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Abstract

In this paper, we study the differentially private
Principal Component Analysis (PCA) problem in
stochastic optimization settings. We first propose
a new stochastic gradient perturbation PCA mech-
anism (DP-SPCA) for the calculation of the right
singular subspace to achieve (ε, δ)-differential pri-
vacy. For achieving a better utility guarantee and
performance, we then present a new differential
privacy stochastic variance reduction mechanism
(DP-VRPCA) with gradient perturbation for PCA.
To the best of our knowledge, this is the first
work of stochastic gradient perturbation for (ε, δ)-
differentially private PCA. We also compare the
proposed algorithms with existing state-of-the-art
methods, and experiments on real-world datasets
and on classification tasks confirm the improved
theoretical guarantees of our algorithms.

1 INTRODUCTION

Dimensionality reduction is an essential tool for understand-
ing complex datasets that appear in modern machine learn-
ing and data mining applications. Even though a single data
point can be represented by hundreds or even thousands of
features, the phenomenon of interest is that real-world data
are usually highly redundant with a low intrinsic dimension-
ality. By reducing the data in a high dimensional space to a
lower dimension space, we can discover important structural
relationships between features. Many efficient methods use
the transformed features for learning tasks such as classi-
fication and regression, and significantly reduce the space
required to store the data. Other benefits include removal
of noise and extraction of correlations. Principal compo-
nents analysis (PCA) is one of the most classical methods
for dimensionality reduction in statistics, machine learning,
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and signal processing, and it can be used in social science
[Costello and Osborne, 2005], financial econometrics [Ait-
Sahalia and Xiu, 2017], medicine [Barber et al., 1975] and
genomics [Lu and Xu, 2013].

Given a dataset represented by a matrix X ∈ Rn×d, PCA
is used to calculate a good low-rank approximation of the
second moment matrix A = 1

nX
>X of a set of data points

in Rd. The rank k of the approximation is chosen to be
the intrinsic dimension of the data. This procedure is the
process of computing the principal components (i.e., a k-
dimensional subspace ofRd).

1.1 DIFFERENTIALLY PRIVATE PCA

Many modern machine learning applications are performed
on large amount of personal information about individu-
als, and thus these datasets contain sensitive information
about user behaviors. Therefore, it is important to design
efficient algorithms to discover important structural rela-
tionships in the data while considering the sensitive nature
of the data. Differential privacy (DP) [Dwork et al., 2006]
is a commonly recognized criterion that provides provable
protection of identity, and many researchers have used it to
develop privacy preserving and learning algorithms such as
[Chaudhuri and Monteleoni, 2008, Chaudhuri et al., 2011,
Bojarski et al., 2014]. A simple idea to hide personal infor-
mation is to add some special types of noise to the original
model. After that, the attacker has two outputs with slightly
different inputs, and can not tell whether the output changes
are due to artificial noise or input differences.

In this paper, we study the problem of differentially private
PCA. More specifically, for a given matrix X that contains
some sensitive information, our goal is to compute a low-
dimensional subspace that captures the covariance of X
as much as possible without compromising the privacy of
any individual. There is a large number of literature on
studying PCA with differential privacy such as [Dwork et al.,
2014, Hardt and Roth, 2013, Hardt and Roth, 2011, Hardt
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Table 1: Comparison of existing (ε, δ)-DP and (ε, 0)-DP algorithms, and the proposed algorithms, where each component
function is G-Lipschitz. Note that µ ∈ (0, 1), α = log(1/δ)/((1− µ)ε) + 1, k is the number of the principal components,
and σ1, σk and σk+1 denote the first, k-th and (k + 1)-th eigenvalue of the covariance matrix A, respectively.

Algorithm Utility bound Noise magnitude Privacy

Gaussian [Dwork et al., 2014] O(

√
nk ln(1.25/δ)

ε(σ2
k−σ

2
k+1)

) O( ln(1.25/δ)
ε2 ) (ε, δ)

Wishart [Jiang et al., 2015] O(
√
kd log d

nε(σ2
k−σ

2
k+1)

) O(d log d
nε ) (ε, 0)

Local Gaussian [Wang and Xu, 2020] O( kdnε2 ) O(
σ2
1σ

2
k+1

σ2
k−σ

2
k+1

) (ε, δ)

DP-SPCA (ours) O(
√
kd

n
√
ε
) O(mαG

2

n2εµ ) (ε, δ)

DP-VRPCA (ours) O(
√
kd logn
n2ε2 ) O(G

2Tm
n2ε2 ) (ε, δ)

and Price, 2014, Blum et al., 2005, Chaudhuri et al., 2012,
Kapralov and Talwar, 2012, Balcan et al., 2016, Jiang et al.,
2015, Wang and Xu, 2020], which output a noisy projection
matrix for dimensionality reduction while preserving the
privacy of any single data point.

There are several general ways to construct differentially pri-
vate PCA algorithms for differential privacy approximations.
Roughly speaking, a great number of methods need to add
noise, which can be roughly classified into three categories.
The first type of methods are input perturbation methods
by directly adding noise to the data before performing the
required computation. The second type of methods are to
perturb the objective function, which are called objective
perturbation methods. And the third type of methods are to
perturb the output of a non-DP algorithm. Most of existing
methods use the well-known power method based on [Golub
and Loan, 2013] to get the variance error bound for the top
private left or right singular vectors of X in two ways of
differential privacy. The first way uses input perturbation
by directly adding noise to the second moment matrix A
and then uses the power method to compute the eigenvec-
tor decomposition of a perturbed covariance matrix, e.g.,
[Chaudhuri et al., 2012, Jiang et al., 2015]. An alternative
way is to add noise to the calculation process of the power
method to achieve objective perturbation, e.g., [Dwork et al.,
2014, Hardt and Roth, 2013, Hardt and Roth, 2011, Balcan
et al., 2016].

