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A  COMPUTING PER-INPUT FISHER VIA BACKPROP

We work with the factorization F(t) L(t) L(t)T Recall that Lg)* = L(t* = J; wL(etB . Leveraging the linearity of

the derivative, we can avoid carrying out this matrix multiplication on J (¢ 1)” RN and instead perform the matrix
multiplication prior to computing the Jacobian via backpropagation. Deﬁnmg the function g(A, z, w) = Af(x, w), which
applies a linear transformation A to the output of the DNN, we have

2 g (LT, 2®, w*)
LT = : : (1)

T *
2 ga (LY, 20, w*)

where each row can be computed by backpropagation from the corresponding output dimension of 6, but ignoring the

gradients that flow through the dependence of Lg? T onw.

Alternatively, for models with large output dimensions, exactly computing the Fisher as outlined above can be expensive.
For such settings, it is possible to exploit the definition of the Fisher as an expectation over y ~ P(8), and turn to numerical
integration techniques such as Monte-Carlo estimation. In our experiments, we use the exact Fisher in both the offline and
online phases.

Below, we provide analytic forms of Lg,? for common parametric distributions:
* Fixed Diagonal Variance Gaussian. If P(0) = N (0, diag(o)), then

LY) = diag(o) ™"

* Bernoulli with Logit Parameter. If the output distribution is chosen to be a Bernoulli parameterized by the logit
0 € R, such that the probability of a positive outcome is p = 1/(1 4 exp(—80*)), then, ng) = p(1 — p). So,

Ly = /p(1 —p).

+ Categorical with Logits. If the output distribution is a categorical one parameterized by the logits @ € R<, such that
Py = F) = £y then.
Ly = diag(p)”* (I — 1ap").

where p is the vector of class probabilities according to 6*.
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B DERIVATION OF THE SIMPLIFIED UNCERTAINTY METRIC

If we substitute the eigenvalue decomposition of the dataset Fisher F.2. = Udiag(A)U” into the expression for the posterior
covariance (3), and apply the Woodbury identity, we obtain

* 2 o . A T
Yr=c¢ (I Udiag (/\4-1/(1\462))(] ), 2)

where the operations in the diagonal are applied elementwise.

Now, if we plug this expression into our expression for Unc, we obtain

Unc(af;(t)) =Tr (62 (I — Udiag ()\—i—l?(M"‘)) UT> FS,Z) 3)
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where we make use of the cyclic property of the trace and the fact that [|A||p = /Tr (AAT).

B.1 LOW-RANK APPROXIMATION AND ERROR BOUNDS

We notice that the elements of the diagonal Aﬁ/}# tend to 1 for \; >> 1/me?, and O for \; << 1/ame®. Therefore, only
the top eigenvectors of the dataset Fisher are relevant to this posterior. We see that assuming a fixed spectral decay rate of
FD., more eigenvectors are relevant if we choose €2 to be large (wider prior weights), or M to be large (more data points
collected). The number of eigenvectors we keep influences memory and compute requirements. So, alternatively, we can
choose a fixed rank of approximation k, and then choose €2 as appropriate.

Thus, we see that the dataset Fisher characterizes how the weights of the DNN are determined by the dataset. In fact, we
see that this posterior distribution on the weights has a wide variance in all directions expect in the directions of the top
eigenvectors of Fi5., for which \;/ (A; + (Me*)~!) is non-negligible.

We can characterize the error made by keeping only the top k eigenvalues and eigenvectors. Let AT = [/\tTop7

)‘—llj—ot]7 U =
[Ump Ubottom)> Where top selects the top k eigenvalues. If we define [Tn/c(:c) as using the low-rank approximation, we have

Unc(z®) = ¢2 —é

2
F

‘L“i

. Ato 0
dia AL R AR A
'g< Atop+1/<Mez>> tora” |



Figure 1: Example input images from the TaxiNet domain, in clear morning (left), and cloudy evening (right) conditions.

The error in the approximation can then be characterized as
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where the last step uses the identity that In(1 + z) > F5Vz > —1.

C FURTHER EXPERIMENTAL DISCUSSION

C.1 EXPERIMENTAL DOMAINS

We evaluate SCOD on several problem settings ranging from classification to regression. Here, we provide implementation
details for all the domains. For all results, we report 95% confidence bounds on AUROC and AUPR computed by
bootstrapping. We measure performance on a system with an AMD Ryzen 9 3950X 16-core CPU and an NVIDIA GeForce
RTX 2070 GPU.

Within regression, we consider the following datasets.

