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Abstract

The defining challenge for causal inference from
observational data is the presence of ‘confounders’,
covariates that affect both treatment assignment
and the outcome. To address this challenge, prac-
titioners collect and adjust for the covariates, hop-
ing that they adequately correct for confounding.
However, including every observed covariate in
the adjustment runs the risk of including ‘bad con-
trols’, variables that induce bias when they are
conditioned on. The problem is that we do not al-
ways know which variables in the covariate set are
safe to adjust for and which are not. To address
this problem, we develop Nearly Invariant Causal
Estimation (NICE). NICE uses invariant risk mini-
mization (IRM) (Arjovsky et al., 2019) to learn a
representation of the covariates that, under some as-
sumptions, strips out bad controls but preserves suf-
ficient information to adjust for confounding. Ad-
justing for the learned representation, rather than
the covariates themselves, avoids the induced bias
and provides valid causal inferences. We evaluate
NICE on both synthetic and semi-synthetic data.
When the covariates contain unknown collider vari-
ables and other bad controls, NICE performs better
than adjusting for all the covariates.

1 INTRODUCTION

Consider the following causal inference problem.

We want to estimate the effect of sleeping pills on lung dis-
ease using electronic health records, collected from multiple
hospitals around the world. For each hospital e and patient i,
we observe whether the drug was administered T e

i , the pa-
tient’s outcome Y e

i , and their covariates Xe
i , which includes

*Code is available at github.com/claudiashi57/nice.

comprehensive health and socioeconomic information. The
different hospitals serve different populations, so the distri-
bution of the covariate Xe is different across the datasets.
But the causal mechanism between sleeping pills T e and
lung disease Y e remains the same across hospitals.

The data in this example are observational. One challenge
to causal inference from observational data is the pres-
ence of confounding variables that influence both T and
Y (Rosenbaum and Rubin, 1983; Pearl, 2000). To account
for confounding, we try to find them among the covariates
X and then adjust for them, e.g., using a method like G-
computation (Robins, 1986), backdoor adjustment (Pearl,
2009), or inverse propensity score weighting (Austin, 2011).
The selected covariates are called the adjustment set.

To ensure that we have adjusted for all confounding vari-
ables, we might include every covariate in the adjustment
set. However, naively adjusting for all covariates runs the
risk of including “bad controls” (Bhattacharya and Vogt,
2007; Pearl, 2009; Cinelli and Hazlett, 2020), variables that
induce bias when they are adjusted for. In the example, a
health condition caused by lung disease would be a bad
control. It is causally affected by the outcome.

How can we exclude bad controls from the adjustment set?
One approach is to select confounders through a causal
graph (Pearl, 2009). We ask a domain expert to construct
a causal graph or a class of equivalent graphs. We then
select the confounders for the causal adjustment. However,
in practice, we may have thousands of covariates in the
dataset. It may be too difficult to construct a graph with
thousands of nodes.

Another approach is to restrict the adjustment set to those
that are known to be pre-treatment covariates (Rosenbaum,
2002; Rubin, 2009). However, this approach can lead us to
include covariates that are predictive of treatment assign-
ment but not the outcome. If the record is sufficiently rich,
this information can lead to near-perfect prediction of treat-
ment, which is a problem for causal inference. Specifically,
this creates an apparent violation of overlap, the requirement
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that each unit had a non-zero probability of receiving treat-
ment (D’Amour et al., 2020). Practically, near-violations of
overlap can lead to unstable or high-variance estimates of
treatment effects (Ding et al., 2017).

But these methods, and their challenges, suggest a new
approach for causal estimation — we want a representation
of the covariates that contains sufficient information for
causal adjustment, excludes bad controls, and helps provide
low-variance causal estimates. This paper presents a method
to find such a representation.

Problem. We now state the problem plainly. We want to
do causal inference with data collected from multiple envi-
ronments, as in the hospitals’ example above. The observed
covariates are rich — including all the causal parents of the
outcome. There are no unobserved confounders, but iden-
tifiability (Pearl, 2000) or strong ignorability (Rosenbaum
and Rubin, 1983) is not guaranteed, due to the possible ex-
istence of bad controls. We do not know which covariates
are safe to adjust for. The main question is: how can we
use the multiple environments to find a representation of the
covariates for valid causal estimation?

To address this question, we develop nearly invariant causal
estimation (NICE), an estimation procedure for causal in-
ference from observational data where the data comes from
multiple datasets. The datasets are drawn from distinct en-
vironments, corresponding to distinct distributions of the
covariates.

NICE applies Invariant Risk Minimization (IRM) (Arjovsky
et al., 2019) for causal adjustment. IRM is a framework for
solving prediction problems. The goal is produce a predictor
that is robust to changes in the deployment domain. The
IRM procedure uses data from multiple environments to
learn an invariant representation Φ(T,X), a function such
that the outcome Y and the representation of the treatment
and covariates Φ(T,X) have the same relationship in each
environment. Predictors built on top of this representation
will have the desired robustness.

