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7 APPENDIX

7.1 PROOFS OF THEOREMS

Lemma 4.1. Suppose that E [Y |Pa(Y ) = a] 6=
E [Y |Pa(Y ) = a′] whenever a 6= a′. Then a repre-
sentation Φ is invariant across all valid environments if
and only if E [Y e|Φ(T e, Xe)] = E [Y |Pa(Y )] for all valid
environments.

Proof. The if direction is immediate.

To establish the only if direction, we first show that Φ
must contain at least Pa(Y ), in the sense E [Y |Φ(X)] =
E [Y |Pa(Y ) ∪ Z] for some set Z. We proceed with proof
by contradiction. Suppose that conditioning on Φ is equiva-
lent to conditioning on only Pa(Y ) \ {P} ∪ Z, where P is
a parent of Y . We now create two environments by setting
P = p and P = p′. Since P is a parent of Y this follows
from the second rule of do calculus (Pearl, 2000),

E [Y |Pa(Y ) \ {P} ∪ Z; do(P = p)]

= E [Y |Pa(Y ) \ {P} ∪ Z,P = p]

and

E [Y |Pa(Y ) \ {P} ∪ Z; do(P = p′)]

= E [Y |Pa(Y ) \ {P} ∪ Z,P = p′] .

The equality E [Y |Pa(Y ) \ {P} ∪ Z,P = p] =
E [Y |Pa(Y ) \ {P} ∪ Z,P = p′] holds only if P is
conditionally independent of Y given Pa(Y ) \ {P} ∪ Z.
Since P is a parent of Y , by the first assumption
of the lemma, the equality does not hold. It fol-
lows that E [Y |Pa(Y ) \ {P} ∪ Z ; do(P = p)] 6=
E [Y |Pa(Y ) \ {P} ∪ Z ; do(P = p′)]. That is, if con-
ditioning on Φ was equivalent to conditioning on less
information than Pa(Y )∪Z, then Φ would not be invariant
across all valid environments.

It remains to show that Φ does not contain any more infor-
mation than Pa(Y ).

Φ cannot contain any descendants of the outcome.
Suppose that Φ depends on some descendant D of
Y in the sense that there is at least one environ-
ment and d 6= d′ where E [Y |Φ(X \D,D = d)] 6=
E [Y |Φ(X \D,D = d′)]. Then, construct a new environ-
ment e by randomly intervening and setting do(D =
d) or do(D = d′), each with probability 0.5. In this
new environment, there is no relationship between Y
and D. Accordingly, E [Y e |Φ(Xe \De, De = d)] =
E [Y e |Φ(Xe \De, De = d′)]. Thus, the conditional ex-
pectations are not equal (as functions of d) in the two
environments—a contradiction.

Next, we show that, Φ needs not contain the non-parent an-
cestors A of the outcome, because E [Y | {A} ∪ Pa(Y )] =
E [Y |Pa(Y )] by the Markov property of the causal graph,
where A is any non-ancestor variables. Since Φ contains
Pa(Y ), it follows that Φ does not depend on any non-parent
ancestor A.

For expository purposes, the proof is done with do calculus
(Pearl, 2000) for atomic interventions. If the environments
are generated with stochastic interventions, we can use the
same proof strategy with σ calculus (Correa and Bareinboim,
2020).

Theorem 4.2. Let L be a loss function such that the min-
imizer of the associated risk is a conditional expectation,
and let Φ be a representation that elicits a predictor Qinv

that is invariant for all valid distributions. Assuming there is
no mediators between the treatment and the outcome, then
ψe = E

[
Qinv(1, Xe)−Qinv(0, Xe)|T e = 1

]
.

Proof. We assume the technical condition of Lemma 4.1,
that E [Y e |Pa(Y e) = a] 6= E [Y e |Pa(Y e) = a′] when-
ever a 6= a′. This is without loss of generality because
violations of this condition will not lead to different causal
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Figure 1: V-structure graph. We denote the bias induced by
conditioning on X as V-bias.

effects.

By the assumption on the loss function, the elicited in-
variant predictor is E [Y e | Φ(T e, Xe)]. Lemma 4.1 shows
that E [Y e | Φ(T e, Xe)] = E [Y e | Pa(Y e)]. We further ob-
serve that the non-treatment parents of Y e are sufficient to
block backdoor paths. It follows the ATT can be expressed
as the following.

