expressed as

(Ĝ(x, s,λ,γ))+ = max(0,m+(x, s,λ,γ),m−(x, s,λ,γ)) ,

where we used the following short-hand notation

m+(x, s,λ,γ) = −ps
ᾱ
η̂(x, s)− λs and m−(x, s,λ,γ) =

ps
ᾱ

(η̂(x, s) + 〈γ, 1〉 − 1)− 〈γ, es〉
αs

− λs .

Observe that since {m−(x, s,λ,γ) > max(0,m+(x, s,λ,γ))} ⇔ {ĝ(X, s) = 1}, then the first-order optimality
condition on γ̂ written in vector form reads as

∃(ρs)Ks=1 ∈ [0, 1]K s.t.
K∑
s=1

(
ps
ᾱ
1− 1

αs
es

)(
P̂X|S=s (ĝ(X, s) = 1) + ρsP̂X|S=s

(
∆s(λ̂, γ̂)

))
= 0 ,

where we define the event ∆s(λ,γ) := {m−(X, s,λ,γ) = max(0,m+(X, s,λ,γ))}. In scalar form the previous
condition can be expressed as: for any s ∈ [K], there exists ρs ∈ [0, 1] such that

K∑
s=1

ps
ᾱ

(
P̂X|S=s (ĝ(X, s) = 1) + ρsP̂X|S=s

(
∆s(λ̂, γ̂)

))
=

1

αs

(
P̂X|S=s (ĝ(X, s) = 1) + ρsP̂X|S=s

(
∆s(λ̂, γ̂)

))
.

Control of the first term (DPs1). Re-arranging terms and using the fact that PX|S=s (ĝ(X, S) = 1) ≤
PX|S=s (ĝ(X, S) 6= r) = PX|S=s (ĝ(X, S) = 1) + PX|S=s (ĝ(X, S) = 0), we obtain

(DPs1) :=
∣∣PX|S=s (ĝ(X, s) = 1 | ĝ(X, s) 6= r)− α−1

s PX|S=s (ĝ(X, S) = 1)
∣∣

=

∣∣∣∣ 1

αs
− 1

PX|S=s (ĝ(X, s) 6= r)

∣∣∣∣PX|S=s (ĝ(X, S) = 1)

≤
∣∣∣∣ 1

αs
− 1

PX|S=s (ĝ(X, s) 6= r)

∣∣∣∣PX|S=s (ĝ(X, S) 6= r) =
1

αs

∣∣PX|S=s (ĝ(X, S) 6= r)− αs
∣∣ .

We can conclude that, on the event Ω0, for all s ∈ [K]

(DPs1) ≤ 1

αs

∣∣PX|S=s (ĝ(X, S) 6= r)− αs
∣∣ ≤ uδns

αs
.



Control of the second term (DPs2). The second term is given by the empirical process

(DPs2) := α−1
s

∣∣∣PX|S=s (ĝ(X, S) = 1)− P̂X|S=s (ĝ(X, S) = 1)
∣∣∣ .

The event {ĝ(X, s) = 1} is the same as the event

S(λ,γ) :=

{∣∣∣∣ ps2ᾱ
(1− 2η̂(X, s)− 〈1, γ̂〉) +

γ̂s
2αs

∣∣∣∣ > ps
2ᾱ

(1− 〈1,γ〉) + λ̂s +
γ̂s
2αs

, 2η̂(X, s) ≥ 1 +
ᾱγ̂s
αsps

− 〈γ̂,1〉
}

,

which can be compressed to{
η̂(X, s) > max

(
1

2
+

ᾱγ̂s
2αsps

− 1

2
〈γ̂,1〉 , ᾱ

ps

(
λ̂s +

γ̂s
αs

)
+ 1− 〈1,γ〉

)}
.