However, each iteration of the power method requires multi-
plying the covariance matrix A by one or multiple vectors.
When the sample size n and the dimension d are large, the
total running time depends on the condition number κ of the
matrix A and the eigengap λ = (σk − σk+1)/σk of the co-
variance matrix between its k-th and (k + 1)-th eigenvalues
(i.e., σk and σk+1), which means many passes are required
over the data if λ is small and/or κ is large. This paper will
propose two efficient stochastic gradient descent methods
to compute the private right singular subspace with greater
privacy protection, which can avoid repeated manipulation
of the covariance matrix and is more suitable for large-scale

problems. Moreover, the PCA algorithms are very sensitive
in this sense because the top eigenvector can change by 90◦

by changing one data point in the dataset. Thus, we apply
a Gaussian perturbation to gradients in first order optimiza-
tion algorithms rather than to X , and the magnitude of the
perturbation in each entry can be smaller than that required
under the naive input perturbation.

The notion of differential privacy mainly has two types:
(ε, 0)-DP (also called pure DP) and (ε, δ)-DP (also called
approximation DP). (ε, δ)-DP is a weaker version of (ε, 0)-
DP because the former allows to break the privacy guarantee
with a very small probability (more precisely, δ). Some pio-
neering differentially private PCA methods such as [Dwork
et al., 2014, Hardt and Roth, 2013, Hardt and Roth, 2011,
Hardt and Price, 2014, Blum et al., 2005, Balcan et al.,
2016, Wang and Xu, 2020] used the concept of (ε, δ)-DP.
Some methods such as [Chaudhuri et al., 2012, Kapralov
and Talwar, 2012, Jiang et al., 2015] are based on (ε, 0)-DP.
This paper will propose efficient stochastic algorithms with
(ε, δ)-differential privacy.

Many differentially privat methods focus on the k-subspace
PCA problem in the low-dimensional setting (i.e., n� d),
e.g., [Hardt and Roth, 2013, Hardt and Roth, 2011, Jiang
et al., 2015, Dwork et al., 2014]. And some methods were
proposed for another case, which is assumed to be high-
dimensional (n � d), e.g., [Wang and Xu, 2020]. In the
first case, it is generally assumed that the rows of the data
matrix are normalized to have a norm of at most 1, as done
in this paper. In high-dimensional scenarios, the natural
method is to impose some additional structural constraints
on the leading eigenvectors, and a commonly used constraint
is to assume that the leading eigenvectors are row sparse. In
this paper, we mainly consider efficient differentially private
PCA algorithms in the first case.

1.2 OUR MAIN CONTRIBUTIONS

The main contributions of this paper are highlighted as
follows:
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• We propose two efficient stochastic algorithms for dif-
ferentially private PCA (called DP-SPCA and DP-VRPCA,
respectively), which use gradient perturbation at each iter-
ation. We also provide their privacy and utility guarantees,
and the theoretical results show that our differential pri-
vacy stochastic algorithms have tighter utility upper bounds
with less perturbed noise, as shown in Table 1. Especially,
DP-VRPCA achieves better utility and is more suitable for
large-scale datasets.

• We perform many experiments on a9a, MNIST and
CIFAR-10 with different principal components to verify
the utility improvement of DP-SPCA and DP-VRPCA. Nu-
merical results consistently confirm that under the same
experimental performance, DP-SPCA and DP-VRPCA can
achieve better utility guarantees.

•We use a linear support vector machine (SVM) as a dis-
criminative classifier and evaluate our approaches on three
standard classification datasets, a9a, MNIST and Real-sim.
Our experiments indicate that compared with other algo-
rithms, the classification accuracies of DP-SPCA and DP-
VRPCA are closer to that of the algorithm without noise
perturbation (i.e., their non-private counterpart). Especially,
the performance of DP-VRPCA is superior and more stable.

The remainder of the paper is organized as follows. Section
2 gives some related work about differentially private PCA.
Section 3 presents some preliminaries and definitions of dif-
ferential privacy. Section 4 proposes two efficient stochastic
differentially private PCA algorithms and provides theoreti-
cal analysis on privacy and utility guarantees of our mecha-
nism together with the comparison to several highly-related
work. Then the numerical experimental results are presented
in Section 5. Finally, we conclude this work in Section 6.

2 RELATED WORK

In this section, we present some related work about differen-
tially private PCA and differentially private empirical risk
minimization (ERM) problems.

2.1 DIFFERENTIALLY PRIVATE PCA

This paper deals with the problem of differentially private
PCA. Starting from the SULQ framework [Blum et al.,
2005], which uses an early input perturbation framework,
and the parameters of noise are refined by [Dwork et al.,
2006]. Dwork et al. [2014] proved the state-of-the-art utility
bounds for (ε, δ)-DP. Hardt and Roth [2011] provided a bet-
ter bound under the coherence assumption. In [Hardt and
Roth, 2013, Hardt and Price, 2014], the authors used a noisy
power method to generate the principal eigenvectors itera-
tively with removing the previously generated ones. Hardt
and Price [2014] provided a special case for (ε, 0)-DP as
well. Chaudhuri et al. [2012] proposed the first differentially

private PCA algorithm for (ε, 0)-DP based on an exponen-
tial mechanism [McSherry and Talwar, 2007]. Kapralov and
Talwar [2012] argued that the algorithm in [Chaudhuri et al.,
2012] lacks convergence of the chain, which may affect
the privacy guarantee, and they also devised a mixed algo-
rithm for low-rank matrix approximation. Jiang et al. [2015]
proposed a new input perturbation mechanism for publish-
ing a covariance matrix to achieve (ε, 0)-DP, which uses a
Wishart distribution to keep the positive semi-definiteness
of the published covariance matrix. More recently, Wang
and Xu [2020] introduced the PCA problem under the dis-
tributed non-interactive local differential privacy model in
both low and high dimensional cases.

2.2 DIFFERENTIALLY PRIVATE ERM

Differentially private PCA can be viewed as a differentially
private empirical risk minimization (ERM) problem. In the
last decade, there are many methods such as [Wu et al., 2015,
Wang et al., 2016, Abadi et al., 2016, Zhang et al., 2017,
Wang et al., 2019] for differentially private ERM, which
attack the problem from different perspectives. Objective
perturbation, output perturbation, and gradient perturbation
are the three main methods of performing ERM under DP
guarantees. Among the three categories, the gradient per-
turbation method can obtain the optimal solution to ensure
both differential privacy and utility guarantees, and is the
preferred method in practice.

