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Abstract

Graph-based semi-supervised learning (G-SSL) al-
gorithms have witnessed rapid development and
widespread usage across a variety of applications
in recent years. However, the theoretical charac-
terisation of the efficacy of such algorithms has
remained an under-explored area. We introduce a
novel algorithm for G-SSL, CSX, whose objective
function extends those of Label Propagation and
Expander, two popular G-SSL algorithms. We pro-
vide data-dependent generalisation error bounds
for all three aforementioned algorithms when they
are applied to graphs drawn from a partially la-
belled extension of a versatile latent space graph
generative model. The bounds we obtain enable
us to characterise the predictive performance as
measured by accuracy in terms of homophily and
label quantity. Building on this we develop a key
notion of GLM-safety which enables us to com-
pare G-SSL algorithms on the basis of the range of
graphs on which they obtain a guaranteed accuracy.
We show that the proposed algorithm CSX has
a better GLM-safety profile than Label Propaga-
tion and Expander while achieving comparable or
better accuracy on synthetic as well as real-world
benchmark networks.

1 INTRODUCTION

With the volume of data growing exponentially, it is becom-
ing increasingly more difficult to obtain sufficient quantities
of annotated data (required to develop data-driven tech-
niques) due to the cost associated with labelling by human
annotators. This makes semi-supervised learning (SSL) an
attractive option for many practical purposes. In particular,
graph-based semi-supervised learning (G-SSL) has received
significant attention in the recent past due to its convexity,

scalability and effectiveness [Chong et al., 2020]. A flurry
of algorithms have been proposed to efficiently execute G-
SSL tasks e.g. Label Propagation (LP) [Bengio et al., 2006],
Modified Adsorption [Talukdar and Crammer, 2009], Ex-
pander [Ravi and Diao, 2016] etc. of which LP has long
remained the workhorse of choice.

Despite application-specific developments, none of the
aforementioned algorithms provides a guarantee on the min-
imum accuracy when applied on a particular graph. If a
G-SSL algorithm is applied on an inappropriate graph, the
accuracy of the algorithm suffers tremendously. This aspect
of G-SSL is termed in literature [Gan et al., 2018] as safety,
as it so happens the popular algorithms mostly perform
well on the average but without a guarantee of safety may
commit errors which may prove to be costly for any down-
stream applications using the label information. We also
note that in SSL literature [Wang and Chen, 2013, Li and
Liang, 2019], the concept of “safety” is interpreted in the
general context of semi-supervised learning as the tendency
of the algorithm’s performance to degenerate with increas-
ing quantities of unlabelled data. These notions of safety
are qualitative in nature as they lack a means of rigorously
determining whether an algorithm is “safer” than another.

There have been some limited works in the last years ana-
lyzing the theoretical efficacy of G-SSL [Yamaguchi and
Hayashi, 2017, Saha et al., 2020]. [Yamaguchi and Hayashi,
2017] gives a qualitative notion of ‘success’ of LP on graphs
generated by a partially labelled extension of the Stochastic
Block Model (SBM) [Pearl, 1982] (called PLSBM), while
[Saha et al., 2020] moves one step ahead and gives neces-
sary conditions on graph structure, label volume and quality
under which LP achieves a guaranteed accuracy on PLSBM
graphs. To the best of our knowledge there are no further
works in this direction. From these studies it is not clear how
to analyse G-SSL algorithms other than LP and extend the
analysis beyond SBM which is a restricted family of graphs.
Thus while developing guarantees on arbitrary real-world
graphs may be difficult, efforts need to be given to develop
guarantees on a wider section of latent graph models.
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In this chapter we provide a theoretical characterisation of
LP and Expander [Ravi and Diao, 2016] as a function of
the graph structure, degree of homophily and the quantity
of labels (see Table 1) on a much wider family of graphs,
the Graph Latent Model (GLM) [Ke and Honorio, 2019]
extended for semi-supervised settings (refer to Definition
1), which has been shown to encompass a wide family of
graphs like the Latent Space Model [Newman et al., 2002,
Goldenberg et al., 2010], and also is more general than SBM.
A theoretical (statistical and computational) characterisation
of GLM models was studied by [Ke and Honorio, 2019] in
an unsupervised setting, however to the best of our knowl-
edge, the GLM or its related/special forms of latent graphs
have been hardly studied from a theoretical perspective in a
semi-supervised setting.

Our analysis enables us to introduce a novel theoretically
motivated criterion of GLM-safety (refer to Definition 2) to
compare any two G-SSL algorithms possessing a theoreti-
cal characterisation on GLM. This concept of GLM-safety
is distinct from the prevalent notion of “safety” in semi-
supervised learning in general [Wang and Chen, 2013, Li
and Liang, 2019] and G-SSL in particular [Gan et al., 2018]
in that it is quantitative and provides a metric which affords
direct comparison of different algorithms. Furthermore, in-
spired by this analysis we propose a novel scalable G-SSL
algorithm - Class Sensitive Expander (CSX) that boasts a
better GLM-safety profile than either LP or Expander. The
objective function of CSX enjoys an intuitive explanation:
the revealed labels form must-have and cannot-have rela-
tionships amongst the pairs of instances – an idea that has
been explored in the field of Constrained Spectral Cluster-
ing [Wang and Davidson, 2010b] and its relationship with
LP variants [Wang et al., 2012] (refer to Equation (3)). The
must-have relationship is exhibited between nodes whose
labels are revealed to be of the same class, while the cannot-
have relationship is exhibited between nodes whose labels
are revealed to be of different classes.