ψe = E[E [Y e | T e = 1,Pa(Y e) \ {T e}]
− E [Y e | T e = 0,Pa(Y e) \ {T e})] |T e = 1]

= E [E [Y e | Φ(1, Xe)]− E [Y e | Φ(0, Xe)] |T e = 1]

Theorem 4.3. Suppose ε ≤ P (T e = 1|Xe) ≤ 1 − ε with
probability 1, then ε ≤ P (T e = 1|Φ(Xe)) ≤ 1 − ε with
probability 1.

Proof. The proof follows directly from Theorem 1 in
D’Amour et al., 2020. The intuition is that the richer the
covariate set is, the more likely it is to predict the treat-
ment assignment accurately (D’Amour et al., 2020). The
covariate representation Φ(Xe) by definition contains less
information than Xe, therefore Φ(Xe) satisfies overlap if
Xe satisfies overlap.

7.2 THE CASE OF COLLIDERS

Consider the DGP with binary variables {X,Y, T} illus-
trated in Figure 1, where X is causally influence by Y and
T .

Theorem 7.1. Let cov denote the covariance between two
variables, we define collider bias at X = c as ∆(X = c) =
cov(T, Y |X = c) − cov(T, Y ), and collider bias of X as
∆(X) = |P (X = 1)∆(X = 1) + P (X = 0)∆(X = 0)|.
Let Φ(T,X) be a random variable, where P (Φ(T,X) =
X) ≥ 0.5. Suppose P (X = 1) = 0.5, and ∆(X = 1) has
the same sign as ∆(X = 0), conditioning onX induce more
collider bias than conditioning its coarsening Φ(T,X):

∆(Φ(T,X)) ≤ ∆(X)

Proof. The proof follows corollary 2.1 in Nguyen et al.,
2019.
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Figure 2: Y-structure graph. We denote the bias induced by
conditioning on D as Y-bias.

Corollary 2.1. We refer to collider bias in the V substruc-
ture embedded in the Y structure as ‘embedded V-bias’ and
denote it as ∆(C = c). For the covariance effect scale,
Y-bias ∆(D = d) relates to embedded V-bias through the
following formula:

∆(D = d)

=
p(D = d |C = 1)− p(D = d |C = 0)

{P(D = d)}2

·
[
p(D = d |C = 1){P(C = 1)}2 ·∆(C = 1)−
p(D = d |C = 0){P(C = 0)}2 ·∆(C = 0)

]
.

With the corollary above, let D denote Φ(T,X), let C de-
note the collider X in Figure 1. The bias induced by condi-
tioning on D is less than the bias induced by conditioning
on C.

∆(D = 1) =
2α− 1

0.25
(0.25α ·∆(C = 1)

− 0.25(1− α) ·∆(C = 0))

= (2α− 1)(α ·∆(C = 1)

− (1− α) ·∆(C = 0))

∆(D = 0) =
1− 2α

0.25
(0.25(1− α) ·∆(C = 1)

− 0.25α ·∆(C = 0))

= (1− 2α)((1− α) ·∆(C = 1)

− α ·∆(C = 0))

∆(C) = |0.5 ·∆(C = 0) + 0.5 ·∆(C = 1)|
∆(D) = |0.5 ·∆(D = 0) + 0.5 ·∆(D = 1)|
∆(D) = |0.5(2α− 1)2 ·∆(C = 1)

+ 0.5(2α− 1)2 ·∆(C = 0)|
≤ ∆(C)



7.3 THE CASE OF MEDIATORS

In the main paper, we assumed the covariate set X con-
tains no mediators between treatment and outcome. What
happens to the interpretation of the learned parameter if
the adjustment set contains mediators? Intuitively, NICE
retains the direct link between the treatment and the out-
come. Specifically, if there are no mediators, the parameter
reduces to ATT. If there are mediators but no confounders,
the parameter reduces to the Natural Direct Effect (Pearl,
2000). If there are mediators and confounders, the NICE
estimand is a non-standard causal target that we call the
natural direct effect on the treated (NDET).

Conceptually, NDET describes the expected change in out-
come Y for the treated population, induced by changing the
value of T , while keeping all mediating factors M , constant
at whatever value they would have obtained under do(t).
The main point is that NDET provides answers to questions
such as, “does this treatment have a substantial direct effect
on this outcome?”. Substantively, NDET is the natural direct
effect, adjusted for confounders.