The output and objective perturbation for privacy protec-
tion are considered in [Chaudhuri and Monteleoni, 2008,
Chaudhuri et al., 2011], and the privacy and utility of Logis-
tic regression and SVM are theoretically guaranteed. The
impacts of learning rate and batch size on DP-ERM were
studied in [Song et al., 2013]. Wang et al. [2016] studied
the stability, learnability and other properties of DP-ERM.
An adaptive privacy budget based on concentrated DP was
proposed in [Lee and Kifer, 2018].

Most of existing methods are based on Gradient Descent
(GD) and Stochastic Gradient Descent (SGD) [Abadi et al.,
2016, Wang et al., 2019]. Abadi et al. [2016] developed new
algorithmic techniques for learning and a refined analysis of
privacy costs within the framework of differential privacy.
Wang et al. [2019] proposed a DP Laplacian smoothing
SGD (DP-LSSGD) to train machine learning models with
differential privacy guarantees. However, they are slow in
general for large datasets [Liu et al., 2017, Shang et al., 2018,
2020]. Wang et al. [2017] presented algorithms with tighter
utility upper bound and less running time based SVRG
[Johnson and Zhang, 2013].

This paper will propose two new efficient stochastic PCA
algorithms with (ε, δ)-DP by using gradient perturbation,
which are different from existing input and object perturba-
tion power methods, and can achieve privacy protection at a
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much lower noise magnitude.

3 PRELIMINARIES AND DEFINITIONS

In this section, we provide some background information
on differentially private PCA.

3.1 NOTATIONS

We first give some notations used in this paper. We generally
use lower case letters to denote vectors, and upper case
letters to denote matrices. The data given to our algorithms
is a set of n vectors X = [x1, x2, · · · , xn], where each xi
corresponds to the private value of one individual, xi ∈ Rd,
and ‖xi‖ ≤ 1 for all i. For a given matrix X ∈ Rn×d
(d � n) whose rows are the data vectors {xi}, let A =
1
nX
>X denote the d × d second moment matrix of the

data, which is called the covariance matrix. The matrix
A is positive semidefinite, and has Frobenius norm ‖A‖F .
For a vector w ∈ Rd, ‖w‖ denotes the `2 norm. For a
matrix X ∈ Rn×d, the spectral norm is defined as ‖X‖ =
maxw∈Rd,‖w‖2=1 ‖Xw‖2; the Frobenius norm is defined

as ‖X‖F =
√∑

ij x
2
ij , where xij are the entries of the

matrix X .

For a matrix X , the singular value decomposition of X is
defined as:X = UΣV >, where U ∈ Rn×n and V ∈ Rd×d
are called the left and right singular vectors, respectively,
and they are unitary matrices. The matrix Σ ∈ Rn×d is a
diagonal matrix with non-negative entries σ1, · · · , σmin(d,n)

(σ1 ≥ σ2 ≥ · · · ) along the diagonal, which are called the
singular values. We define Vk = [v1, · · · , vk] and call it the
principal k right singular subspace. It is well known that
‖X‖2 = σ1, ‖X‖2F =

∑
i σ

2
i , and ‖XVk‖2F =

∑k
i=1 σ

2
i =

maxP∈Rd×k ‖XP‖2F .

3.2 PROBLEM SETUP

Considering that the PCA problem can be viewed as a finite
sum problem in the following form

min
V ∈Rd×k:V >V=I

f(V ) =
1

n

n∑
i=1

fi(V ), (1)

where both fi(V ) and f(V ) are smooth, and k denotes the
number of the top eigenvalues.

We consider the problem of recovering the top k right sin-
gular subspace of a n × d matrix X , where k � d. This
is equivalent to recover the top k eigenvectors of X>X , or
equivalently, to solve the optimization problem

min
V ∈Rd×k:V >V=I

−V >
( 1

n

n∑
i=1

x>i xi
)
V. (2)

3.3 SOME ASSUMPTIONS

Assumption 1 (L-smooth) Each component function fi(·)
is L-smooth with respect to the norm ‖ · ‖, if for ∀v1, v2 ∈
Rd, there is a constant L such that

‖∇fi(v1)−∇fi(v2)‖ ≤ L‖v1 − v2‖, i ∈ [n]. (3)

The above definition has another equivalent form, i.e.,
∀v1, v2∈Rd,

−L
2
‖v1−v2‖2≤f(v1)−f(v2)−〈∇f(v2), v1−v2〉≤

L

2
‖v1−v2‖2.

(4)

Assumption 2 (Lipschitz Function) A function f is G-
Lipschitz, if for ∀v1, v2 ∈ Rd, there exists G > 0 such
that |f(v1)− f(v2)| ≤ G‖v1 − v2‖.

3.4 DIFFERENTIAL PRIVACY

Given a matrix X , our goal is to output a subspace that
preserves privacy and captures the variance of X as much
as possible. To introduce the formal definition of differential
privacy in [Dwork et al., 2006, Dwork et al., 2014, Mironov,
2017], we call two datasets D,D′ ∈Rn neighbors if they
differ in only one row, as each row in X corresponds to an
individual user. We will ensure (ε, δ)-differential privacy
with Gaussian perturbation.

Definition 1 (Differential Privacy [Dwork et al., 2006])
A randomized mechanism A : Dn → R is (ε, δ)-
differentially private ((ε, δ)-DP) if for every two neighbor-
ing datasets D,D′ ∈ Dn differing in one entry and for any
subset of outputs O ⊆ R, it holds that

Pr[A(D) ∈ O] ≤ eε Pr[A(D
′
) ∈ O] + δ. (5)

When δ = 0, A is ε-differentially private (ε-DP).