Following this observation, the second term (DPs2) of interest is expressed as

(DPs2) = α−1
s sup

(λ,γ)

∣∣∣PX|S=s (S(λ,γ))− P̂X|S=s (S(λ,γ))
∣∣∣ ≤ α−1

s sup
a∈R

∣∣∣PX|S=s (η̂(X, s) > a)− P̂X|S=s (η̂(X, s) > a)
∣∣∣ .

On the event Ω0, which is contained in the event ΩMs , we have for all s ∈ [K]

(DPs2) ≤ 1

αs

√
log(2/δ)

2ns
.

Control of the third term (DPs3). The third term can be controlled with the first-order optimality condition on γ̂ similarly
to Lemma 3.2 and multiple triangle inequalities as

(DPs3) :=

∣∣∣∣∣∣α−1
s P̂X|S=s (ĝ(X, S) = 1)− ᾱ−1

∑
s∈[K]

psP̂X|S=s (ĝ(X, S) = 1)

∣∣∣∣∣∣
=

∣∣∣∣∣ ρsαs P̂X|S=s

(
∆s(λ̂, γ̂)

)
−

K∑
s=1

ps
ᾱ
ρsP̂X|S=s

(
∆s(λ̂, γ̂)

)∣∣∣∣∣
≤ 1

αs
P̂X|S=s

(
∆s(λ̂, γ̂)

)
+

K∑
s=1

ps
ᾱ
P̂X|S=s

(
∆s(λ̂, γ̂)

)
.

The following lemma gives an almost sure upper bound on P̂X|S=s

(
∆s(λ̂, γ̂)

)
for any s ∈ [K].

Lemma 4.3. Assume that (η̂(X, S) | S = s, η̂) is almost surely continuous, then for any s ∈ [K], for any (λ,γ),

P̂X|S=s

(
∆s(λ̂, γ̂)

)
≤ 2

ns
, a.s.

Proof. This proof is similar to proof of Lemma 3.2. Assume by contradiction that the stated bound is not true. Then, it
happens with positive probability that

1

ns

ns∑
i=1

1 {m−(Xi, s,λ,γ) = max(0,m+(Xi, s,λ,γ))} ≥ 3

ns
,

which implies that there exist a triplet i1, i2, i3 such that

m−(Xij , s,λ,γ) = max(0,m+(Xij , s,λ,γ)), for j = 1, 2, 3 .

By the pigeonhole principle, there must exist a couple (i, j), i 6= j among this triplet such that either

m−(Xi, s,λ,γ) = m−(Xj , s,λ,γ) or m−(Xi, s,λ,γ)−m+(Xi, s,λ,γ) = m−(Xj , s,λ,γ)−m+(Xj , s,λ,γ) .

In both cases one must have η̂(Xi, s) = η̂(Xj , s) which happens with probability 0 by the continuity assumption and leads
to a contradiction. The proof of lemma is concluded

Plugging in the bounds from Lemma 4.3 yields for all s ∈ [K]

(DPs3) ≤ 2

nsαs
+

2

ᾱ

K∑
s=1

ps
ns

.



Control of the fourth term (DP4). The fourth term can be seen as a sum of empirical processes:

(DP4) := ᾱ−1

∣∣∣∣∣∣
∑
s∈[K]

psP̂X|S=s (ĝ(X, S) = 1)−
∑
s∈[K]

psPX|S=s (ĝ(X, S) = 1)

∣∣∣∣∣∣
≤ ᾱ−1

K∑
s=1

ps

∣∣∣P̂X|S=s (ĝ(X, S) = 1)− PX|S=s (ĝ(X, S) = 1)
∣∣∣ .

On the event Ω0, we can control the fourth term from the bound we have on the second term (which holds uniformly over
the classes s) as

(DP4) ≤ 1

ᾱ

∑
s∈K

ps

√
log(2/δ)

2ns
.