Formally, NDET for environment e is

ψe = EMe |T e=1[E [Y e |Me ; do(T e = 1)]

− E [Y e |Me ; do(T e = 0)] |T e = 1].
(7.1)

With adjustment set W e, the causal effect can be expressed
through a parameter of the observational distribution:

ψe = EMe,W e [E [Y e |T e = 1,Me,W e]

− E [Y e |T e = 0,Me,W e] |T e = 1].
(7.2)

Importantly, the mediators Me and the confounders W e

show up in the same way in (7.2). Accordingly, we don’t
need to know which observed variables are mediators and
which are confounders to compute the parameter. Under
the NICE procedure, we condition on all parents of Y e,
including possible mediators. Thus, the NICE estimand is
the NDET in each environment.

7.4 DETAILS OF THE EXPERIMENTS

7.4.1 Experiment 1

We evaluate the treatment effect estimation of various ad-
justment schemes using four variants of the data simulations.
The variants are generated according to the following: 1)
The observed covariates S(X) are scrambled versions of the
true covariates X . If scrambled, S is an orthogonal matrix.
If not scrambled, S is an identity matrix. 2) In the het-
eroskedastic setting τ ← 5 +N (0, e2). In the environment-
level homoskedastic setting τ ← 5 +N (0, 1). The results
are illustrated in Figure 3, Figure 4, Figure 5, and Figure 6.

To understand why NICE reduces the estimation bias, we
measure the weight of the control predictor. The non-causal

Figure 3: models performance under the scrambled and
heteroskedastic setting

Figure 4: models performance under the scrambled and
homoscedastic setting

Figure 5: models performance under the unscrambled and
heteroskedastic setting



Figure 6: models performance under the unscrambled and
homoscedastic setting

Figure 7: non causal error under the scrambled and het-
eroskedastic setting

error is measured by the mean square error of the weight on
X2. The results are illustrated Figure 7, Figure 8, Figure 9,
and Figure 10.

7.4.2 Experiment 2

We validate NICE for the non-linear case on a benchmark
dataset, SpeedDating. SpeedDating was collected to study
the gender difference in mate selection (Fisman et al., 2006).
The study recruited university students to participate in
speed dating, and collected objective and subjective infor-
mation such as ‘undergraduate institution’ and ‘perceived
attractiveness’. It has 8378 entries and 185 covariates. ACIC
2019’s simulation samples subsets of the covariates to simu-
late binary treatment T and binary outcome Y . Specifically,
it provides four modified DGPs: Mod1: parametric models;
Mod2: complex models; Mod3: parametric models with
poor overlap; Mod4: complex models with treatment het-
erogeneity. Each modification includes three versions: low,
med, high, indicating an increasing number of covariates
included in the models for T and Y .

Figure 8: non causal error under the scrambled and ho-
moscedastic setting

Figure 9: non causal error under the unscrambled and het-
eroskedastic setting

Figure 10: non causal error under the scrambled and ho-
moscedastic setting



We compare the estimation quality of the SATT and CATE
over 10 bootstraps. We use two predictors: TARnet and
Dragonnet. The main paper report the estimation quality of
SATT using TARnet. We now report the estimation quality
of CATE and SATT using Dragonnet, as well as CATE using
TARnet.

The DGPs are recorded in the R file under SpeedDating
folder. The original ACIC DGPs can be downloaded using
the following link.

drive.google.com/file/d/
1Qqgmb3R9Vt9KTx6t8i_5IbFenylsPfrK/view

We made several modifications to the original DGPs. (1)
ACIC competitions are usually designed to evaluate model
performances using ATE or ATT. The simulation study pro-
vided ATE values but not ITE. In the SpeedDating DGPs,
the treatment is binary, and the outcome is also binary. To
calculate ITE, we take the difference between the propensity
of the outcome of the treated predictor and the propensity
of the outcome of the control predictor. (2) Unfortunately,
ACIC datasets do not come in multiple environments, nor
do the covariates include bad controls. To create multiple en-
vironments, we draw 6000 samples and select a covariate x
that’s not the causal parent of Y . We sort the samples based
on the the covariates value and divide them into three equal
sized environments. For each DGP, we draw 10 bootstrap
samples.