* Wine is a dataset from the UCI Machine Learning Repository, in which inputs are various chemical properties of a
wine, and labels are a scalar quality score of the wine. We train on the dataset of red wine quality and use the white
wine dataset as OoD. The network architecture is a 3-layer fully connected network with ReLU activations, and each
hidden layer having 100 units, yielding N = 11401. Here T = 604, k = 100. for SCOD. For Local Ensembles, we use
k = 20 using all M = 1000 datapoints to compute exact Hessian-vector products.

* Rotated MNIST, where the input is an MNIST digit 2, rotated by a certain angle, and the regression target is the
rotated angle. We consider two types of OoD data: the digit 2 rotated by angles outside the range seen at train time, as
well as inputs that are other digits from MNIST. The model starts with three conv layers with 3 x 3 filters with a stride
of 1. The number of channels in the conv layers is 16,32, and 32, with MaxPooling with a kernel size of 2 between each



conv layer. The result is flattened and then processed by a linear layer with hidden dimension of 10 before the linear
output layer, yielding a total of N = 16949. We use ReL U activations. Here we use 7" = 304, k¥ = 50 for SCOD. For
Local Ensembles, we use k£ = 50 eigenvectors and all M/ = 5000 datapoints to compute exact Hessian-vector products.

» TaxiNet which is a network architecture designed to process 3 x 260 x 300 RGB input images from a wing-mounted
camera and produce estimates of the aircraft’s distance in meters from the centerline of the runway as well as its
heading in radians relative to the runway, both of which can be used for downstream control during taxiing. It was
developed by Boeing as part of the DARPA Assured Autonomy progranﬂ The model is based on a ResNet18 backbone,
pre-trained on ImageNet, with the last layer replaced with a linear layer to the 2 output dimensions. This yields a total
of N = 11177538 weights. We fine-tune the network on data collected in the X-Plane IIE] flight simulator with clear
weather and at 9am. Here, we tested against realistic OoD data, by changing weather conditions to cloudy and changing
the time-of-day to the afternoon and evening, which change the degree to which shadows impact the scene. Figure|[T]
visualizes inputs under different conditions. Here M = 30, 000. SCOD processes all 30,000 datapoints in its sketch in
under 30 minutes. Here, T' = 46, k = 7, for SCOD, and for SCOD LL, T' = 124, k = 20. For Local Ensembles, we
use k = 14 eigenvectors of the Hessian.

For classification, we consider:

* BinaryMNIST. We consider a binary classification problem created by keeping only the digits 0 and 1 from MNIST.
As OoD data, we consider other MNIST digits, as well as FashionMNIST Xiao et al.|[2017]], a dataset of images of
clothing that is compatible with an MNIST architecture. The network architecture we use has a convolutional backbone
identical to that in the Rotated MNIST, with the flattened output of the conv layers processed directly by a linear output
layer to a scalar output, for a total of N = 14337 parameters. This output 0 is interpreted to be pre-sigmoid activation
for logistic regression; i.e. the output parametric distribution is a Bernoulli with the probability of success given by
sigmoid(@). Here, we use T' = 304, k = 50 for SCOD. For Local Ensembles, we use k = 50 eigenvectors of the
Hessian, computed with exact Hessian-vector products using all M = 5000 datapoints.

* MNIST. We also consider a categorical classification example formulated on MNIST, this time interpreting the output
of the network as logits mapped via a softmax to class probabilities. We train on 5-way classification on the digits
0-4. We use digits 5-9 as OoD data, along with FashionMNIST. The network architecture is identical to that of
BinaryMNIST, except here the output @ € R represents the logits such that the probability of each class is given
by softmax(@). This yields N = 15493. Here, we use T' = 604, k = 100 for SCOD. For Local Ensembles, we use
k = 100 eigenvectors.

* CIFARI10. To test on larger, more realistic inputs, we consider the CIFAR-10 dataset [Krizhevskyl 2009]]. Here, unlike
the previous experiments, we use a pre-trained DenseNet121 model from [Phan|[2021]], and do not train the model from
scratch, to highlight that SCOD can be applied to any pre-trained model. While this model is trained on all 10 classes
of CIFAR-10, we use only the first 5, and thus keep only the first 5 outputs as @ € R, and use them as the pre-softmax
logits. This yields a total of N = 6956426. We process M = 5000 images sampled from the first 5 classes of the train
split of CIFARI10, and use the val split as in-distribution examples to test on. For the experiments in the body of the
paper, we use a random selection of data from three datasets:

1. TinyImageNe a scaled down version of the ImageNet [Deng et al.| [2009] dataset, keeping only 200 classes, and
resizing inputs to 32 x 32 RGB images.