Control of the fifth term (DP5). Finally, the fifth term can be bounded using the same trick as for the first term. On the
event Ω0, we have

(DP5) :=

∣∣∣∣∣∣ᾱ−1
∑
s∈[K]

psPX|S=s (ĝ(X, S) = 1)− P(X,S) (ĝ(X, s) = 1 | ĝ(X, s) 6= r)

∣∣∣∣∣∣
=

∣∣∣∣∣ 1ᾱ − 1∑K
s=1 psPX|S=s (ĝ(X, s) 6= r)

∣∣∣∣∣
K∑
s=1

psPX|S=s (ĝ(X, S) = 1)

≤

∣∣∣∣∣ 1ᾱ − 1∑K
s=1 psPX|S=s (ĝ(X, s) 6= r)

∣∣∣∣∣
K∑
s=1

psPX|S=s (ĝ(X, S) 6= r)

=
1

ᾱ

∣∣∣∣∣
K∑
s=1

ps(PX|S=s (ĝ(X, s) 6= r)− αs)

∣∣∣∣∣ ≤ 1

ᾱ

K∑
s=1

psu
δ
ns .

Conclusion. Putting everything together, we have shown that, on the event A which holds with probability at least
1− 2Kδ, we have, for any s ∈ [K],

(DPs) ≤ 1

αs

3

√
log(2/δ)

2ns
+

4

ns

+
2

ᾱ

K∑
s=1

ps

3

√
log(2/δ)

2ns
+

4

ns

 .

5 CONTROL OF THE EXCESS RISK

Define the sequence

uδ,Kn :=

√
2 log(4K/δ)

n
+

2

n
, ∀n ≥ 1 .

We state and prove a slightly more precise bound then the one presented in the main body.

Proposition 5.1. Assume that uδ,Kns < αs < 1− 2
ns

for any s ∈ [K] and that Assumption 3.1 holds. Then, for any δ ∈ (0, 1),
the excess risk of the post-processing classifier with abstention ĝ defined in Eq (2) satisfies, with probability at least 1− δ,

E(ĝ) ≤

(
1

ᾱ
+

1

ᾱ−
∑
s psu

δ,K
ns

)
‖η − η̂‖1 + 6

K∑
s=1

(
ps
ᾱ

+
1

αs

)
uδ,Kns .

A quick inspection of the proof shows that the high-probability event on which the stated bound holds is the same as the
event on which Proposition 4.1 holds, which is contained in the event on which Proposition 3.1 holds. Thus, we can control
the excess risk and the violation of the constraints on the same high-probability event.



Proof. Since, using Assumption 3.1 we have established strong duality, the following equality holds

R(g∗) = max
(λ,γ)

{
K∑
s=1

EX|S=s

(
ps
2ᾱ

(1− γ̄) + λs +
γs

2αs
−
∣∣∣∣ ps2ᾱ

(1− 2η(x, s)− γ̄) +
γs

2αs

∣∣∣∣)
−
−

K∑
s=1

λsαs

}
. (12)

Besides, we can bound the risk of any classifier g as

R(g) =

K∑
s=1

ps
P(g(X, S) 6= r)

EX|S=s

[
(1− η(X, s)1g(X,s)=1 + η(X, s)1g(X,s)=0

]
≤

K∑
s=1

ps
P(g(X, S) 6= r)

EX|S=s

[
(1− η̂(X, s)1g(X,s)=1 + η̂(X, s)1g(X,s)=0

]
+

‖η − η̂‖1
P(g(X, S) 6= r)

.

(13)

Setting As(g) := ps
ᾱ EX|S=s

[
(1− η̂(X, s))1g(X,s)=1 + η̂(X, s)1g(X,s)=0

]
, we have for any classifier g,

R(g) ≤
K∑
s=1

As(g) +
‖η − η̂‖1

P(g(X, S) 6= r)
+

1

ᾱ
|P(g(X, S) 6= r)− ᾱ| .