The performance of CSX in terms of GLM-safety is char-
acterised under the proposed theoretical framework in the
form of generalization bounds/sufficient conditions on the
level of accuracy that hold with high probability. The bounds
make use of recent LCI concentration inequalities presented
in [Ke and Honorio, 2019], where it was applied only to
exact recovery (100% accuracy). In contrast, we furnish
generalization bounds for any accuracy level.

We show that CSX is provably GLM-safer than LP [Ben-
gio et al., 2006] and Expander [Ravi and Diao, 2016] (see
Theorems 1 and 2) and discuss how the GLM-safety profile
of CSX gets better with increase in label quantity and is
retained even in the case of large graphs unlike LP and Ex-
pander. The theoretical characterisation of CSX developed
herein is paired with thorough empirical evidences: with
input instances sampled from GLM [Ke and Honorio, 2019]
to support the proposed theory, as well as real-world bench-

mark networks. We show that compared to LP/Expander,
the enhanced GLM-safety profile of CSX can translate to su-
perior performance in some low-homophily scenarios, and
at least comparable performance elsewhere1.

2 GRAPH-BASED SEMI-SUPERVISED
LEARNING

In this section, we review the problem setting of G-SSL
and the propagation-style/message passing algorithms that
are widely employed therein. We describe fixed point iter-
ations, which are typical of propagation style algorithms,
and which update the current node’s estimate by a weighted
average of its ‘related’ nodes’ estimates until convergence.
We conclude by introducing CSX which extends the existing
G-SSL algorithms and enhances the safety profile.

G-SSL setting. Let (A, Y ′) denote a partially-labelled
graph G([n], E) with n nodes and E being the set of edges.
The nodes of the graph carry labels, provided by the la-
bel matrix Y ∗ ∈ {0, 1}n×2. A ∈ {0, 1}n×n denotes the
adjacency matrix, where the entry in the ith row and jth
column, Aij = 1 indicates the presence of an edge be-
tween nodes i and j (we assume that there are no self-
loops: Aii = 0,∀i ∈ [n]). The ith row of the label matrix,
Yi ∈ {e1, e2} provides the label of node i ∈ [n], where
e1, e2 are the 2 dimensional standard basis vectors repre-
senting the two classes. The partially revealed labels are
provided by Y ′ ∈ {0, 1}n×2: if Y ′i = 0 then the node i’s la-
bel is not revealed or the node is unlabelled and if Y ′i = Y ∗i
then the node i’s label is revealed or the node is labelled.
Let nl number of nodes carry the binary labels and typically
nl � n. Let L = {i|i ∈ [n]∧Y ′i 6= 0} be the set of labeled
indices and we define S ∈ Rn×n, Sii = 1 if i ∈ L and
Sij = 0 otherwise.

LP and Expander. The goal of any G-SSL algorithm is
to estimate Y ∗. We first present Expander [Ravi and Diao,
2016] which uses the following fixed-point iterative updates
for the (t+ 1)th iteration of the estimate Y ∈ Rn×2, with
the matrix entry Yvl for node v and label index l and t ≥ 0.

Y t+1
vl =

Y ′vl + γ1
∑

(v,j)∈E
AvjY

t
jl + γ2λuvl

Svv + γ1
∑

(v,j)∈E
Avj + γ2

(1)

The initialization, Y 0 = S 1
21n1T2 +Y ′ where 1d represents

d dimensional all ones vector. This is because the estimate
Ŷ is viewed as a probability distribution. u = u1ne

T
1 +(1−

u)1ne
T
2 where u ∈ [0, 1] is the prior distribution over the

labels and typically a uniform prior with u = 1
2 is used. The

parameter λ ∈ {0, 1} is used to employ either L2 or uniform
prior regularization. The classic Label Propagation [Bengio
et al., 2006] is obtained as a special case of Expander fixed-

1Our code and data are available at http://bit.ly/PLGLMUAI21
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point iterations (1) with λ = 0 i.e., no prior distribution over
the labels is used and the initialization is typically Y 0 = Y ′.

CSX. In case of LP-like algorithms, for a labelled node i, γ1
is typically set to a low value, which causes the contribution
from its neighbouring nodes to drop, so that Ŷi does not
vary much from the revealed label Y ′i . However the con-
tribution from all the neighbouring nodes is of the same
weight. Now, we modify the labelled node update twofold
i.e., firstly we allow all the labelled nodes to contribute to
the update and more importantly assign different weights to
the contribution of labelled nodes i.e., labelled nodes that
have the same label as the node to be updated contribute pos-
itively whereas the labelled nodes having a different label
contribute negatively.