Definition 2 (`2-sensitivity [Dwork et al., 2014]) For two
adjacent datasets D,D′ ∈ Dn differing in one entry, the
`2-sensitivity ∆2(q) of a function q : Dn → R is defined as

∆2(q) = sup
D,D′

‖q(D)− q(D
′
)‖2. (6)

Definition 3 (Gaussian Mechanism [Dwork et al., 2014])
Given any function q : D → Rd, the Gaussian mechanism
is defined as:

M(D, q, ε) = q(D) + z, (7)

where z is drawn from Gaussian distribution N (0, λ2Id)

with λ ≥
√

2 ln(1.25/δ)∆2(q)

ε . Here ∆2(q) is the `2-
sensitivity of the function q. Gaussian mechanism preserves
(ε, δ)-differential privacy.
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Definition 4 ((α, ρ)-RDP [Mironov, 2017]) A random-
ized mechanism A : Dn → R is ρ-Rényi differentially
private of order α > 1, i.e., (α, ρ)-RDP, if for any adjacent
datasets D,D′ ∈ Dn differing in one entry, it holds that

Dα(A(D)‖A(D
′
)) ,

1

α− 1
logE

(
A(D)

A(D′)

)α
≤ ρ. (8)

4 DIFFERENTIALLY PRIVATE
STOCHASTIC ALGORITHMS FOR PCA

In this section, we propose two new efficient differential
privacy stochastic algorithms for PCA. Then we discuss the
main components of our algorithms toward differentially pri-
vate PCA. The first is a differentially private stochastic gradi-
ent descent PCA (DP-SPCA) algorithm, in which Gaussian
perturbation is added to the computation of gradients at each
iteration step. Our next stochastic algorithm is differentially
private stochastic variance reduction PCA (DP-VRPCA),
which is based on a variance reduced stochastic gradient
technique [Johnson and Zhang, 2013] and has a tighter util-
ity upper bound and a faster convergence speed. We derive
that both algorithms are differentially private approximation
to the top-k subspace, and DP-SPCA and DP-VRPCA are
guaranteed to be (ε, δ)-differentially private.

Before we describe our algorithms, we first present a gen-
eral framework of differentially private PCA. A privacy-
preserving PCA takes the row of X ∈ Rn×d as input
data and then calculates the sample covariance matrix
A = 1

nX
>X . Finally, it computes the top-k subspace of

A as the output. However, this framework needs to repeat
multiplying operations on the covariance matrix A, and the
processing can be prohibitive for large-scale datasets. More-
over, the frameworks of differentially private PCA usually
have to assume that the eigenvalues satisfy a condition for
the sake of analysis, e.g., σ2

k−σ2
k+1 = ω(

√
n) as in [Dwork

et al., 2014]. In this paper, we use a stochastic framework
with privacy-preserving alternatively, which only chooses
one sample at each iteration. Therefore, this avoids perform-
ing multiplication operations on the matrix A and does not
need to assume such a condition of the eigenvalues.

In the following formulations of the algorithms, we first
describe them in the simplest form of the problem in Eq. (2).
Where k = 1, the problem can be formulated as follows:

min
v∈Rd:v>v=1

f(v) = −v>(
1

n

n∑
i=1

x>i xi)v, (9)

and our goal is to find the top eigenvector vk.

4.1 DIFFERENTIALLY PRIVATE STOCHASTIC
SINGULAR SUBSPACE COMPUTATION VIA
GAUSSIAN MECHANISM

DP-SPCA with k=1 is summarized in Algorithm 1, which
outlines our basic update rules for training a differentially
private PCA model with parameters v by minimizing the
empirical loss function f(v).

In our DP-SPCA algorithm, we estimate the gradient of
f(·) by calculating the gradient of the loss function on the
randomly selected examples, which provides an unbiased
estimator similar to ordinary SGD. The way of our DP-
SPCA algorithm to learn a DP model is injecting Gaussian
noise into the stochastic gradient, and we give the following
update rule,

v′t = vt−1 − ηt(∇fit(vt−1) + z), (10)

where ηt is the step-size, and z is the Gaussian noise injected
for DP guarantees.

More specifically, a random example is selected in each
iteration and we compute the gradient∇vfit , which is the
stochastic gradient of f evaluated from the input xit and is
an unbiased estimate of the gradient∇vf , and adds a Gaus-
sian noise z in order to protect privacy. Then v is updated
toward the local minimum along the opposite direction of
this noise gradient (−(∇vf(xit) + z)). Finally, we perform
an orthogonal transformation, which aims to ensure that v
is a unit vector. We assume that each component function
fi is G-Lipschitz.

The block form (k > 1) of Algorithm 1 is similar to how to
generalize power iterations to orthogonal iterations, where
the d-dimensional vectors vt are replaced by d × k matri-
ces Vt. And orthogonalization is used instead of the nor-
malization step, which aims to obtain an orthonormal col-
umn basis of a matrix, that is, vt = 1

‖v′t‖
v′t is replaced by

Vt = V ′t (V
′>
t V ′t )−1/2.

Next we provide the theoretical analysis of Algorithm 1
under the framework of differentially private PCA. Privacy
guarantee is the basic requirement of a privacy algorithm,
and the utility guarantee indicates that how effective is the
algorithm against the non-private version. Note that we
provide the detailed proofs of some theoretical results in the
Supplementary Materials.

Lemma 1 In DP-SPCA (i.e., Algorithm 1), for ε ≤ T
n2 and

δ > 0, it is (ε, δ)-differential private if

λ2
1 =

20TαG2

n2εµ
, (11)

where α = log(1/δ)/((1− µ)ε) + 1, and µ ∈ (0, 1).

Theorem 1 (Privacy Guarantee for DP-SPCA) Suppose
that each component function fi is G-Lipschitz. Given
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Algorithm 1 DP-SPCA(X, η)

Input: Data matrix X∈Rn×d, the number of iterations T .
Initialize: An initial vector v0, and A = 1

nX
>X.

1: for t = 1, 2, · · · , T do
2: Randomly sample it from {1, 2, ..., n} uniformly;
3: v′t = vt−1 − ηt(∇fit(vt−1) + z), where z ∼

N (0, λ2
1Id) and λ2

1 = 20TαG2

n2εµ ;
4: vt = 1

‖v′t‖
v′t;

5: end for
Output: The top eigenvector vk = vT .