In what follows we bound r1(g) :=
∑K
s=1 As(g). Re-arranging terms we deduce that

r1(g) =

K∑
s=1

ps
ᾱ
EX|S=s

[
(1− η̂(X, S))1g(X,S)=1 + η̂(X, S)1g(X,S)=0

]
±

K∑
s=1

λ̂s
{
EX|S=s

[
1g(X,S)=1 + 1g(X,S)=0

]
− αs

}
±

K∑
s=1

γ̂s
αs

EX|S=s

[
1g(X,S)=1

]
−

(
K∑
s′=1

γ̂s′

)(
K∑
s=1

ps
ᾱ
EX|S=s

[
1g(X,S)=1

])

=

K∑
s=1

EX|S=s

[
Ĥ(X,s)(g, λ̂, γ̂)

]
−

K∑
s=1

λ̂sαs −
K∑
s=1

λ̂s
{
EX|S=s

[
1g(X,S)=1 + 1g(X,S)=0

]
− αs

}
−

K∑
s=1

γ̂s
αs

EX|S=s

[
1g(X,S)=1

]
−

(
K∑
s′=1

γ̂s′

)(
K∑
s=1

ps
ᾱ
EX|S=s

[
1g(X,S)=1

])
,

where

Ĥ(x,s)(g,λ,γ) =


0, if g(x, s) = r
ps
ᾱ η̂(x, s) + λs, if g(x, s) = 0
ps
ᾱ (1− η̂(x, s)− γ̄) + λs + γs

αs
, if g(x, s) = 1

,

with γ̄ =
∑K
s=1 γs. Note that, by the definition of ĝ, it holds that

K∑
s=1

EX|S=s

[
Ĥ(X,s)(ĝ, λ̂, γ̂)

]
= E(−Ĝ(X, s, λ̂, γ̂))− .

Thus, the following holds

r1(ĝ) =

K∑
s=1

EX|S=s

(
ps
2ᾱ

(1− ¯̂γ) + λ̂s +
γ̂s

2αs
−
∣∣∣∣ ps2ᾱ

(1− 2η̂(X, s)− ¯̂γ) +
γ̂s

2αs

∣∣∣∣)
−
−

K∑
s=1

λ̂sαs

−
K∑
s=1

λ̂s (P(ĝ(X, S) 6= r | S = s)− αs)

−
K∑
s=1

γ̂s

(
P(ĝ(X, S) = 1 | S = s)

αs
−

K∑
s′=1

ps′

ᾱ
P(ĝ(X, S) = 1 | S = s′)

)
.

(14)



Substituting Eq. (14) into Eq. (13) we obtain the following upper bound on R(ĝ)

R(ĝ) ≤
K∑
s=1

EX|S=s

(
ps
2ᾱ

(1− ¯̂γ) + λ̂s +
γ̂s

2αs
−
∣∣∣∣ ps2ᾱ

(1− 2η̂(X, s)− ¯̂γ) +
γ̂s

2αs

∣∣∣∣)
−
−

K∑
s=1

λ̂sαs

−
K∑
s=1

λ̂s (P(ĝ(X, S) 6= r | S = s)− αs)−
K∑
s=1

γ̂s

(
P(ĝ(X, S) = 1 | S = s)

αs
−

K∑
s′=1

ps′

ᾱ
P(ĝ(X, S) = 1 | S = s′)

)

+
‖η − η̂‖1

P(ĝ(X, S) 6= r)
+

1

ᾱ
|P(ĝ(X, S) 6= r)− ᾱ| ,

which holds almost surely.

Define the excess risk E(ĝ) := R(ĝ)−R(g∗). Note that, using the fact that mapping x 7→ (x)− is 1-Lipschitz followed by
the triangle inequality, the difference

∣∣∣∣∣
(
ps
2ᾱ

(1 − γ̄) + λs +
γs

2αs
−

∣∣∣∣ ps2ᾱ
(1 − 2η̂(x, s) − γ̄) +

γs
2αs

∣∣∣∣)
−
−

(
ps
2ᾱ

(1 − γ̄) + λs +
γs

2αs
−

∣∣∣∣ ps2ᾱ
(1 − 2η(x, s) − γ̄) +

γs
2αs

∣∣∣∣)
−

∣∣∣∣∣ ,

can be upper bounded by ps
ᾱ |η̂(x, s)− η(x, s)|, for any (x, s,λ,γ). Thus, replacing (λ∗,γ∗) by (λ̂, γ̂) (recall that