Y t+1
vl =

Y ′vl + γ1
∑

(v,j)∈E
AvjY

t
jl + γ2λuvl + γ3

∑
j 6=v

WvjY
t
jl

Svv + γ1
∑

(v,j)∈E
Avj + γ2

(2)
‘Link’ penalty. The new term in the fixed point iterations is
W , where W = 2Y ′Y ′

T − 1L1TL − S with 1L ∈ {0, 1}n
having ones at indices corresponding to L. We observe,
Wij = 0 if any of the nodes i or j is unlabeled, therefore it
does not affect the unlabeled nodes. More importantly, this
term captures label/class sensitive edge conditions, because
Wij = 1 if both i, j ∈ L belong to the same class and
Wij = −1 if they belong to different classes. We see from
(2) that we place more importance on values of Yj of the
neighbouring nodes j having the same label than unlabeled
neighbours, and at the same time penalize neighbouring
nodes having different labels.

Optimization objective. The role of the ‘Link’ penalty
becomes more clear when we look at the optimization objec-
tive function Q(Y ) in (3) corresponding to the fixed point
iterations or Jacobi iterations, where L = D − A, D is
the diagonal matrix with Dii containing the degree of node
i. The link penalty term, in fact, does penalize the edges
amongst the labelled nodes and is very similar to the ‘Must
link’ and ‘Cannot link’ edge constraints employed by Con-
strained Spectral Clustering [Wang and Davidson, 2010a]
which has been shown to have links to Label Propagation
[Xiang Wang and Davidson, 2012]. We shall later show that
this term renders the algorithm GLM-safer. The objective
function also shows that Expander [Ravi and Diao, 2016]
becomes a special case of CSX by setting γ3 = 0, and so
does LP [Bengio et al., 2006] by additionally setting λ = 0.

Q(Y ) =
∑
i∈L
||Yi − Y ′i ||2︸ ︷︷ ︸

Squared Loss

+ γ1Tr(Y
TLY )︸ ︷︷ ︸

Laplacian Regularization

+ γ2

n∑
i=1

||Yi − λui||2︸ ︷︷ ︸
Label Prior

− γ3Y TWY︸ ︷︷ ︸
‘Link’ Penalty

(3)

We note that the optimization problem for Expander in-
volves minimization over a probability simplex unlike LP
where it is typically over the entire real space. However this
only manifests as difference in the initialization for fixed
point updates, because (1) yields a weighted average over
the labels Yj of the nodes j, otherwise the algorithms are
practically the same. Therefore, even LP can have minimiza-
tion over the simplex just by changing the initialization to a
vector that sums to one. In case of CSX, if λ = 1 then we
require the minimization to be over the probability simplex,
since a probabilistic prior u is being applied.

Convergence of Fixed Point iterations. A sufficient con-
dition for convergence of Jacobi iteration is that matrix
M = S − γ3W + γ1L+ γ2I should be strictly diagonally
dominant, which can be achieved by setting γ2 > nlγ3 (we
refer the reader to Section 1 in the supplementary material
for further details). This sufficient condition follows from
first order conditions on the G-SSL objective (3).

Scalability of CSX. The scalability is derived from the po-
tential to implement the fixed-point iteration atop a vertex-
centric API to run on a wide variety of scalable graph
processing systems, including distributed systems such as
Pregel [Malewicz et al., 2010]. Note that this is in contrast
with the SDP solver employed in [Ke and Honorio, 2019].
Fixed-point solvers are natively supported by industrial-
strength G-SSL frameworks, such as Google’s Expander
graph-based machine learning framework2 and Facebook’s
EdgeExplain [Chakrabarti et al., 2014].

3 PARTIALLY LABELED GRAPH
LATENT MODEL (PL-GLM)

Given our goal of providing performance guarantees on the
G-SSL algorithms discussed in the previous section, we
proceed to study the partially labelled version of Graph
Latent Model (GLM), a versatile generative model under
which we analyze the performance of G-SSL algorithms.
The GLM model includes a wider family of well studied
graph models like Latent Space Model (LSM), Dot Product
Graphs, Extremal Vertices Model, etc. (we refer to Table 1
in [Ke and Honorio, 2019]). We begin by first setting up the
notation required to introduce PL-GLM, which generalises
the vanilla GLM model to semi-supervised settings.

Definition 1 (PL-GLM). Characterized by parameters
(n,X , εl, f, Pe1 , Pe2), PL-GLM is a generative model over
a family of partially labeled graphs (A, Y ′) with the follow-
ing properties:

1. Balanced classes. The true labels Y ∗ are such that
Y ∗T 1n = n

2 12 i.e., equal sized classes.

2https://ai.googleblog.com/2016/10/
graph-powered-machine-learning-at-google.
html
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2. Latent vector generation. X can be any arbitrary do-
main and for node i a latent vector xi is sampled from
the distribution PYi

∈ {Pe1 , Pe2}.
3. Edge generation. For each i, j ∈ [n], the edges

(i, j) ∈ E of the graph are drawn i.i.d. from a
Bernoulli distribution with parameter f(xi, xj) i.e.,
P (Ai,j = 1 | xi, xj) = f(xi, xj), where f is the ho-
mophily function that satisfies the symmetric property
i.e., f(xi, xj) = f(xj , xi).

