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1 JACOBI ITERATIONS

The general objective of G-SSL with 2 classes and labels being the 2 dimensional standard basis {e1, e2} as provided in (3)
can be rewritten as

min
Y

Tr
(
S(Y − Y ′)(Y − Y ′)T

)
+ γ1Tr

(
Y TLY

)
+ γ2Tr

(
(Y − λu)(Y − λu)T

)
− γ3Tr

(
Y TWY

)
(1)

Y ∈ {0, 1}N×2 and Y 12 = 1n and Y T 1n =
n

2
12

where W = 2Y ′Y ′
T − 1L1

T
L − S, u = u1ne

T
1 + (1 − u)1neT2 ; u ∈ R is the prior distribution over the labels. Upon

differentiating the objective in (1) we get S(Y − Y ′) + γ1LY + γ2(Y − λu)− γ3WY = 0. Now by Jacobi method, we get
(S+ γ1D+ γ2I)Y = Y ′+ γ2u+(γ1A+ γ3W )Y i.e., all the diagonal matrices are in the LHS and also we use SY ′ = Y ′.
Therefore we get the following fixed point iterations

Y t+1
vl =

Y ′vl + γ1
∑

(v,j)∈E AvjY
t
jl + γ2λuvl + γ3

∑
j 6=vWvjY

t
jl

Svv + γ1
∑

(i,j)∈E Aij + γ2
(2)

where v is the node index and l is the label index. Now the condition for Jacobi convergence is that the matrix S + γ1L+
γ2I − γ3W should be strictly diagonally dominant. Using the definition of W we see that γ2 > γ3|n1 − n2| or γ2 > γ3nl
where n1, n2 are the sizes of classes labelled e1 and e2 respectively.

2 PROOFS

2.1 PROOF OF THEOREM 1

Proof. Let Ŷ = argminY Q(Y ) (the argmin is taken over the domain of Y as given in (1)) and we know that Q(Ŷ ) ≤
Q(Y ∗) Therefore it suffices to show that Q(Y ∗) < Q(Y ) holds with high probability, for all Y 6= Y ∗ and with Y having
more than s mistakes. First let us rewrite Q as follows

Q(Y ) = Tr
(
S(Y − Y ∗)(Y − Y ∗)T

)
+ γ1Tr

(
Y TLY

)
+ γ2Tr

(
(Y − λu)(Y − λu)T

)
− γ3Tr

(
Y TWY

)
= 〈S, (Y − Y ∗)(Y − Y ∗)T 〉 − 〈W ′, Y Y T 〉+ γ2(n(1− λ) + λ2)

where S is a diagonal matrix such that Sii = 1 if i ∈ L and Sii = 0 if i 6∈ L, and W ′ = γ1(A−D)+ γ3W . Let us consider

Q(Y )−Q(Y ∗) = 〈S, (Y − Y ∗)(Y − Y ∗)T 〉+ 〈W ′, Y Y T − Y ∗Y ∗T 〉
= 〈W ′ − E[W ′], Y ∗Y ∗T − Y Y T 〉+ 〈E[W ], Y ∗Y ∗T − Y Y T 〉

+ 〈S − E[S], (Y − Y ∗)(Y − Y ∗)T 〉+ 〈E[S], (Y − Y ∗)(Y − Y ∗)T 〉 (3)
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We observe that, E[W ′] = γ1

(
q1n1

T
n + (p− q)Y ∗Y ∗T − (pn+qn(K−1))

K I
)

+ γ3ε
2(Y ∗Y ∗T − I). Let d(Y ) =

〈Y ∗Y ∗T , Y ∗Y ∗T − Y Y T 〉 and we define m(Y ) = 〈I, (Y − Y ∗)(Y − Y ∗)T 〉 i.e., the number of mismatches/mistakes
between Y and Y ∗. Also 〈I, Y ∗Y ∗T − Y Y T 〉 = 〈1n1Tn , Y ∗Y ∗T − Y Y T 〉 = 0. Therefore we can write (3) as

Q(Y )−Q(Y ∗) = 〈W ′ − E[W ′], Y ∗Y ∗T − Y Y T 〉+ 〈S − E[S], (Y − Y ∗)(Y − Y ∗)T 〉
+ (γ1(p− q) + γ3ε

2)d(Y ) + εm(Y )

First, we have 〈D − E [D] , Y ∗Y ∗T − Y Y T 〉 = 0, next we note that Aij |X − E [Aij |X] is a Bernoulli random variable
with expectation 0 and variance bounded by 1