(λ∗,γ∗) is optimal) in the expression for R(g∗) in Eq. (12) we obtain

E(ĝ) ≤‖η − η̂‖1
ᾱ

+
1

ᾱ
|P(ĝ(X, S) 6= r)− ᾱ|+ ‖η − η̂‖1

P(g(X, S) 6= r)
+

K∑
s=1

|λ̂s| |P(ĝ(X, S) 6= r | S = s)− αs|

+

K∑
s=1

|γ̂s|

∣∣∣∣∣P(ĝ(X, S) = 1 | S = s)

αs
−

K∑
s′=1

ps′

ᾱ
P(ĝ(X, S) = 1 | S = s′)

∣∣∣∣∣ .
(15)

In what follows we provide a control of all the terms appearing in the above derived bound.

Using the fact that on the event of Proposition 4.1 we have, with probability at least 1− 2Kδ,

|P(ĝ(X, S) 6= r | S = s)− αs| ≤ uδns , ∀s ∈ [K], with uδn :=

√
2 log(2/δ)

n
+

2

n
, ∀n ≥ 1 ,

we deduce that with probability at least 1− 2Kδ the following three inequalities hold

1

ᾱ
|P(g(X, S) 6= r)− ᾱ| ≤ 1

ᾱ

K∑
s=1

psu
δ
ns ,

‖η − η̂‖1
P(ĝ(X, S) 6= r)

≤ ‖η − η̂‖1
ᾱ−

∑
s psu

δ
ns

,

K∑
s=1

|λ̂s| |P(ĝ(X, S) 6= r | S = s)− αs| ≤
K∑
s=1

|λ̂s|uδns .

(16)

Note that by the assumption of the proposition, the term ᾱ−
∑
s psu

δ
ns > 0.

Furthermore, on the same event, using the notations of the proof of Proposition 4.1, we have for any s ∈ [K]∣∣∣∣∣PX|S=s (ĝ(X, S) = 1)

αs
−

K∑
s′=1

ps′

ᾱ
PX|S=s′(ĝ(X, S) = 1)

∣∣∣∣∣ ≤ (DPs2) + (DPs3) + (DP4) ≤ 1

αs
vδns +

2

ᾱ

K∑
s=1

psv
δ
ns .

(17)

where vδn =
√

log(2/δ)
2n + 2

n . Hence, substituting Eqs. (16) and (17) into Eq. (15) we deduce that with probability at least



1− 2Kδ

E(ĝ) ≤
(

1

ᾱ
+

1

ᾱ−
∑
s psu

δ
ns

)
‖η − η̂‖1 +

K∑
s=1

(ps
ᾱ

+ |λ̂s|
)
uδns +

K∑
s=1

(
|γ̂s|
αs

+
2ps
ᾱ

(
∑
s′

|γ̂s′ |)

)
vδns

=

(
1

ᾱ
+

1

ᾱ−
∑
s psu

δ
ns

)
‖η − η̂‖1 +

K∑
s=1

(
2ps
ᾱ

+ 2|λ̂s|+
|γ̂s|
αs

+
2ps
ᾱ

(
∑
s′

|γ̂s|)

)√
log(1/δ)

2ns

+

K∑
s=1

(
ps
ᾱ

+ |λ̂s|+
|γ̂s|
αs

+
2ps
ᾱ

(
∑
s′

|γ̂s′ |)

)
2

ns
.