4. Label revelation. For nodes i ∈ [n], Y ′ is revealed
from the underlying labels Y ∗ i.i.d. such that P (Y ′i =
0) = 1 − εl and P (Y ′i = Y ∗i ) = εl. Therefore, we
assume no noise in the revealed labels.

The label revelation assumption subsumes the already stud-
ied GLM model [Ke and Honorio, 2019] and extends it to
the semi-supervised settings. Thereby, the PL-GLM model
extends many of the well-known latent models on graphs
like Latent Space Model. It can be shown (see Section 3 in
the supplementary material) that GLM is more general than
the Multiplicative Attributed Graph (MAG) model [Kim
and Leskovec, 2012] which has been shown to cover a wide
family of natural graphs, as well as SBM which is subsumed
by MAG.

4 GENERALIZATION BOUNDS

We are now equipped to study the sufficiency conditions
under which the G-SSL algorithms obtain an accuracy of
1 − s

n , such that s ≤ n
2 . This requirement s ≤ n

2 is jus-
tified as the expected accuracy of random guessing is 1

2 .
LP and Expander both involve continuous optimization and
subsequent thresholding to obtain the final binary label es-
timates. Therefore, taking cue from the previous literature
on analysis of LP [Yamaguchi and Hayashi, 2017, Saha
et al., 2020], we study the discrete versions of the objec-
tive, where the optimization is over Y ∈ {0, 1}n×2 with
additional constraints of one-hot encoded labels and bal-
anced classes, however, computationally it is NP-hard, since
there are O(2n) enumerations for Y . Since for any value
of γ(·) ∈ R the solution exists for the discrete version of
the objective, we also restrain γ(·) ∈ {0, 1} in the discrete
version. Thereby the generalization bounds obtained also
shall be for the discrete version of (3) which is as follows:

Ŷ = argmin
Y

Q(Y ) (4)

Y ∈ {0, 1}N×2 and Y 12 = 1n and Y T1n =
n

2
12

We define the following parameters which govern the gener-
alisation bounds for sufficiency which we derive.

p=EX
[
f(xi, xj)|Y ∗i = Y ∗j

]
q=EX

[
f(xi, xj)|Y ∗i 6= Y ∗j

]
(5)

The parameters p and q are expected values for presence
of intra-class and inter-class edges in the graph. We pro-

ceed to state the main result of the paper which provides
sufficient conditions under which we obtain guarantees on
accuracy for discrete versions of CSX, LP and Expander.
Let `0-1(Y ∗, Ŷ ) = 1

n

∑
i∈[n] I{Y ∗

i 6=Ŷi} be the usual 0-1 loss

counting the fraction of errors in Ŷ with I{·} being the indi-
cator function.

Theorem 1. Given every γ1 > 0, γ3 > 0 and γ1(p− q) +
γ3ε

2
l + εl

n > 0, under the following (sufficient) condition(
γ1(p− q) + γ3ε

2
l +

εl
n

)2
≥ 48c

(
1− s

n

) lnn

n
(6)

where c = γ1(γ12 + 1
3 )+γ3(γ32 +

ε2l
3 )+ 1

3εl+
1
8 , Ŷ provided in

(4) recovers the true labels Y ∗ with at most s ∈ Z mistakes
where 0 ≤ s < n

2 , under the PL-GLM generative model,

with a high probability i.e., P
(
`0-1(Y ∗, Ŷ ) > s

n

)
< 1

n .

Proof Sketch. Let m(Y ) indicate the number of mis-
matches/mistakes between Y and Y ∗ such that m(Y ∗) = 0.
We show that, for any Y 6= Y ∗ over the domain of optimiza-
tion, if m(Y ) > s (since we require minimum accuracy
of 1 − s

n ), Q(Y ) > Q(Y ∗) holds true w.h.p i.e., Y would
not minimize the objective. In other words, we show that
w.h.p m(Ŷ ) ≤ s. To achieve this, we require a concen-
tration bound on the term Q(Y ) − Q(Y ∗) over the latent
variables X = {xi, i ∈ [n]} under PL-GLM. Therefore we
employ Latent Conditional Independence (LCI) inequalities
from [Ke and Honorio, 2019] to show that (6) is sufficient
for Q(Y ) > Q(Y ∗) to hold, for any Y . Finally we em-
ploy union bound to prove the bound for all Y which have
m(Y ) > s. We note that the term γ3ε

2
l in (6) is contributed

by the newly introduced link penalty term in the objective
(3) and we shall see in future sections, that the said term
plays an important role in defining the safety profile of CSX.
Further details are provided in Section 2 of the supplemen-
tary material.

Novelty. The proof follows a strategy similar to [Chen and
Xu, 2014], however we simplify the proof by relying on
bounding a simpler quantity m(Y ), the number of mis-
matches between any Y and Y ∗, resulting in a much cleaner
proof employing well known bounds, whereas [Chen and
Xu, 2014] relies on a complicated lemma (Lemma 1.1 of
[Chen and Xu, 2014]). Moreover both [Chen and Xu, 2014]
and [Ke and Honorio, 2019] provide bounds for only s = 0
or 100% accuracy, while we also extend the proof technique
for any accuracy > 50%.