2. LSUN [Yu et al.,|2015]], scaled and cropped to match the size of CIFAR 10 images.

3. Street View House Numbers (SVHN), pictures of digits from house numbers cropped to the same size [Netzer
et al.,[2011].

The hyperparameters for this experiment are 7' = 76, k = 12 for SCOD, and 7" = 184, k = 30 for SCOD (LL). For
Local Ensembles, we use k = 20 eigenvectors. In the tests in Appendix[C.4] we also consider OoD data from the 5
held-out classes from CIFAR-10, and investigate each OoD dataset independently.

C.2 BASELINES

We outline details of the implementation of each baseline here:

"nttps://www.darpa.mil/program/assured-autonomy
https://www.x—-plane.com/
*http://cs231n.stanford.edu/tiny-imagenet-200.zip
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Figure 2: AUROC on RotatedMNIST as a function of prior scale ¢2.

* Local Ensembles. We reimplement this baseline in PyTorch, using the pytorch-hessian-eigenthings library
[Golmant et al., 2018]] to compute the top eigenspace of the Hessian. We implement Local Ensembles using a
stochastic minibatch estimator for the Hessian-vector product for all domains except for Wine and the MNIST-based
domains, where the models are small enough that using the full dataset to compute the Hessian vector product remains
computationally feasible. At test time, we use the prediction gradient to compute the extrapolation score, while for
multivariate regression and classification problems, we use the loss gradient, sampling possible outputs, computing the
gradient on each, projecting it, and then aggregating by taking the minimum over the resulting scores.

e KFAC Laplace. We use the KFAC Laplace implementation found at https://github.com/DLR-RM/
curvaturel We use 30 samples from the posterior prediction to estimate the Fisher, on a batch size of 32. We
found that in many cases, choosing default values for the norm and scale hyperparameters would lead to singular
matrices making. For each experiment, we performed a coarse sweep over these hyperparameters, and chose the best
performing set on a validation set to use for the results. Indeed, especially on the classification examples, we found that
we required large values of the norm parameter to obtain accurate predictions, which regularizes the posterior towards
a delta distribution centered around w*.

* Deep Ensemble. We train K = 5 models of identical architecture from random initializations using SGD on the same
dataset. In all domains where Deep Ensembles are used, the first member of the ensemble is the same model as in the
post-training and Naive approaches.

C.3 SENSITIVITY TO SCALE OF PRIOR

We test the impact of the prior scale €2 on the performance of SCOD by performing a sweep on the Rotated MNIST domain,
with 7' = 604, k& = 100. The results, shown in Figure[2] suggest that this has little impact on the performance, unless it is set
to be very small corresponding to very tight prior on the weights. This is unsurprising, as, apart from linearly changing the
scale of our metric, the term only enters in the diagonal matrix, and has a significant impact if 1/(M¢?) is of comparable
magnitude to the eigenvalues of the Fisher. This is rarely the case for the first k& eigenvalues of the Fisher, especially when
M is large (here, M = 5000).

C.4 LIMITING SCOD TO THE LAST LAYERS

To explore the impact of only considering the last layers of a network, we consider restricting SCOD to different subsets of
the layers of the DenseNet121 model used in the CIFAR experiments. We hold the sketching parameters constant, and only
vary how much of the network we consider. We denote this by the fraction after LL. For example, LL 0.5 means we restrict
SCOD to the last 50% of the network. With this notation, LL 1.0 represents considering the full network, which is simply
SCOD. At the other extreme, we consider restricting our analysis to just the last linear layer of the model, which we denote
“SCOD (only linear).” We consider performance with several different OoD datasets. Figure [3|shows the results. The first
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Figure 3: Impact of restricting analysis on the last layers of a network. We see that depending on the OoD dataset, there is a
different optimal choice for which layers to consider.
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Figure 4: Error-based OoD detection on TaxiNet, where inputs where the DNN made an error greater than 0.5 in Mahalanobis
distance are deemed to be out-of-distribution, i.e., out of the DNN’s domain of competency.

OoD dataset is simply the other classes of CIFAR10 which we did not use to create the sketch. We see that here, using just
the last linear layer performs best. Indeed, as the network was trained on all 10 classes, it is not surprising that only the last
layer analysis provides any meaningful separation between the classes. Including the earlier layers “dilutes” this signal,
and, for a fixed sketch budget, considering more layers leads to worse performance. On SVHN and TinylmageNet, we see
that the optimal choice of the layers to consider is somewhere in between the two extremes. Here, it is possible that as we
increase the fraction of the network that we analyze, we first gain the benefits of the information stored in the last layers,
and then start to suffer the consequences of approximation error in the sketching, which depends on the size of the original
matrix. We also visualize on this plot the performance of the version of SCOD (LL) used to produce the results in the body
of the paper. As is evident, we did not use the results of this sweep to optimally choose the number of layers to consider for
the experiments in the body.