4 . Similarly S′ii|X −E [S′ii|X] is a Bernoulli random variable with expectation
0 and variance bounded by 1

4 . Similarly Y ′i is a Bernoulli random variable with expectation 0 and variance bounded by 1
4

independent of X . So we bound the variance as

V ar [Q(y∗)−Q(y)] = 4
∑
i<j

V ar
[
W ′ij |X

]
(Y ∗Ti Y ∗j )

2
(
Y ∗Ti Y ∗j − Y Ti Yj

)2
+
∑
i

V ar [Sii] ||Yi − Y ∗i ||22

= 4
∑
i,j

(
γ21V ar [Aij |X] + γ23V ar

[
Y ′ij |X

])
× (Y ∗Ti Y ∗j )

2
(
Y ∗Ti Y ∗j − Y Ti Yj

)2
+
∑
i

||Yi − Y ∗i ||22

≤ (γ21 + γ23)d(Y ) +
m(y)

4
(4)

Let A(Y ) = 〈W ′−E[W ′], Y ∗Y ∗T −Y Y T 〉+ 〈S−E[S], (Y −Y ∗)T (Y −Y ∗)〉 and B(Y ) = (γ1(p− q)+ γ3ε
2
l )d(Y )+

εlm(Y ). Now it is easy to see if A(Y ) > −B(Y ) then Q(Y )−Q(Y ∗) > 0. By applying LCI Bernstein’s inequality, with
M = 2, and using (4) we have

P (A(Y ) ≤ −B(Y )) ≤ exp

(
− B(Y )2

2(γ21 + γ23)d(Y ) + m(Y )
2 + 4

3B(Y )

)

≤ exp

−
(
γ1(p− q) + γ3ε

2
l + εl

m(Y )
d(Y )

)2
d(Y )

c1 + ( 43εl +
1
2 )
m(Y )
d(Y )

 (5)

where c1 = 2γ1(γ1+
2
3 (p− q))+2γ3(γ3+

2
3ε

2
l ). Now for this to be valid, we require B(Y ) > 0 for all Y 6= Y ∗. Therefore,

we observe that in the case εl = 0, it is required that γ1 > 0. Similarly if p = q, then γ3 > 0 must hold.

m(Ŷ) 6= n. We first point out that we restrict s + 1 ≤ m(Y ) ≤ n. In the case where there are no revealed labels or
εl = 0 (where we are interested in only recovering the partition), m(Y ) ≤ n

2 (because we can always flip labels). However
we see that if m(Ŷ ) = n then Ŷ = 1 − Y ∗. For this value of Ŷ , in the case where least one label is revealed, we find
Q(Ŷ )−Q(Y ∗) ≥ 1, thereby we get a contradiction. Hence m(Y ) ≤ n− 1.

Simplifying the proof. Instead of relying on Lemma 1.1 from [Chen and Xu, 2014], we provide an alternate simpler proof.
For the un-revealed case, we swap the labels and we consider the labeling (of the two ways possible) which results in the
minimum m(Y ). Now we write d(Y ) =

∑
i,j d(Y )ij , where d(Y )ij = (Y ∗Ti Y ∗j )

(
Y ∗Ti Y ∗j − Y Ti Yj

)
and d(Y )ij can only

take values 0 and 1. Thus in the case Y ∗i = Y ∗j = e1, if d(Y )ij = 1 then Yi = e1, Yj = e2 and in the case Y ∗i = Y ∗j = e2,
if d(Y )ij = 1 then Yi = e2, Yj = e1. Therefore, we see that

d(Y ) = m(Y )(n−m(Y )) (6)

Since s < m(Y ) < n, in fact because of balanced classes m(Y ) is always even, thereby d(Y ) > 0 and similarly for
0 < m(Y ) < n, d(Y ) attains minimum value n− 1. Similarly we see that the maximum value of d(Y ) is n2

4 . We also note
for any integer a, if 0 ≤ a ≤ n then 2

n ≥
min(a,n−a)
a(n−a) . Therefore we get the following bound

d(Y ) ≥ n

2
min (m(Y ), n−m(Y )) and

1

n− s
≤ m(y)

d(Y )
≤ 1

2
(7)

Now since we require B(Y ) > 0 for all Y 6= Y ∗ and Y being balanced, we can use (7) to obtain the following sufficient
condition

(p− q) + ε2l +
εl

n− s
> 0 (8)



Using (7) in (5), we get the following

P (A(Y ) ≤ −B(Y )) ≤ exp

−
(
c2 +

εl
n−s

)2
n
2 min (m(Y ), n−m(Y ))

c1 +
4
3εl +

1
2

 (9)

where c1 = 2γ1(γ1 +
2
3 (p− q)) + 2γ3(γ3 +

2
3ε

2
l ) (same as in (5)) and c2 = γ1(p− q) + γ3ε

2
l .