Takeaways.

• Corollaries. Table 1 provides the sufficiency condi-
tions for LP, Expander and CSX obtained from The-
orem 1 by carrying out the specific substitutions for
γ(·), λ ∈ {0, 1}. We observe that for LP and Expander
the bounds are the same, because the term involving u
ends up being a constant under the discrete version.

1579



Algorithm Constraints Sufficiency Condition
(
f(s, n) = 48

(
1− s

n

)
lnn
n

)
LP γ3 = 0 (

(p− q) + εl
n

)2 ≥ 1
3

(
23
8 + εl

)
f(s, n)

(p− q) + εl
n > 0

λ = 0

Expander γ3 = 0

CSX -
(
(p− q) + ε2l + εl

n

)2 ≥ 1
3

(
35
8 + εl(εl + 1)

)
f(s, n)

(p− q) + ε2l + εl
n > 0

Table 1: A compendium of the sufficiency bounds presented
in this work, these are obtained by substituting the parameter
values in Eq. (6)

• Homophily. In case of latent models, we can have an
alternate notion of homophily in the sense of expecta-
tion, i.e., p > q, expectation of an intra-class edge is
more than that of an inter-class edge. Therefore p− q
is a measure of ‘Expected’ Homophily. Thus, an in-
crease in homophily p − q makes it easier to satisfy
the bound (6). In case of LP and Expander, the condi-
tion p− q+ εl

n > 0, as found in Table 1, must hold for
bounds to be valid; this implies that for large graphs the
homophily condition should hold. However, for CSX
we get a much looser condition, p− q + ε2l + εl

n > 0,
as found in Table 1. This implies that even for graphs
where homophily does not hold so strongly, guaran-
tees on accuracy can be provided, given a higher label
revelation probability εl.

• Effect of revealed labels. When εl = 0, i.e. when
there are no labelled nodes, the bounds are similar to
the ones obtained in an unsupervised setting [Ke and
Honorio, 2019]. When εl = 1, i.e. when all nodes are
labelled, the bounds become trivial for a large enough
n. It is clear that increasing εl relaxes the bound (6).

• Accuracy. Given a graph and parameters γ(·), the
bounds become harder to satisfy with increasing ac-
curacy i.e., the value of RHS of (6) increases linearly
with a decrease in the number of mistakes s.

5 GLM-SAFETY

We begin by introducing the notion of GLM-safety, under
the PL-GLM setting, which is tied to the guaranteed per-
formance/accuracy of any algorithm A, that outputs labels
Ŷ = A(A, Y ′). We note that given true underlying labels
Y ∗ the observed PL-GLM graph (A, Y ′) can vary consid-
erably depending on the parameters (εl, f, Pe1 , Pe2), which
are unobserved, thereby the accuracy of A also varies.

Parameter Space. We begin by defining the parame-
ter space under a PL-GLM model and accuracy (1 − s

n ),
for which guarantees exist, as Ω(Y ∗, εl,A(A, y′), s) =
{(p, q)|P

(
`0-1(Y ∗,A(A, Y ′)) > s

n

)
< 1

n}, for any algo-
rithm A. Essentially, Ω captures the subset of parame-
ters p, q (that generate (A, Y ′)) for which the algorithm

A achieves the said accuracy 1− s
n w.h.p. under label reve-

lation probability εl, keeping Y ∗ fixed. Henceforth we shall
simply write Ω(A, s) for the sake of brevity.

Definition 2 (GLM-Safety). An algorithm A1 is said to be
GLM-safer than algorithm A2, for a given accuracy 1− s

n ,
if Ω(A2, s) ⊆ Ω(A1, s), with labels Y ∗ and revelation
parameter εl remaining fixed.

Therefore, the GLM-safer algorithm has a larger space of
parameters under which it is guaranteed (w.h.p) to achieve
the desired accuracy than the less GLM-safe algorithm. The
form of the sufficiency bounds in (6) is (p− q+ bA)2 ≥ cA,
for any algorithm A. The particular forms of bA, cA for
the algorithms considered in this chapter can be gathered
from Table 1. We note that, cA = Ω( lnn

n ) and bA ∈ [0, 1],
therefore we can say ∃nA, such that ∀n > nA, Ω(A, s) =
{(p, q) | p− q ≥ √cA − bA and p, q ∈ [0, 1]}. Finally, we
have the following result which we make use of to discuss
GLM-safety of all the algorithms considered in this chapter.

|Ω(A, s)| =
∫ 1

q=0

∫ 1

p=max(0,q+
√
cA−bA)

1 dp dq

= min

(
1,

1

2
+ bA −

√
cA

)
(7)

Note that the maximum possible value of |Ω(A, s)| is 1
since p, q ∈ [0, 1]. In case of PL-GLM, |Ω(A2, s)| ≤
|Ω(A1, s)| =⇒ Ω(A2, s) ⊆ Ω(A1, s) (see Figure 3
for an illustration) and hence it is sufficient to use the set-
cardinality |Ω(A, s)| as a “measure” of GLM-safety of an
algorithm A.