Table 3 and Table 4 show the average of the MAE of SATT
estimates over three environments. The predictor uses the
architecture of Dragonnet. We observe that NICE does not
hurt the estimation quality in comparison to adjusting for
all the covariates. When there is a strong collider in the
adjustment set, NICE reduces collider bias across simulation
setups.

Table 1 and Table 5 show the PEHE of the CATE, with
TARnet and dragonnet, respectively. We find that NICE
improves the CATE estimates in Mod1, Mod2, and Mod3.
This is surprising, as we expect NICE to perform equally
well as adjusting for all covariates when the adjustment set
is valid. To understand this phenomenon better, we examine
the CATE estimates across simulation settings.

In Figure 11, Figure 12, Figure 13, and Figure 14 illustrate
the estimation quality of CATE under the “med" simulation
setting. we compare the ground truth, the CATE estimates
using NICE and Adjusting for all covariates across settings.
Recall NICE uses an predictor trained with IRMv1 objec-
tive, adjusting for all uses a predictor that’s trained with
ERM objective. In Mod1, Mod2, and Mod3, there are little
heterogeneity of the treatment effects. In Mod4, the treat-
ment effects are more spread out and heterogeneous. We
observe that in Mod1, Mod2, and Mod3, the ERM predic-
tors produce extreme CATE estimates. In contrast, using an
IRMv1 objective, the CATE estimates are less extreme. In

Mod4, where the CATE varies drastically, both IRMv1 and
ERM predictors were able to capture the heterogeneity.

To examine whether the difference is due to over-fitting, we
use two environments as training and one environment as
testing. Figure 15 and Figure 16 show the corresponding
training and testing accuracy across experiment setups. We
observe the ERM predictors have similar training and testing
accuracy. This suggests the model is not overfitting in the
robust prediction sense. We suspect that the IRMv1 penalty
term becomes a regularization term that restrict the model to
simpler solutions. Prior work (Janzing, 2019) has shown that
regularizing terms in linear regression settings not only help
against over-fitting finite data, but sometimes also produce
better causal models in the infinite sample settings. There
are no known results in the non-linear settings.

Note that the ACIC competitions are not designed for evalu-
ating CATE performance. Estimating CATE when the out-
comes are binary are difficult, especially given a flexible
neural network model. The analysis above is about model
specification for estimation, in settings without bad controls.
In this paper, we consider the problem of causal adjustment.
We focus on finding a causal representation that strips out
bad controls. Does an invariant predictor produce better
causal estimate, even when there are no bad controls? We
defer this question to future work.

valid adjustment εpehe
TARnet Mod1 Mod2 Mod3 Mod4

low Adjust All .16± .06 .13± .05 .22± .18 .05± .01
NICE .06± .02 .05± .02 .06± .02 .05± .01

med Adjust All .14± .06 .15± .02 .12± .02 .06± .02
NICE .05± .01 .05± .01 .07± .03 .04± .01

high Adjust All .13± .07 .12± .02 .16± .09 .06± .01
NICE .05± .01 .05± .01 .07± .02 .04± .01

Table 1

bad controls in adjustment εpehe
TARnet Mod1 Mod2 Mod3 Mod4

low Adjust All .35± .12 .17± .02 .30± .04 .24± .04
NICE .08± .04 .05± .01 .07± .02 .07± .01

med Adjust All .26± .02 .27± .05 .39± .07 .13± .01
NICE .04± .01 .05± .02 .06± .01 .04± .01

high Adjust All .31± .04 .23± .06 .31± .07 .12± .01
NICE .07± .02 .07± .03 .14± .07 .06± .03

Table 2

valid adjustment εatt
Dragonnet Mod1 Mod2 Mod3 Mod4

low Adjust All .09± .08 .05± .03 .04± .04 .03± .01
NICE .06± .03 .03± .01 .09± .02 .02± .02

med Adjust All .06± .09 .06± .05 .11± .11 .07± .05
NICE .07± .02 .06± .03 .08± .03 .04± .03

high Adjust All .04± .04 .05± .08 .03± .02 .02± .02
NICE .02± .01 .07± .02 .06± .02 .08± .05

Table 3



Figure 11: Mod1: parametric models

Figure 12: Mod2: complex models

Figure 13: Mod1: parametric models with poor overlap

Figure 14: Mod4: complex models with treatment hetero-
geneity.