The main insight that enables NICE is that the IRM in-
variant representation also suffices for causal adjustment.
Informally, a representation is invariant if and only if it is
informationally equivalent to the causal parents of the out-
come Y (Arjovsky et al., 2019). For example, an invariant
representation of the medical records will isolate the causal
parents of lung disease. Assuming no mediators — variables
on the causal path between the treatment and outcome —
in the covariate set, the causal parents of Y constitute an
adjustment set that suffices for causal adjustment, minimally
impacts overlap, and that excludes all bad controls. Hence,
adjusting for an invariant representation is a safe way to
estimate the causal effect.1

1To keep the exposition simple, we defer the discussion of
mediators to the appendix.

Contributions. This paper develops NICE, an estimation
procedure that leverages data from multiple environments to
do causal inference. It articulates the theoretical conditions
under which NICE provides unbiased causal estimates and
evaluates the method on synthetic and semi-synthetic causal
estimation problems.

2 RELATED WORK

Estimating the treatment effect from observational data con-
sists of identification and estimation. The motivating prob-
lem is related to identification — we do not know what
covariates to adjust for.

In the introduction, we discussed two widely applied adjust-
ment approaches: selecting covariates basing on a causal
graph (Pearl, 2000) and restricting to covariates that are
known to be pre-treatment (Rosenbaum, 2002; Rubin, 2009).
Another approach to select the adjustment set is through
causal discovery.

Causal discovery methods aim to recover causal relation-
ships or causal direction from data (Murphy, Mian, et al.,
1999; Spirtes et al., 2000; Shimizu et al., 2006; Glymour
et al., 2019; Shortreed and Ertefaie, 2017; Peters et al., 2016;
Mooij et al., 2016; Heinze-Deml et al., 2018). In particu-
lar, NICE shares the same setup as invariance based causal
discovery methods. Peters et al. (2016), Heinze-Deml et al.
(2018), and Pfister et al. (2019) leverage multiple environ-
ments to find the causal predictors of the target variable in
the linear, non-linear, and time series settings.

Causal discovery assumes that the observed covariates corre-
spond to well-defined variables in the causal graph (e.g., no
measurement issues). The representation learning approach
of NICE does not require this assumption. Further, even
in the case where this assumption holds, causal discovery
methods are designed to conservatively select parents of Y .
In practice, they often fail to select many actual parents. In
Section 5.2, we show that while the causal discovery method
(Peters et al., 2016) is better at stripping out bad controls, it
also discards confounders, which leads to poor estimation
quality.

With identification, we can then estimate the treatment effect.
There is extensive literature on different statistical estima-
tors (Austin, 2011; Glynn and Quinn, 2010; VanderWeele
and Shpitser, 2011; Funk et al., 2011) and machine learning
methods adapted for causal inference (Hill, 2011; Athey
and Imbens, 2016; Beck et al., 2000; Hartford et al., 2017;
Shalit et al., 2016; Louizos et al., 2017; Yoon et al., 2018;
Shi et al., 2019). All these estimators and methods assume
identification and focus on improving the finite sample esti-
mation quality. In contrast, NICE considers a setting where
identification is not guaranteed.

NICE uses the principle of invariance to solve a causal
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Figure 1: If the composition of Xe is unknown, the
treatment effect cannot be identified. (cn=confounder,
cl=collider, pa=parents, an=ancestors, de=descendants)

inference problem. A thread of related work uses the same
principle to tackle different problems.

The principle of invariance is: if a relationship between X
and Y is causal, then it is invariant to perturbations that
changes the distributions of X . Conversely, if a relationship
is invariant to many different perturbations, it’s likely be
causal (Haavelmo, 1943; Bühlmann, 2018). This principle
inspired a line of causality-based domain adaptation and
robust prediction work.

Rojas-Carulla et al. (2018) apply the idea for causal transfer
learning, assuming the conditional distribution of the target
variable given some subset of covariates is the same across
domains. Magliacane et al. (2018) relax that assumption.
Peters et al. (2016) and Heinze-Deml et al. (2018) apply
this principle for causal variable selection from multiple
environments. Zhang et al. (2020) recast the problem of
domain adaptation as a problem of Bayesian inference on
the graphical models. Arjovsky et al. (2019) advocate a
new generalizable statistical learning principle that is based
on the invariant principle. Rosenfeld et al. (2020) critically
examined the generalizability of the proposed principle and
its implementations.

These works focus of robust prediction. NICE focuses
causal estimation. NICE is complementary as it studies
the idea of applying domain adaptation methods for causal
estimation. In particular, we focus on the application of IRM
for treatment effect estimation.