GLM-Safety of LP and Expander. We observe from Ta-
ble 1 that bExp = bLP , cLP = cExp, therefore we conclude
that discrete versions of LP and Expander are equally GLM-
safe i.e., Ω(AExp, s) = Ω(ALP, s), since their bounds are
the same. The label revelation governed by εl does not have
much effect on the GLM-safety profile (as it has a factor of
1
n ) for both the algorithms. We observe bExp/LP = εl

n and
cExp/LP = Ω( lnn

n ), therefore, the GLM-safety of LP and
Expander decreases with increasing n.

GLM-Safety of CSX. Now, we proceed to show that the
discrete version of CSX enjoys a better GLM-safety profile
than both LP and Expander.

Theorem 2 (CSX is GLM-safer than both Expander and
LP). ∃n′ such that ∀n > n′, Ω(AExp/LP, s) ⊂ Ω(ACSX, s)

under the condition εl > εcl where εcl =

√ √
f(s,n)

4− 2
3

√
f(s,n)

Proof. We begin by showing Ω(AExp/LP, s) ⊂ Ω(ACSX, s).
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Using (7), for n > max(nCSX, nLP, nExp) we have

|Ω(ACSX, s)| − |Ω(AExp/LP, s)|

= ε2l −
√
f(s, n)

√ε2l
3

+
1

2
+
εl + 23

8

3
−

√
εl + 23

8

3


≥ ε2l −

1

2

√
f(s, n)(

ε2l
3

+
1

2
)

The last inequality follows from
√
a −
√
b = a−b√

a+
√
b

and
by setting εl terms in the denominator to 0. Therefore, by
setting ε2l − 1

2

√
f(s, n)(

ε2l
3 + 1

2 ) > 0 we obtain the condition

εl >

√ √
f(s,n)

4− 2
3

√
f(s,n)

(for n ≥ 20 we have 4− 2
3

√
f(s, n) >

0 for any s) and hence the proof.
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Figure 1: ‘Crossover point’ εcl between CSX and
LP/Expander as a function of guaranteed accuracy (1− s

n )
and the number of nodes n. εl > εcl guarantees that CSX is
GLM-safer than LP/Expander on two-community PL-GLM
graphs

Discussion. We begin by noting that for larger n, we have
bCSX ≈ ε2l and bCSX >

√
cCSX, therefore, unlike LP and Ex-

pander, increasing label revelation probability εl improves
GLM-safety of CSX significantly. Therefore, by the same
reasoning we find that unlike LP or Expander, the GLM-
safety of CSX does not decrease with n. We gather from the
proof, that CSX is GLM-safer under the condition εl > εcl as
seen in Theorem 2, however, since f(s, n) is a decreasing
function of n, this condition gets readily satisfied even at
small values of εl under reasonably large n. In this context,
in Figure 1 we plot εcl , termed the ‘crossover point’, as a
function of the accuracy (1− s

n ) and the number of nodes n.
Hence, for a given accuracy guarantee and number of nodes
n, if εl > εcl then CSX is guaranteed to be GLM-safer than
LP and Expander. We can see that εcl increases with increase
in the guaranteed accuracy and decreases with increase in
the number of nodes n. We see that for large values of n
(O(108)), the crossover point εcl is quite small (< 10−2)
for any value of the accuracy, meaning that CSX is almost

always GLM-safer than LP and Expander for large graphs3.

Furthermore it is to be noted that εcl =

√ √
f(s,n)

4− 2
3

√
f(s,n)

is

actually a loose upper bound for the ‘true’ crossover point
(hence the values plotted in Figure 1 are conservative esti-
mates) and in practice CSX can be GLM-safer than LP and
Expander even for εl < εcl . We show an example of such a
case in our experiments.

6 EMPIRICAL RESULTS

In this section we describe experiments on partially labelled
synthetic graphs generated from PL-GLM followed by par-
tially labelled real world graphs.

6.1 SYNTHETIC GRAPHS GENERATED BY
PL-GLM

Similar to [Ke and Honorio, 2019] we have used the follow-
ing settings for generating synthetic graphs from PL-GLM
as defined in Section 3:

• Number of nodes, n = 300 and dimension of the latent
space, d = 2.

• Latent vector distributions for the two classes,
Pe1 = N2(µ, σ2I), and Pe2 = N2(−µ, σ2I) i.e., 2-
dimensional Gaussian distributions with means ±µ
and variance σ2I with σ ∈ R.

• f(xi, xj) = exp(−‖xi − xj‖2)

It can be seen that higher the value of ‖µ‖ and lower the
value of σ, greater the difference in the support of the two
distributions. Following [Ke and Honorio, 2019] it can be
shown that in these settings, p = (4σ2 + 1)−1 and q =
(4σ2 + 1)−1 exp(−4||µ||2(4σ2 + 1)−1), so we can find
the theoretical regions of guaranteed accuracy according to
Theorem 1.