Using (6) in (9), we have

P (A(Y ) ≤ −B(Y )) ≤ exp
(
−6(1− s

n
)min(m(Y ), n−m(Y )) log n

)
(10)

Union Bound Now to prove this holds for all Y 6= Y ∗.

P

(
∃Y

∣∣∣∣∣m(Y ) > s ∧A(Y ) ≤ −B(Y )

)
=

∑
m(Y )>s

P (A(Y ) ≤ −B(Y ))

≤
n−1∑
t=s+1

|{m(Y ) = t}| exp
(
−6(1− s

n
)min(t, n− t) log n

)
(from (10))

=

n−1∑
t=s+1

(
n

t

)
exp

(
−6(1− s

n
)min(t, n− t) log n

)
≤

n−1∑
t=s+1

nmin(t,n−t)n−3min(t,n−t)

(
from Lemma 1 and since s <

n

2

)
≤

n−1∑
t=s+1

n−2min(t,n−t)

≤ 1

n2

n−1∑
t=s+1

1

≤ 1

n

Lemma 1.
(
n
k

)
≤ nmin(k,n−k)

Proof. (
n

k

)
≤ nk ≤ nn−k

=⇒
(
n

k

)
≤ nmin(k,n−k) for 1 ≤ k ≤ n

2(
n

k

)
=

(
n

n− k

)
≤ nn−k ≤ nk

=⇒
(
n

k

)
≤ nmin(k,n−k) for

n

2
≤ k ≤ n



LCI Bernstein Inequality We restate from [Ke and Honorio, 2019]. Consider a sequence of {xi} which is LCI given Y ,
with E [xi|Y ] = 0 with V ar [xi|Y ] ≤ ν2 for all Y and |xi| ≤M (almost surely). For any ε > 0

P

(∑
i

xi ≥ ε

)
≤ exp

(
− ε2/2∑

i ν
2 +Mε/3

)
(11)

3 ESTABLISHING THE GENERALIZATION HIERARCHY AMONG GLM, MAG AND
SBM IN THE SYMMETRIC 2-COMMUNITY SETTING

In this section we establish a generalization hierarchy among three network generative models: Graph Latent Model (GLM)
described by [Ke and Honorio, 2019], Multiplicative Attributed Graph (MAG) model described by [Kim and Leskovec,
2012] and Stochastic Block Model (SBM) described by [Abbe et al., 2015] in the symmetric 2-community setting. The
method we follow here is to use the terminology of the most general model, viz. GLM to describe an equivalent of the
MAG model in a restricted setting of the model parameters, and then further restrict the parameters of this equivalent MAG
model to describe an equivalent of SBM. This clearly shows that GLM subsumes MAG, which in turn subsumes SBM in the
symmetric 2-community setting.

3.1 REDUCING SYMMETRIC 2-COMMUNITY GLM TO SYMMETRIC 2-COMMUNITY MAG

We briefly restate a concise version of the definition of GLM in the symmetric 2-community setting.

Definition 1 (Symmetric 2-community GLM). Let n be a positive even integer, d ∈ Z+, f : Rd × Rd → [0, 1] such
that f(x, x′) = f(x′, x), and Pe1 , Pe2 be two distributions with support on Rd where e1 and e2 denote the 2-dimensional
standard basis vectors. In a GLM with parameters (n, d, f, Pe1 , Pe2), the community label vector Y ∗ is an n×2-dimensional
vector from Y = {Y : Y ∈ {0, 1}n×2, Y ∗T 1n = n

2 12} (i.e. communities are balanced) such that the community label of
vertex u ∈ [n] is Y ∗u ∈ {e1, e2}. X ∈ Rn×d is a random matrix such that for each i ∈ [n], xi ∈ Rd is randomly generated
from PY ∗

i
. A random graph G is generated as follows. For each pair of vertices u, v ∈ [n], (u, v) is an edge of G with

probability f(xu, xv).