In order to finish the proof it remains to provide a bound on |λ̂s| and |γ̂s|. Proposition 5.2, proven below, establishes this
bound and yields

E(ĝ) ≤
(

1

ᾱ
+

1

ᾱ−
∑
s psu

δ
ns

)
‖η − η̂‖1 +

K∑
s=1

(4ps
ᾱ

+
3

αs

)√
2 log(2/δ)

ns
+

(
6

αs
+

6ps
ᾱ

)
2

ns


≤
(

1

ᾱ
+

1

ᾱ−
∑
s psu

δ
ns

)
‖η − η̂‖1 + 6

K∑
s=1

(
ps
ᾱ

+
1

αs

)
uδns .

the proof is concluded after the observation that thanks to our assumption we have ᾱ−
∑
s psu

δ
ns ≥ ᾱ/2.

Boundedness of optimal parameters

Proposition 5.2. The minimization problem in Eq. (4) admits a global minimizer (λ∗,γ∗) which satisfies

‖γ∗‖1 ≤ 2 and |λ∗s| ≤
ps
ᾱ
∨ |γ

∗
s|
αs

.

Furthermore, if for any s, ns > 2
αs∧(1−αs) and η̂(·, s) ∈ [0, 1], the same holds for Eq. (3), that is,

‖γ̂‖1 ≤ 2 and |λ̂s| ≤
ps
ᾱ
∨ |γ̂s|
αs

.

Proof. Overloading the notation, we denote the conditional expectation of Y given S = s by η(s). Denote by H(λ,γ) the
objective function of the minimization problem in Eq. (4).

Existence of global minizer. Fix arbitrary (λ,γ) ∈ RK ×RK such that
∑K
s=1 γs = 0. Since the function x 7→ (|x| − b)+

is convex for any b ∈ R we can lower bound H(λ,γ) using Jensen’s inequality as

H(λ,γ) =
1

2

K∑
s=1

1

αs
EX|S=s

(∣∣∣αsps
ᾱ

(1− 2η(X, s)) + γs

∣∣∣− psαs
ᾱ
− 2αsλs − γs

)
+

+

K∑
s=1

λsαs

≥ 1

2

K∑
s=1

1

αs

(∣∣∣αsps
ᾱ

(1− 2η(s)) + γs

∣∣∣− psαs
ᾱ
− 2αsλs − γs

)
+

+

K∑
s=1

λsαs .

Furthermore, since αs ≤ 1 for any s and by assumption, γ̄ = 0, we can further lower bound H(λ,γ) as

H(λ,γ) ≥ 1

2

K∑
s=1

(∣∣∣αsps
ᾱ

(1− 2η(s)) + γs

∣∣∣− psαs
ᾱ
− 2αsλs − γs

)
+

+

K∑
s=1

λsαs

≥ 1

2

(
‖γ‖1 −

K∑
s=1

αsps
ᾱ
|(1− 2η(s))| − 1− 2

K∑
s=1

λsαs

)
+

+

K∑
s=1

λsαs

≥ ‖γ‖1
2
− 1 , (18)



where we used the triangle inequality for the second inequality and we lower bounded the positive part by the number itself
and upper bounded |1− 2η(s)| by one.

Besides, notice that

H(λ,γ) =
1

2

K∑
s=1

1

αs
EX|S=s

(∣∣∣αsps
ᾱ

(1− 2η(X, s)) + γs

∣∣∣− psαs
ᾱ
− 2αsλs − γs

)
+

+

K∑
s=1

λsαs

≥
K∑
s=1

1

αs
EX|S=s

(
−αsps

ᾱ
η(X, s)− αsλs

)
+

+

K∑
s=1

λsαs

≥
K∑
s=1

{(
−ps
ᾱ
η(s)− λs

)
+

+ λsαs

}
.

The last expression in the above derived inequality can be further lower bounded as

K∑
s=1

{(
−ps
ᾱ
η(s)− λs

)
+

+ λsαs

}
≥

K∑
s=1

{αs ∧ (1− αs)}|λs| −
K∑
s=1

ps
ᾱ
η(s){(2αs) ∨ 1} . (19)

At this moment we have shows that for any (λ,γ) ∈ RK × RK such that
∑K
s=1 γs = 0 we have

H(λ,γ) ≥ ‖γ‖1
2
− 1 and H(λ,γ) ≥

K∑
s=1

{αs ∧ (1− αs)}|λs| −
K∑
s=1

ps
ᾱ
η(s){(2αs) ∨ 1} .