In Figure 2 we show the accuracy heatmaps obtained by
CSX on graphs generated from PL-GLM using the above
settings, where white denotes an accuracy of 1 and black
denotes an accuracy of 0. For generating these graphs, ‖µ‖
and σ were varied from 0 to 1 in steps of 0.1 while the label
revelation probability, εl was varied from 0.1 to 0.5 in steps
of 0.2. The shade of any portion of a heatmap indicates
the expected accuracy obtained by CSX on graphs sampled
from PL-GLM in the above setting with the corresponding
values of ‖µ‖, σ and εl. The regions of guaranteed accuracy
according to Theorem 1 have been demarcated (the regions
lie below the corresponding curves). We note that the region
beneath the curve corresponding to accuracy 1 is fully white.

3Please note that these conclusions are only guaranteed to
hold for two-community graphs generated from PL-GLM and may
not be applicable to real-world graphs in general having diverse
network structures.
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Figure 2: Variation of accuracy obtained by CSX with the label revelation probability εl on partially labeled two-community
graphs generated from PL-GLM. The theoretical regions of guaranteed accuracy have been plotted according to Theorem 1
as the regions below the corresponding curves.
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Figure 3: Difference of accuracy obtained by CSX and LP ((a) through (c)), and CSX and Expander ((d) through (f))
with the label revelation probability εl on partially labeled two-community graphs generated from PL-GLM. The regions
corresponding to 50% and 100% guaranteed accuracy for each pair of algorithms are shown for comparison.
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In Figure 3 we show the difference in accuracy (in the form
of heatmaps as described above, but with a diverging color
map) between (i) CSX and LP and (ii) CSX and Expander
along with the regions corresponding to 50% and 100%
accuracy for each pair of algorithms. In these heatmaps,
the red regions indicate the parameter configurations where
CSX is superior to LP or Expander, while blue shows the
opposite. Since the red and blue regions are quite evenly
distributed, we see from these figures that CSX performs
similarly to, if not better than, both LP and Expander in
most parameter settings. However, CSX offers better safety
guarantees than LP and Expander since the corresponding
regions of guaranteed accuracy are larger. Furthermore as
expected the difference in safety increases with increasing εl.
We also note in this context that unlike CSX the safety of LP
and Expander does not perceptibly increase with increasing
εl due to lack of the ε2l term (since γ3 = 0) in the LHS of
the bound in Eq. (6) (Theorem 1).

Of special interest is the case of εl = 0.1 in Figures 3(a)
and 3(d). In Figure 1 the ‘crossover point’ εcl corresponding
to the graph of n = 300 is well above 0.1 for accuracy
guarantees of 50% and 100%. Yet, from Figures 3(a) and
3(d) we see that the guaranteed accuracy regions for CSX are
actually larger (though only slightly) than for LP/Expander.
As we have pointed out in the Discussion in Section 5, this
indicates that the values of εcl , as given in Theorem 2 and
plotted in Figure 1, are conservative estimates of the ‘true’
crossover point.

6.2 REAL WORLD GRAPHS

For conducting our experiments, we constructed four graphs
G1−4, each having two-community structure, from three
popular real-world datasets as shown in Table 2 along with
some statistics. In case of email-Eu-core, we chose to
form two sub-graphs namely G1, induced by the nodes with
the two most frequent labels, and G2, induced by the nodes
with the most frequent and fifth most frequent labels. ForG3

and G4, we chose the subgraph induced by the nodes with
the two most frequent labels from the datasets Citeseer
and Cora respectively. The two-dimensional latent space
visualizations of all the graphs are shown in Figure 4. These
visualizations were generated by the DynetLSM library
[Loyal and Chen, 2020]. Since these node representations
can separate the ground truth classes to a large extent, it can
be seen that the Latent Space Model (and hence GLM) is a
fairly good model for these graphs.

In Figure 5 we show the variation of accuracy of LP, Ex-
pander, and CSX with the label revelation probability εl
on these graphs, for εl in the range (0, 0.5]. We obtain a
Homophily estimate, p̂− q̂ by the observed intra-class and
inter-class edge probabilities; and the estimated values p̂, q̂
for all the graphs are shown in Table 2. We analyse the
performance of various algorithms in the light of two fac-

tors: (i) whether the classes are balanced or unbalanced,
and (ii) whether the Homophily estimate is high or low,
as illustrated in Table 2. We use a uniform prior over la-
bels in case of balanced classes and a non-uniform prior
u = 2/31ne

T
1 + 1/31ne

T
2 in case of unbalanced classes.