δ > 0 and privacy budget ε, with injected Gaussian
noise N (0, λ2

1) for each coordinate, DP-SPCA sat-
isfies (ε, δ)-DP with λ2

1 = 20TαG2/(n2εµ), where
α = log(1/δ)/((1− µ)ε) + 1, if there exits µ ∈ (0, 1) such
that 5Tα/(n2εµ) ≥ 1.5 and the sampling rate τ = 1/n,
we get vt of each iteration is (tµε/T + (1 − µ)ε, δ)-DP,
and finally get the output of DP-SPCA, vk, is (ε, δ)-DP.

Theorem 2 (Utility Guarantee for DP-SPCA) Suppose
each component function fi isG-Lipschitz. Given ε, δ > 0,
with injected Gaussian noise N (0, λ2

1) for each coordinate,
DP-SPCA satisfies (ε, δ)-DP with λ2

1 = 20TαG2

n2εµ , where
α = log(1/δ)/((1− µ)ε) + 1. If we choose ηt = 1/T and
T = C1(‖v0 − v̂k‖2 + γ̂)n2εµ/dG2 log(1/δ), the output
of DP-SPCA (i.e., vk) satisfies the following utility

E‖vk−v̂k‖2 ≤
C2G

√
‖v0−v̂k‖2+γ̂)d log(1/δ)

n
√
εµ

. (12)

The above utility bound for the case of k ≥ 2 becomes

E‖Vk−V̂k‖2F ≤
C3

√
kG

√
‖V0−V̂k‖2+γ̂)d log(1/δ)

n
√
εµ

,

(13)
where v̂k and V̂k are the optimal solution without perturba-
tion, γ̂ = ‖∇f(V̂k)‖2 + 1/2, and C1, C2, C3 are constants.

Remark 1 This theorem shows that the utility bound of DP-
SPCA is O(

√
kd

n
√
ε
), which is much better than that of Local

Gaussian [Wang and Xu, 2020] (i.e., O( kdnε2 )).

4.2 DIFFERENTIALLY PRIVATE STOCHASTIC
VARIANCE REDUCTION SINGULAR
SUBSPACE COMPUTATION VIA GAUSSIAN
MECHANISM

The advantage of DP-SPCA is that each iteration only de-
pends on one derivative ∇fit(v), so the calculation cost is
greatly reduced. However, the disadvantage of DP-SPCA is
that randomness introduces high variance due to the fact that
∇fit(v) is equal to the gradient∇f(v), but each∇fit(v) is

different. This means that SGD-style algorithms have a rela-
tively large variance and greatly slow down convergence.

For large-scale datasets, DP-SPCA is relatively slow and has
low accuracy. To improve these performances, our second
algorithm, DP-VRPCA, randomly samples a k-dimensional
subspace with Gaussian perturbation that ensures differen-
tial privacy and is biased towards high utility. The pseudo-
code of DP-VRPCA is outlined in Algorithm 2. We call
each execution of the inner loop as an iteration, and call
each execution of the outer loop as an epoch. Therefore, DP-
VRPCA includes multiple epochs, and each epoch contains
T iterations. The update rule in Line 6 is a generalized rule
of DP-SPCA, which can significantly reduce the variance
and use a relatively large learning rate.

The basic idea of DP-VRPCA is to use randomly sampled
row xit of the matrix X to perform stochastic updates, but
think of them as a similar form of exact power iterations,
and use them to gradually reduce the variance of stochastic
updates. In particular, the algorithm is divided into several
epochs s= 1, 2, · · · ,m. In each epoch, we perform an ex-
act power iteration for the matrix A, and then perform T
stochastic updates, which are rewritten as follows:

v′t = (I+ηA)vt−1 +η(xitx
>
it −A)(vt−1− ṽ)−ηz. (14)

We can see that the first term can actually be regarded as a
power iteration, the expectation of the second term is zero-
mean, and the variance is determined by ‖vt−1 − ṽ‖2. With
the progressing of the algorithm, both vt−1 and ṽ converge
to the same optimal point, so ‖vt−1 − ṽ‖2 shrinks, leading
to convergence. And η is a constant step-size and z is the
injected Gaussian noise for DP guarantees.

The block version (k > 1) of Algorithm 2 is similar to
the operations of Algorithm 1. Next we give the theoretical
analysis of Algorithm 2.

Theorem 3 (Privacy Guarantee for DP-VRPCA)
Suppose that each component function fi is G-Lipschitz.
For ε ≤ Tm

n2 and δ > 0, DP-VRPCA is (ε, δ)-differential
private with λ2

2 = G2Tm log(1/δ)/(n2ε2).

Theorem 4 (Utility Guarantee for DP-VRPCA)
Suppose each component function fi is G-Lipschitz.
Given ε, δ > 0, with injected Gaussian noise N (0, λ2

2)
for each coordinate, DP-VRPCA satisfies (ε, δ)-DP
with λ2

2 = G2Tm log(1/δ)
n2ε2 . If we choose η ≤ 1/12L and

m=C4 log( n2ε2

dG2 log(1/δ)−γ ), the output of DP-VRPCA (i.e.,
vk) satisfies the following utility

E‖vk − v̂k‖2 ≤
C5G

2d log(nε/dG) log(1/δ)

n2ε2
. (15)

The upper bound for the case of k ≥ 2 becomes

E‖Vk−V̂k‖2F ≤
C6

√
kG2d log(nε/dG) log(1/δ)

n2ε2
, (16)
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Algorithm 2 DP-VRPCA(X, η)

Input: Data matrix X ∈ Rn×d, the step-size η, and the
iteration numbers T , m.

Initialize: An initial vector ṽ0, and A = 1
nX
>X.