To exploit the above result, we observe that for any (λ,γ) ∈ RK × RK and for any c ∈ R the transformation

γs 7→ γs +
psαs
ᾱ

c and λs 7→ λs s ∈ [K] ,

does not change the value of the objective function. Take any minimizing sequence (λk,γk) of H . Due to the above,
translation invariance observation, we transform (λk,γk) to another minimizing sequence with the property

K∑
s=1

γks = 0, ∀k ∈ N . (20)

With a slight abuse of notation we denote this (potentially new) minimizing sequence by (λk,γk). By definition of (λk,γk)
as the minimizing sequence, for any ε > 0 there exists N ∈ N such that

H(λk,γk) ≤ H(0,0) + ε, ∀k ≥ N .

Since H(0,0) =
∑K
s=1

ps
2ᾱ (|1− 2η(X, s)| − 1)+ = 0, then it holds for all k ≥ N that

H(λk,γk) ≤ ε, ∀k ≥ N .

Furthermore, since for all k ∈ N the property in Eq. (20) holds, then using Eqs. (18) and (19) we obtain

‖γk‖1 ≤ 2(1 + ε) and
K∑
s=1

{αs ∧ (1− αs)}|λks | ≤ ε+

K∑
s=1

ps
ᾱ
η(s){(2αs) ∨ 1} .

Thus for all k ≥ N the minimizing sequence (λk,γk) is bounded. Extracting convergent sub-sequence and using the fact
that H is continuous we conclude that the global minimizer exists. So far we have shown that the minimizer is attained and
that at the optimum we have ‖γ∗‖1 ≤ 2 (same holds for ‖γ̂‖1). Note that the above argument also give a bound on |λ∗2| as
well as |λ̂s|, yet this bound is not satisfactory and we can derive a better one.



Refined bound on λ. Recall that the first-order optimality condition on λ∗ (see (FOOC)) is given by

αs = PX|S=s

(∣∣∣∣ ps2ᾱ
(1− 2η(X, s)− 〈γ∗,1〉) +

〈γ∗, es〉
2αs

∣∣∣∣ ≥ ps
2ᾱ

(1− 〈γ∗,1〉) + 〈λ∗, es〉+
〈γ∗, es〉

2αs

)
, ∀s ∈ [K] .

Since η(x, s) ∈ [0, 1], then for any x ∈ Rd it holds that

−ps
ᾱ
− (γ∗s)−

αs
≤
∣∣∣∣ ps2ᾱ

(1− 2η(x, s)) +
γ∗s
2αs

∣∣∣∣− ps
2ᾱ
− γ∗s

2αs
≤ − (γ∗s)−

αs
.

Therefore, if αs is not in {0, 1}, we must have that

−ps
ᾱ
≤ λ∗s +

(γ∗s)−
αs

≤ 0 ,

otherwise the considered probability is either equal to 0 or to 1. In particular, it implies that

|λ∗s| ≤
ps
ᾱ
∨ |γ

∗
s|
αs

.

Note that the same can be shown for λ̂ since Eq. (8) and Lemma 3.2 imply∣∣∣∣P̂X|S=s

(∣∣∣∣ ps2ᾱ
(1− 2η̂(X, s)− γ̂s) +

γ̂s
2αs

∣∣∣∣ ≥ ps
2ᾱ

(1− γ̂s) + λ̂s +
γs
2αs

)
− αs

∣∣∣∣ ≤ 2

ns
,∀s ∈ [K] ,

and the assumption on ns guarantee that the empirical probability is strictly between 0 and 1. The proof is concluded.