email-Eu-core. On graphs G1 (Figure 5(a)) and G2

(Figure 5(b)), due to the high value of p̂ − q̂ all the algo-
rithms perform very well. However on G1, CSX is more
stable for low values of εl (i.e. sparse labels) than LP or
Expander, indicating better robustness. Although the GLM-
safety guarantees we provide are only for minimum or worst
case accuracy, we can still attempt to give an intuitive expla-
nation of this effect. At lower εl values, the ‘Link’ penalty
term in CSX will end up placing a higher weight on the
revealed/true labels (by boosting the intra-cluster edges and
penalizing inter-cluster edges) and therefore CSX will be
less prone to flipping the revealed labels unlike LP and Ex-
pander.For a graph with balanced communities, lower the
value of εl, i.e. lesser the number of revealed labels, stronger
is the debilitating effect of label flipping on overall accu-
racy since the algorithm fails to distinguish between the
two classes. This effect is pronounced in the graph G1 in
Figure 5(a) for εl = 0.05 since, due to high homophily, the
accuracy of all the algorithms is generally above 90% for
values of εl ≥ 0.1. Hence LP and Expander suffer a sharp
fall in average accuracy (which also suffers from instability
i.e. high variance) for εl < 0.1, while CSX is robust to
this effect. Note however that the effect of label flipping is
not as pronounced in G2 (which also has high homophily)
since the classes are unbalanced and so the algorithm can
always correctly infer the label of the larger community.
Furthermore, on G2 the non-uniform prior gives a slight
advantage to both CSX and Expander over LP, while there
is no tangible difference in performance between the two
algorithms. However, due to imbalance in the classes, at the
low value of εl = 0.05 the accuracy of all the algorithms
suffers, presumably because the algorithms tend to ignore
the smaller community due to presence of very few revealed
labels corresponding to it.

Citeseer and Cora. On graphs G3 (Figure 5(c)) and
G4 (Figure 5(d)), due to the low value of p̂ − q̂ all the
algorithms perform rather poorly compared to G1 and G2.
Therefore on these graphs the label flipping effect is not
visible for low values of εl, since the accuracy in general is
quite low (this is especially true for G3 which has balanced
communities and is more susceptible to this effect). On
graph G3, due to the uniform prior, Expander does not
enjoy any advantage over LP and hence their performances
are roughly similar. However, CSX is distinctly superior in
performance to both LP and Expander. Recall that in the
discussion on Homophily in Section 4, we explained that
CSX enjoys better GLM-safety guarantees for low values of
p− q than both LP and Expander. From Equation (6), as G3

has a low value of p̂− q̂ (low homophily) the contribution
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Graph Class
Balance

Homophily
Estimate p̂− q̂ Dataset n E n1 n2 p̂ q̂

G1 Balanced High email-Eu-core [Yin et al., 2017, Leskovec et al., 2007] 201 2963 109 92 0.1388 0.0083
G2 Unbalanced High email-Eu-core [Yin et al., 2017, Leskovec et al., 2007] 164 1693 109 55 0.1095 0.0066
G3 Balanced Low Citeseer [Sen et al., 2008, Lu and Getoor, 2003] 1347 1849 681 666 0.0018 0.0002
G4 Unbalanced Low Cora [Sen et al., 2008, Lu and Getoor, 2003] 1244 2055 818 426 0.0022 0.0002

Table 2: Statistics of two-community real-world graphs for binary node classification. n is the number of nodes and E is the
set of edges. n1 = |{i : Y ∗i = e1}| and n2 = |{i : Y ∗i = e2}|.

10 0 10
x1

10

5

0

5

10

x2

label
e2
e1

(a) G1 - email-Eu-core

10 5 0 5 10
x1

10

5

0

5

10

15
x2

label
e1
e2

(b) G2 - email-Eu-core

5 0 5
x1

5.0

2.5

0.0

2.5

5.0

x2

label
e2
e1

(c) G3 - Citeseer

10 0 10
x1

10

5

0

5

10

15

x2

label
e1
e2

(d) G4 - Cora

Figure 4: Two-dimensional latent space visualizations of two-class real world graphs.
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Figure 5: Variation of accuracy obtained by G-SSL algorithms derived from Eq. (3) with the label revelation probability εl
on partially labeled two-community real-world graphs.

of the second term (γ3ε2l ) in the LHS becomes prominent.
However, since γ3 = 0 for LP and Expander (see Table 1)
their GLM-safety suffers in comparison to CSX. This result
therefore shows that a GLM-safer algorithm is also likely
to be performance-wise stronger in this case. On graph G4,
which has unbalanced communities, the non-uniform prior
gives a significant advantage to both CSX and Expander
over LP (the performance gap is much more pronounced
compared to the similarly unbalanced case of G2 due to
the difference in homophily between the two graphs), while
there is no tangible difference in performance between the
two algorithms.

7 CONCLUSION

In this work we have presented a novel criterion of GLM-
safety which enables us to compare any two theoretically
characterisable G-SSL algorithms on the basis of the range
of graphs drawn from PL-GLM on which they achieve a

given guaranteed accuracy. We have also presented a new
G-SSL algorithm, CSX, which we have shown to possess a
better GLM-safety profile than LP [Bengio et al., 2006] and
Expander [Ravi and Diao, 2016]. The GLM-safety profile
of CSX improves at a faster rate than LP and Expander
with increasing number of revealed labels. As we know, the
success of all G-SSL algorithms largely depends on the level
of homophily a graph displays; however the significance of
CSX lies in the fact that it can provide better performance
guarantees on graphs showing less homophily. An industrial-
strength distributed implementation of CSX is left for a
future work; and so is an extension of our theory to other
G-SSL algorithms and natural graphs in the wild.
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