In the context of [Kim and Leskovec, 2012], Multiplicative Attributed Graph (MAG) is defined as follows:

Definition 2 (Symmetric 2-community MAG). In a graph having n nodes (where n is a positive even integer), let each
node u ∈ [n] in a graph have l attributes denoted by ai(u), i ∈ [l], and each attribute has cardinality ci, i ∈ [l]. Let
there be l ‘affinity matrices’ θi ∈ [0, 1]ci×ci , i ∈ [l] such that the probability of an edge between two nodes u and v of the
graph is given by P [u, v] =

∏l
i=1 θi[ai(u), ai(v)] (θi need not be stochastic). We impose the additional constraint that the

nodes belong to two balanced communities labeled e1 and e2 which denote the 2-dimensional standard basis vectors. The
community label vector Y ∗ is an n× 2-dimensional vector from Y = {Y : Y ∈ {0, 1}n×2, Y ∗T 1n = n

2 12} such that the
community label of node u is Y ∗u ∈ {e1, e2}.

Let k = maxi ci be the maximum cardinality of any attribute in the graph. For the sake of reducing GLM to the Multiplicative
Attributed Graph (MAG) model as defined by [Kim and Leskovec, 2012], we must constrain the domain X of X to be
[k]n×d which is evidently a subset of Rn×d which is normally used for GLM. This represents a graph with n nodes, each of
which has d attributes with at most k values each. Let us consider d fixed k-dimensional symmetric matrices θi ∈ [0, 1]k×k,
i ∈ [d]. If the ith attribute has cardinality ci < k, then θi[a, b] = 0 ∀a, b ∈ {ci + 1, ci + 2, . . . , k}. Using these θi as lookup
tables, let us define the homophily function f of GLM as f : [k]d× [k]d → [0, 1] such that for any two vectors xu, xv ∈ [k]d,

f(xu, xv) =

d∏
i=1

θi[xui, xvi] (12)



Since θi is symmetric ∀i, we see that

f(xv, xu) =

d∏
i=1

θi[xvi, xui] (13)

=

d∏
i=1

θi[xui, xvi] (14)

= f(xu, xv) (15)

so the symmetricity requirement of f is satisfied. Then for each pair of vertices u, v ∈ [n], (u, v) is an edge of G with
probability f(xu, xv) =

∏d
i=1 θi[xui, xvi]. This reduces the symmetric 2-community GLM to a MAG with two symmetric

communities (with n/2 nodes in each community) with the community assignment given by the vector Y ∗.

3.2 REDUCING SYMMETRIC 2-COMMUNITY MAG TO SYMMETRIC 2-COMMUNITY SBM

Let us provide a brief definition of symmetric 2-community SBM.

Definition 3 (Symmetric 2-community SBM). In a graph having n nodes (where n is a positive even integer), let each
node u ∈ [n] have a community label Y ∗u ∈ {e1, e2} where e1 and e2 denote the 2-dimensional standard basis vectors. The
community label vector Y ∗ is therefore an n× 2-dimensional vector from Y = {Y : Y ∈ {0, 1}n×2, Y ∗T 1n = n

2 12} i.e.
the communities are balanced. Let Q ∈ [0, 1]2×2 be a symmetric matrix (called the assortativity matrix) such that Qi,j
denotes the probability of an edge between any two nodes belonging to communities labeled ei and ej . The probability of an
edge between two nodes u and v of the graph is therefore given by P [u, v] = Y ∗Tu QY ∗v .

For the sake of reducing the GLM-equivalent of the symmetric 2-community MAG as defined above further to a symmetric
2-community SBM, we must fix k = 2 and d = 1 and restrict the domain X of X further to {1, 2}n (actually {1, 2}n×1
since d = 1, but we use scalar notation for simplicity) where xi = 1 if Y ∗i = e1 and xi = 2 if Y ∗i = e2. The domain of X
for SBM, X = {1, 2}n is clearly a subset of the domain [k]n×d as defined for X in the context of MAG.

Then since d = 1, we have a single matrix θ ∈ [0, 1]2×2. Let us define f : {1, 2} × {1, 2} → [0, 1] such that

f(xu, xv) = θ[xu, xv] (16)

Then for each pair of vertices u, v ∈ [n], (u, v) is an edge of G with probability f(xu, xv) = θ[xu, xv]. This reduces the
symmetric 2-community MAG model to an SBM with two symmetric communities (labeled e1 and e2 as per the community
label vector Y ∗, or equivalently 1, 2 as per the node attribute values X , with n/2 nodes in each community) with the
community assignment given by the vector Y ∗ or the node attribute values X . The assortativity matrix Q of the SBM is
given by θ which is by definition symmetric.
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