6 REDUCTION TO LINEAR PROGRAMMING

In this section we show that the minimization problem in Eq. (3) can be reduced to a problem of linear programming. Recall
that our goal is to solve

min
(λ,γ)

{
〈λ,α〉+

K∑
s=1

ÊX|S=s(Ĝ(X, s,λ,γ))+

}
, (21)

where

Ĝ(x, s,λ,γ) =

∣∣∣∣ ps2ᾱ
(1− 2η̂(x, s)− 〈γ,1〉) +

〈γ, es〉
2αs

∣∣∣∣− ps
2ᾱ

(1− 〈γ,1〉)− 〈λ, es〉 −
〈γ, es〉

2αs
.

Similarly to the support vector machines, the reduction is achieved via the slack variables ζi, i = 1, . . . , n. With these slack
variables the above problem can be expressed as

min
(λ,γ,ζ)

〈λ,α〉+

K∑
s=1

∑
i∈Is

ζi
ns

s.t.


ζi ≥ 0 ∀i ∈ [n]

0 ≤ ζi + 〈λ, es〉+ ps
ᾱ η̂(xi, s) ∀i ∈ Is∀s ∈ [K]

0 ≤ ζi +
〈
γ, 1

αs
es − ps

ᾱ 1
〉

+ 〈λ, es〉+ ps
ᾱ (1− η̂(xi, s)) ∀i ∈ Is∀s ∈ [K]

(LP-Primal)

To prove this result it is sufficient to observe that for all x ∈ R it holds that (x)+ = minζ≥x,ζ≥0 ζ.



Introduce the following matrix notation

c =

1/n1, . . . , 1/n1︸ ︷︷ ︸
I1

, . . . 1/ns, . . . , 1/ns︸ ︷︷ ︸
Is

, . . . , 1/nK , . . . , 1/nK︸ ︷︷ ︸
IK

, α1, . . . , αK , 0 . . . , 0


y = (ζ>,λ>,γ>)

b =

((p1

ᾱ
η̂(xi, s)

)
i∈I1

, . . . ,
(pK
ᾱ
η̂(xi, s)

)
i∈IK

,
(p1

ᾱ
(1− η̂(xi, s))

)
i∈I1

, . . . ,
(pK
ᾱ

(1− η̂(xi, s))
)
i∈IK

)

A =



−In1×n1
0n1×n2

. . . 0n1×nK −E1
n1×K 0n2×K

0n2×n1
−In2×n2

. . . 0n2×nK −E2
n2×K 0n1×K

...
...

. . .
...

...
...

0nK×n1
0nK×n2

. . . −InK×nK −EKnK×K 0nK×K

−In1×n1 0n1×n2 . . . 0n1×nK −E1
n1×K

p1
ᾱ 1n1×K − 1

α1
E1
n1×K

0n2×n1
−In2×n2

. . . 0n2×nK −E2
n2×K

p2
ᾱ 1n2×K − 1

α2
E2
n2×K

...
...

. . .
...

...
...

0nK×n1 0nK×n2 . . . −InK×nK −EKnK×K
pK
ᾱ 1nK×K − 1

αK
EKnK×K


where Esn×m is a n×m matrix composed of zeros and ones, whose sth column is equal to 1 and all other elements are zero,
1n×m is a matrix of ones of size n×m. Using the above notation, the problem in (LP-Primal) can be written as

min
y∈Rn+2K

〈c,y〉

s.t.

{
Ay ≤ b
yi ≥ 0 i ∈ [n]

(LP-Primal-compacted)

While the dimension of matrix A is 2n× (n+ 2K), this matrix has at most 4n+ nK non-zero elements. This fact can be
exploited if n� K, that it, the amount of unlabeled data is large compared to the amount of groups.

References

Pascal Massart. The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. The annals of Probability, pages
1269–1283, 1990.


	Derivation of the optimal prediction
	Auxiliary results
	Control of reject rate
	Control of Demographic Parity violation
	Control of the excess risk
	Reduction to linear programming