1: for s = 1, 2, · · · ,m do
2: µ̃s−1 = ∇f(ṽs−1) = Aṽs−1;
3: vs0 = ṽs−1;
4: for t = 1, 2, · · · , T do
5: Randomly sample it from {1, 2, ..., n} uniformly;
6: gst =∇fit(vst−1)−∇fit(ṽs−1)+ µ̃s−1 + z, where

z ∼ N (0, λ2
2Id) and λ2

2 = G2Tm log(1/δ)
n2ε2 ;

7: vs
′

t = vst−1 − ηgst ;
8: vst = 1

‖vs′t ‖
vs
′

t ;
9: end for

10: ṽs = vsT ;
11: end for
Output: The top eigenvector vk = vmT .

where C4, C5, C6 are three constants.

Remark 2 Theorem 4 shows that the utility bound of DP-
VRPCA is O(

√
kd logn
n2ε2 ), which is much better than that of

Local Gaussian [Wang and Xu, 2020], i.e., O( kdnε2 ).

4.3 COMPARISON WITH RELATED WORK

In this subsection, we compare our algorithms with re-
lated methods in terms of utility upper bound and the level
of noise magnitude required. There are some major mea-
surements to analyze the results of different algorithms.
For instance, some existing algorithms such as [Dwork
et al., 2014, Jiang et al., 2015, Wang and Xu, 2020] use
the subspace distance (i.e., ‖V̂kV̂ >k − VkV >k ‖F ) as a qual-
ity measurement, and some algorithms such as [Hardt and
Roth, 2013, Chaudhuri et al., 2012] apply the variance (i.e.,
‖XV̂k‖2F − ‖XVk‖2F ) as a quality measurement. Then we
show that our measurement is of the same order of the sub-
space distance, so that we can compare our utility bound
with those of other methods.

Lemma 2 The criterion (i.e., ‖Vk − V̂k‖2F ) used in this
paper is of the same order as the general subspace criterion
‖VkV >k − V̂kV̂ >k ‖F , i.e., when k = 1,

‖v1 − v̂1‖2 = O(‖v1v
>
1 − v̂1v̂

>
1 ‖F ), (17)

and when k > 1

‖Vk − V̂k‖2F = O(‖VkV >k − V̂kV̂ >k ‖F ). (18)

We show the compared results of different algorithms in
Table 1, which are for the case that the measurement is
‖V̂kV̂ >k −VkV >k ‖F . Note that the compared algorithms such
as [Dwork et al., 2014] need to assume that the eigenvalues
of A satisfy such condition, e.g., σ2

k − σ2
k+1 = ω(d), which

is not required in Theorems 2 and 4. We can see that our
DP-SPCA and DP-VRPCA achieve tighter utility bounds
with less noise required compared with existing methods.
To be more precise, the noise of DP-VRPCA is of the same
order as DP-SPCA, which is inversely proportional to n2

and is of less magnitude than other methods. And the utility
bounds of DP-SPCA and DP-VRPCA are both inversely
proportional to n, which is obviously better than the upper
bounds of other algorithms. In particular, the utility bound
of DP-VRPCA is better than that of DP-SPCA by a factor
of O(

√
d log n/n) in the low-dimensional case.

Table 2: Summary of the datasets used in our experiments.

Dataset ] Samples, n ] Features, d Sparsity

a9a 32,561 123 11.2757%
CIFAR-10 50,000 3,072 99.7617%
MNIST 60,000 784 80.8798%
Real-sim 72,309 20,958 0.2448%

5 NUMERICAL EXPERIMENTS

In this section, we turn to validate our theoretical results on
real-world datasets. We compare the proposed algorithms
(i.e., DP-SPCA and DP-VRPCA) with other state-of-the-art
methods in order to verify our theoretical results.

5.1 DATA AND PREPROCESSING

We report the performance of our algorithms on the widely
used real-world datasets (i.e., a9a, CIFAR-10, MNIST and
Real-sim)1. The detailed information of the four datasets is
shown in Table 2. We preprocessed each dataset by normal-
izing each row so that each entry has maximum value 1, and
normalized each column such that the maximum column
Euclidean norm is 1.

Settings. In the experiments, the parameters are set as fol-
lows: the number of iterations is set as T =n in DP-VRPCA,
where n is the number of samples. We pick a fixed step-size,
which is set to ηt = 1

2n in DP-SPCA and η = 1
n in DP-

VRPCA. And the parameters δ in σ2
1 and σ2

2 are set to 0.001
in DP-SPCA and DP-VRPCA. Moreover, the initial vectors
v0 and ṽ0 are randomly generated unit vectors.

Performances Metrics. The performance indicator is mea-
sured by the subspace distance ‖Vk− V̂k‖2F , where V̂k is the

1All the datasets can be downloaded from the website at
https://www.csie.ntu.edu.tw/~cjlin/libsvm/.
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Table 3: Classification accuracies of all the differentially private algorithms on a9a (k = 10), MNIST (k = 10) and Real-sim
(k = 300) in the k-dimensional subspaces under the privacy budget ε = 0.1.

Method a9a MNIST Real-sim

Non-private counterpart 84.9483±0.00 99.2883±0.00 99.4275±0.00
PPI [Hardt and Roth, 2013] 79.8034±0.14 96.1450±0.20 71.7836±0.11

MOD-SULQ [Chaudhuri et al., 2012] 80.1136±0.10 96.5200±0.09 72.7932±0.17
Gaussian [Dwork et al., 2014] 80.3199±0.23 97.0667±0.34 85.5685±0.34

DP-SPCA (ours) 82.5539±0.09 98.3500±0.18 92.1290±0.10
DP-VRPCA (ours) 82.5539±0.07 98.4750±0.14 94.1852±0.13

optimal solution without perturbation and Vk is the result
obtained by different algorithms.

5.2 EFFECT OF PRIVACY ON DIFFERENT
ALGORITHMS

In this subsection, we first confirm our theoretical results
of DP-SPCA and DP-VRPCA on real-world datasets, and
we compare our algorithms with the state-the-of-art algo-
rithms including: Nonprivate PCA (without perturbation),
MOD-SULQ (Chaudhuri et al. [2012]), Gaussian Mecha-
nism (Dwork et al. [2014]), PPI (Hardt and Roth [2013]),
DP-SPCA (i.e., Algorithm 1) and DP-VRPCA (i.e., Algo-
rithm 2) on a9a, MNIST and CIFAR-10 with normalized
rows for each dataset.