Figure 15: The training accuracy of the predictors

Figure 16: The testing accuracy of the predictors



bad controls in adjustment εatt
Dragonnet Mod1 Mod2 Mod3 Mod4

low Adjust All .31± .12 .52± .16 .39± .06 .75± .11
NICE .17± .10 .03± .02 .24± .03 .11± .06

med Adjust All .54± .09 .47± .15 .57± .24 .31± .13
NICE .13± .10 .25± .05 .15± .08 .05± .03

high Adjust All .50± .06 .58± .05 .54± .05 .43± .13
NICE .07± .04 .21± .06 .17± .05 .08± .03

Table 4

valid adjustment εpehe
Dragonnet Mod1 Mod2 Mod3 Mod4

low Adjust All .20± .06 .12± .02 .19± .02 .06± .01
NICE .06± .01 .04± .01 .06± .01 .04± .01

med Adjust All .15± .06 .16± .01 .16± .07 .06± .01
NICE .04± .01 .03± .01 .07± .02 .03± .01

high Adjust All .12± .02 .14± .05 .13± .02 .06± .00
NICE .05± .01 .06± .01 .07± .02 .04± .02

Table 5

7.4.3 Experiment 3

In the third experiment, we examine the effect of environ-
ment variations on NICE’s performance. We simulate non-
linear data using the causal graph illustrated in figure 5. We
draw three source environments {P e1 , P e2 , P e3}, where
e1 = 0.2, e2 = 1, e3 = 5. In each source environments, we
draw 900 samples. Figure 6 reports the average MAE of
SATT over 5 simulations.

Ae ← N (0, e2)

Xe ← Ae · waxe

Xe
t ← Xe

{1...12}

Xe
y ← Xe

{13...30}

pet ← sigmoid(f(Xe
t ))

T e ← Bern(pet )

pey ← sigmoid(g(Xe
t , X

e
y , T

e))

Y e ← B(n, pey)

Ze ← Y e + T e +N (0, 1)

f(Xe
t ) = Xe

t · wxte + h(Xe
t ) · wxte′ , where h(Xe

t ) is im-
plemented as

[X_t[:, :1] * X_t[:, 1:2],
X_t[:, 1:2] * X_t[:, 2:4],
X_t[:, 2:3] * X_t[:, 3:]
/ np.square(X_t).mean()]

g(Xe
t , X

e
y , T

e) = 1.25 ∗T e +Xt ·wxye + 2 ∗ pet +m(xey) ·
wxye′

Here m(xey) is implemented as

[X_y[:, :1] * X_y[:, 4:5],

bad controls in adjustment εpehe
Dragonnet Mod1 Mod2 Mod3 Mod4

low Adjust All .47± .05 .23± .05 .37± .05 .46± .14
NICE .16± .08 .05± .02 .18± .04 .05± .02

med Adjust All .32± .05 .37± .06 .55± .18 .15± .02
NICE .07± .03 .13± .04 .11± .05 .04± .01

high Adjust All .38± .06 .29± .05 .39± .05 .14± .02
NICE .09± .03 .11± .04 .13± .05 .04± .01

Table 6

X_y[:, 1:2] * X_y[:, 3:4],
X_y[:, 1:2] * X_y[:, 2:]
/ np.square(X_y).mean()]

The complete data generating code is under

diverse_environments/gen_dat.py

New environments P e′1 , P e′2 , P e′3 are mixtures of the
three source environments P e1 , P e2 , P e3 . Respectively,
P e′1 , P e′2 , P e′3 draw (p1, p2, p3) proportions from from P e1 ,
(p2, p3, p1) proportions from from P e2 , and (p2, p3, p1) pro-
portions from from P e3 .The proportions (p1, p2, p3) sum
to one.

The mixing proportions we considered are: (0, 0, 1),
(0, 0.1, 0.9), (0, 0.2, 0.8), (0, 0.3, 0.7), (0, 0.4, 0.6),
(0, 0.5, 0.5),(0.1, 0.1, 0.8),(0.1, 0.2, 0.7),(0.1, 0.3, 0.6),
(0.1, 0.4, 0.5),(0.2, 0.2, 0.6), (0.2, 0.3, 0.5),(0.2, 0.4, 0.4),
(0.3, 0.3, 0.4).
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