C.5 ERROR-BASED OOD DETECTION

In Figure [3] we measure how informative an uncertainty measure is with respect to how well it can classify examples that
come from an altogether different dataset as anomalous. However, ideally, we would like this measure of uncertainty to also
correspond to the network’s own accuracy. To test this, we use the TaxiNet domain as a test case, where we construct a
dataset which includes images from all day, morning and afternoon, on a clear day. The training dataset consists only of
images from the morning, so this all-day dataset shares some support with the training dataset. Moreover, the differences in
these inputs are quite subtle, as the images remain brightly lit, though some shadows appeare in the afternoon. We choose an
error threshold, and consider inputs for which the network has an error (measured in Mahalanobis distance) less than this
threshold to be “in-distribution” and those where the network has a high error to be “out-of-distribution.”

Figure [ shows the results of this experiment. We see that even in this setup, SCOD produces very high AUROC scores,
similar to Deep Ensembles, and outperforms all post-training baselines. On this domain, we find that applying SCOD to a
single pre-trained DNN almost perfectly characterizes the DNNs domain of competency.
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Domain Method Runtime (ms) AUROC AUPR
SCOD 1.26340.009  0.968+0.002  0.96740.002
SCOD (LL) 1.03340.006  0.97040.001  0.96940.001
Wine (rearession) Deep Ensemble 2.04540.005  0.88140.004  0.907+0.003
& Local Ensemble 0.99740.007  0.958+0.002  0.955+0.003
KFAC Laplace 6.05440.019  0.95740.002  0.955-0.002
Naive 0.24440.002  0.5004£0.000  0.75040.000
SCOD 1.97140.011  0.89240.003  0.896-0.003
SCOD (LL) 1.20240.007  0.9424+0.002  0.93940.002
. Deep Ensemble 3.764+0.008  0.721£0.005 0.753+£0.005
Rotated MNIST (regression) Local Ensemble 1.74140.011  0.60140.005  0.528-0.004
KFAC Laplace 10.93440.019  0.7040.005  0.66740.005
Naive 0.47540.004  0.50040.000  0.75040.000
SCOD 17.85740.020  0.9944-0.000  0.993+0.000
SCOD (LL) 7.30040.009  1.00040.000  1.00040.000
TaxiNet (regression) Deep Ensemble 29.960+0.018  1.00040.000  1.00040.000
& Local Ensemble  13.735+0.025 0.91240.003  0.925+0.002
KFAC Laplace  103.629+2.466  0.993+0.000  0.993-0.000
Naive 2.04040.006  0.50040.000  0.750+0.000
SCOD 1.75240.011  0.98440.001  0.983-0.001
SCOD (LL) 1.266-0.008  0.98440.001  0.9830.001
. o . . Deep Ensemble 3.17140.009  0.98140.001  0.981-0.001
Binary MNIST (classification /logistic) ' o g cemble 3.10940.009  0.979+0.001  0.97740.001
KFAC Laplace 9.34640.069  0.976+0.001  0.97540.002
Naive 0.46340.003  0.97640.001  0.974=0.002
SCOD 6.04140.007  0.963+0.002  0.96440.002
SCOD (LL) 4.34140.009  0.96240.002  0.963+0.002
L Deep Ensemble 3.10340.010  0.966-0.001  0.97040.001
MNIST (classification / softmax Local Ensemble 6.30340.009  0.94940.002  0.946-0.003
KFAC Laplace 9.59240.016  0.957+0.002  0.960+0.002
Naive 0.45840.003  0.957+0.002  0.96140.002
SCOD 141.87440.249  0.92740.002  0.872+0.005
SCOD (LL) 57.99340.100  0.950+0.002  0.93040.003
CIFAR10 (classification / softmax) Local Ensembles  148.34740.253  0.911+£0.003  0.84140.005
KFAC Laplace  836.307+£0.779  0.92940.003  0.912-0.005
Naive 10.23540.016  0.92840.003  0.912+0.004

Table 1: Full Numerical Results. For each domain, we apply each method to output an uncertainty score on both in and
out-of-distribution inputs. We evaluate the performance in terms of runtime per example, and the area under the ROC curve
(AUROC) and the area under the precision-recall curve (AUPR). For the latter two metrics, 95% confidence bounds are
produced by bootstrapping.
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