In the initialization of v0 and ṽ0, we tried a uniformly gen-
erated random projection. We measured the utility by sub-
space distance, where Vk is the k-dimensional subspace
output by the algorithm, thus this reflects how close the
output subspace is to the true PCA subspace (i.e., V̂k) in
terms of representing the data. The experimental results
are shown in Figure 1, which indicates that the error de-
creases as the privacy budget ε increases (i.e., less private),
and our DP-SPCA and DP-VRPCA algorithms are signif-
icantly better than other compared algorithms. Especially,
DP-VRPCA has better performance due to the decreasing
variance through iterations. These experiments support the
claim that not just the theoretical analysis is superior, but
also the performance is affected in a positive way.

5.3 EFFECT OF PRIVACY ON CLASSIFICATION

A common use of dimensionality reduction algorithms is a
preparation for a classification or clustering task. To evaluate
the effectiveness of the proposed algorithms, we projected
the data onto the subspace output by the algorithms and used
the projected data to measure the classification accuracy.
We used the linear SVM as a discriminative classifier and
evaluate our algorithms and other compared methods on
a9a, MNIST and Real-sim. We chose these three datasets
because they are publicly available and have long served as
benchmarks for machine learning applications.

(a) a9a, k = 5 (b) a9a, k = 10

(c) MNIST, k = 5 (d) MNIST, k = 10

(e) CIFAR-10, k = 5 (f) CIFAR-10, k = 10

Figure 1: Comparison of all the differentially private PCA
algorithms with different privacy levels, where k denotes
the number of eigenvalues.

In the classification experiment, we used half of each dataset
as the reserved set for calculating a projection subspace. We
projected the classification data onto the subspace computed
based on the holdout set. Here, 10% of each dataset was
used for training and parameter tuning, and the rest was
used for testing. We repeated the classification process 10
times for each algorithm, and then ran the whole procedure
over 10 random arrangements of each dataset. The average
classification results are reported in Table 3.
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The classification results show that the classification perfor-
mance of our algorithms in top-k PCA subspace is closer
to that of non-private PCA, while the performance of the
compared algorithms (e.g., MOD-SULQ) is a little worse.
The classification accuracies of MOD-SULQ and PPI also
appear to have higher variance compared to our algorithms
and non-private PCA. The reason is that the projections tend
to be far away from the top-k PCA subspace, making the
classification error with a larger variance.

6 CONCLUSIONS

In this paper, we studied the problem of differentially pri-
vate PCA and proposed two new stochastic PCA algorithms
with better utility bounds. When gradient perturbation is
combined into differentially private PCA methods, a bet-
ter bound with less noise magnitude can be achieved. The
proposed algorithms are simple to implement, and we also
showed that they can improve the utility of the private PCA
models in both theory and practice.

Several recently proposed accelerated stochastic variance
reduction algorithms (e.g., Katyusha [Allen-Zhu, 2018] and
MiG [Zhou et al., 2018]) and their asynchronous parallel
variants such as [Zhou et al., 2018, Shang et al., 2021] can
be used to further accelerate the proposed differentially pri-
vate PCA algorithms for solving large-scale problems. In
the further, we will use the Laplacian smoothing technique
in [Wang et al., 2019] to further improve the practice per-
formance and utility bounds of our differentially private
stochastic PCA algorithms.

Acknowledgements

We thank all the reviewers for their valuable comments. This
work was supported by the National Natural Science Foun-
dation of China (Nos. 61876221, 61876220 and 61976164),
the Project supported the Foundation for Innovative Re-
search Groups of the National Natural Science Founda-
tion of China (No. 61621005), the Major Research Plan
of the National Natural Science Foundation of China (Nos.
91438201 and 91438103), the Program for Cheung Kong
Scholars and Innovative Research Team in University (No.
IRT_15R53), the Fund for Foreign Scholars in University
Research and Teaching Programs (the 111 Project) (No.
B07048), and the National Science Basic Research Plan in
Shaanxi Province of China (No. 2020JM-194).

References

Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan
McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep learning with differential privacy. arXiv preprint
arXiv:1607.00133, 2016.

Yacine Ait-Sahalia and Dacheng Xiu. Using principal com-
ponent analysis to estimate a high dimensional factor
model with high-frequency data. Journal of Economet-
rics, 201(2):384–399, 2017.

Zeyuan Allen-Zhu. Katyusha: The first direct accelera-
tion of stochastic gradient methods. Journal of Machine
Learning Research, 18:1–51, 2018.

Maria-Florina Balcan, Simon Shaolei Du, Yining Wang, and
Adams Wei Yu. An improved gap-dependency analysis
of the noisy power method. In 29th Annual Conference
on Learning Theory, pages 284–309, 2016.

D.C. Barber, P.J. Howlett, and R.C Smart. Principal com-
ponent analysis in medical research. Journal of Applied
Statistics, 2(1):39–43, 1975.

Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi
Nissim. Practical privacy: the SuLQ framework. In Pro-
ceedings of the twenty-fourth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems,
pages 128–138, 2005.

Mariusz Bojarski, Anna Choromanska, Krzysztof Choro-
manski, and Yann LeCun. Differentially- and non-
differentially-private random decision trees. arXiv
preprint arXiv:1410.6973, 2014.

Kamalika Chaudhuri and Claire Monteleoni. Privacy-
preserving logistic regression. In Advances in Neural In-
formation Processing Systems 21, pages 289–296, 2008.

Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sar-
wate. Differentially private empirical risk minimization.
Journal of Machine Learning Research, 12(29):1069–
1109, 2011.

Kamalika Chaudhuri, Anand D. Sarwate, and Kaushik Sinha.
Near-optimal differentially private principal components.
In Advances in Neural Information Processing Systems,
2012.

Anna B. Costello and Jason Osborne. Best practices in
exploratory factor analysis: four recommendations for
getting the most from your analysis. Practical Assessment,
Research and Evaluation, 10(1):1–9, 2005.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam
Smith. Calibrating noise to sensitivity in private data anal-
ysis. In Proceedings of the Third conference on Theory
of Cryptography, pages 265–284, 2006.

Cynthia Dwork, Kunal Talwar, Abhradeep Thakurta, and
Li Zhang. Analyze gauss: Optimal bounds for privacy-
preserving principal component analysis. In Proceedings
of the Forty-Sixth Annual ACM Symposium on Theory of
Computing, pages 11–20, 2014.

1118



Gene H. Golub and Charles F. Van Loan. Matrix com-
putations, volume The Fourth Edition. Johns Hopkins
University Press, 2013.

Moritz Hardt and Eric Price. The noisy power method: A
meta algorithm with applications. In Advances in Neural
Information Processing Systems 27, pages 2861–2869,
2014.

Moritz Hardt and Aaron Roth. Beating randomized response
on incoherent matrices. arXiv preprint arXiv:1111.0623,
2011.

Moritz Hardt and Aaron Roth. Beyond worst-case analysis
in private singular vector computation. In Proceedings
of the Forty-Fifth Annual ACM Symposium on Theory of
Computing, pages 331–340, 2013.

Wuxuan Jiang, Cong Xie, and Zhihua Zhang. Wishart mech-
anism for differentially private principal components anal-
ysis. arXiv preprint arXiv:1511.05680, 2015.

Rie Johnson and Tong Zhang. Accelerating stochastic gra-
dient descent using predictive variance reduction. In
Advances in Neural Information Processing Systems 26,
volume 26, pages 315–323, 2013.

Michael Kapralov and Kunal Talwar. On differentially pri-
vate low rank approximation, 2012.

Jaewoo Lee and Daniel Kifer. Concentrated differentially
private gradient descent with adaptive per-iteration pri-
vacy budget. arXiv preprint arXiv:1808.09501, 2018.

Yuanyuan Liu, Fanhua Shang, and James Cheng. Acceler-
ated variance reduced stochastic ADMM. In Proceedings
of AAAI Conference Artificial Intelligence, pages 2287–
2293, 2017.

Dongsheng Lu and Shuhua Xu. Principal component analy-
sis reveals the 1000 genomes project does not sufficiently
cover the human genetic diversity in asia. Frontiers in
Genetics, 4:127–127, 2013.

Frank McSherry and Kunal Talwar. Mechanism design via
differential privacy. In 48th Annual IEEE Symposium
on Foundations of Computer Science (FOCS’07), pages
94–103, 2007.

Ilya Mironov. Renyi differential privacy. In Proceedings of
30th IEEE Computer Security Foundations Symposium,
pages 263–275, 2017.

Fanhua Shang, Yuanyuan Liu, Licheng Jiao, Kaiwen Zhou,
James Cheng, Yan Ren, and Yufei Jin. ASVRG: Ac-
celerated proximal SVRG. In Proceedings of Machine
Learning Research, pages 815–830, 2018.

Fanhua Shang, Kaiwen Zhou, Hongying Liu, James Cheng,
Ivor W. Tsang, Lijun Zhang, Dacheng Tao, and Licheng
Jiao. VR-SGD: A simple stochastic variance reduction
method for machine learning. IEEE Transactions on
Knowledge and Data Engineering, 32(1):188–202, 2020.

Fanhua Shang, Hua Huang, Jun Fan, Yuanyuan Liu, Hongy-
ing Liu, and Jianhui Liu. Asynchronous parallel, sparse
approximated svrg for high-dimensional machine learn-
ing. IEEE Transactions on Knowledge and Data Engi-
neering, 2021.

Shuang Song, Kamalika Chaudhuri, and Anand D. Sarwate.
Stochastic gradient descent with differentially private
updates. In 2013 IEEE Global Conference on Signal and
Information Processing, pages 245–248, 2013.

Bao Wang, Quanquan Gu, March Boedihardjo, Farzin
Barekat, and Stanley J. Osher. Dp-lssgd: A stochastic op-
timization method to lift the utility in privacy-preserving
erm. arXiv preprint arXiv:1906.12056, 2019.

Di Wang and Jinhui Xu. Principal component analysis in the
local differential privacy model. Theoretical Computer
Science, 809:296–312, 2020.

Di Wang, Minwei Ye, and Jinhui Xu. Differentially private
empirical risk minimization revisited: Faster and more
general. In Advances in Neural Information Processing
Systems 30, pages 2722–2731, 2017.

Yu-Xiang Wang, Jing Lei, and Stephen Fienberg. Learning
with differential privacy: stability, learnability and the
sufficiency and necessity of ERM principle. Journal of
Machine Learning Research, 17(1):6353–6392, 2016.

Xi Wu, Matthew Fredrikson, Wentao Wu, Somesh Jha, and
Jeffrey F. Naughton. Revisiting differentially private re-
gression: Lessons from learning theory and their conse-
quences. arXiv preprint arXiv:1512.06388, 2015.

Jiaqi Zhang, Kai Zheng, Wenlong Mou, and Liwei Wang. Ef-
ficient private ERM for smooth objectives. arXiv preprint
arXiv:1703.09947, 2017.

Kaiwen Zhou, Fanhua Shang, and James Cheng. A simple
stochastic variance reduced algorithm with fast conver-
gence rates. In Proceedings of International Conference
on Machine Learning, pages 5975–5984, 2018.

1119


	Introduction
	Differentially Private PCA
	Our Main Contributions

	Related Work
	Differentially Private PCA
	Differentially Private ERM

	Preliminaries and Definitions
	Notations
	Problem Setup
	Some Assumptions
	Differential Privacy

	Differentially Private Stochastic Algorithms for PCA
	Differentially private stochastic singular subspace computation via Gaussian mechanism
	Differentially private stochastic variance reduction singular subspace computation via Gaussian mechanism
	Comparison with Related work

	Numerical Experiments
	Data and Preprocessing
	Effect of Privacy on Different Algorithms
	Effect of Privacy on Classification

	Conclusions