3 NEARLY INVARIANT CAUSAL
ESTIMATION

We observe multiple datasets. Each dataset is from an envi-
ronment e, in which we observe a treatment T e, an outcome
Y e, and other variables Xe, called covariates. Assume each
environment involves the same causal mechanism between
the causal parents of Y e and Y e, but otherwise might be
different from the others, e.g., in the distribution of Xe. As-
sume we have enough information in Xe to estimate the
causal effect, i.e., it contains a set of variables sufficient for
adjustment. But we do not know the status of each covariate
in the causal graph. A covariate might be an ancestor, con-

founder, collider, parent, or descendant. Figure 1 shows an
example graph that defines these terms.

Each environment is a data generating process (DGP)
with a causal graph and an associated probability distri-
bution P e. The data from each environment is drawn i.i.d.,
{Xe

i , T
e
i , Y

e
i }

iid∼ P e. The causal mechanism relating Y to
T and X is assumed to be the same in each environment. In
the example from the introduction, different hospitals consti-
tute different environments. All the hospitals share the same
causal mechanism for lung disease, but they vary in the pop-
ulation distribution of who they serve, their propensity to
prescribe sleeping pills, and other aspects of the distribution.

The goal is to estimate the average treatment effect on the
treated (ATT)2 in each environment,

ψe , E [Y e |do(T e = 1), T e = 1]

−E [Y e |do(T e = 0), T e = 1] .
(3.1)

The use of do notation (Pearl, 2000) indicates that the esti-
mand is causal. The ATT is the difference between interven-
ing by assigning the treatment and intervening to prevent
the treatment, averaged over the people who were actually
assigned the treatment. The causal effect for any given indi-
vidual does not depend on the environment. However, the
ATT does depend on the environment because it averages
over different populations of individuals.

3.1 CAUSAL ESTIMATION

For the moment, consider one environment. In theory, we
can estimate the effect by adjusting for the confounding vari-
ables that influence both T and Y (Rosenbaum and Rubin,
1983). Let Z(X) be an admissible subset of X—it contains
no descendants of Y and blocks all “backdoor paths” be-
tween Y and T (Pearl and Paz, 2014). An admissible subset
in Figure 1 is any that includes Xcn but excludes Xcl and
Xde. Using Z(X), the causal effect can be expressed as a
function of the observational distribution,

ψ = EX [EY [Y |T = 1, Z(X)]

− EY [Y |T = 0, Z(X)] |T = 1].
(3.2)

We estimate ψ in two stages. First, we fit a model Q̂ for the
conditional expectation Q(T,Z(X)) = EY [Y |T,Z(X)].
Second, we use Monte Carlo to approximate the expectation
over X ,

ψ̂ =
1∑
i ti

∑
i:ti=1

(
Q̂(1, Z(Xi))− Q̂(0, Z(Xi))

)
, (3.3)

2For simple exposition, we focus on the ATT estimation. The
method can also be applied to conditional average treatment effect
or average treatment estimations.
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The function Q̂ can come from any model that predicts Y
from {T,Z(X)}.

If the causal graph is known then the admissible set Z(X)
can be easily selected and the estimation in (3.2) is straight-
forward. But here we do not know the status of each
covariate—if we inadvertently include bad controls in Z(X)
then we will bias the estimate. To solve this problem, we
develop a method for learning an admissible representation
Φ(T,X), which is learned from datasets from multiple envi-
ronments. An admissible representation is a function of the
full set of covariates but one that captures the confounding
factors and excludes the bad controls, i.e., the descendants of
the outcome that can induce bias.3 Given the representation,
we estimate the conditional expectations EY [Y |Φ(T,X)]
and proceed to estimate the causal effect.

3.2 INVARIANT RISK MINIMIZATION

To learn an admissible representation, we use IRM. IRM is
a framework for learning predictors that perform well across
many environments. We first review the main ideas of IRM
and then adapt it to causal estimation.

Each environment is a causal structure and probability dis-
tribution. Informally, for an environment to be valid, it must
preserve the causal mechanism relating the outcome and the
other variables.

Definition 3.1 (Valid environment Arjovsky et al., 2019).
Consider a causal graph G and a distribution P (X,T, Y )
respecting G. Let Ge denote the graph under an inter-
vention and P e = P (Xe, T e, Y e) be the distribution in-
duced by the intervention. The intervention can be either
atomic or stochastic. An intervention is valid with respect
to (G, P ) if (i) EP e [Y e|Pa(Y )] = EP [Y |Pa(Y )], and (ii)
V (Y e|Pa(Y )) is finite. An environment is valid with re-
spect to (G, P ) if it can be created by a valid intervention.

Given this definition, a natural notion of an invariant rep-
resentation is one where the conditional expectation of the
outcome is the same regardless of the environment.

Definition 3.2 (Invariant representation). A represen-
tation Φ(T,X) is invariant with respect to environ-
ments E if and only if E [Y e1 |Φ(T e1 , Xe1) = π] =
E [Y e2 |Φ(T e2 , Xe2) = π] for all e1, e2 ∈ E .

Arjovsky et al. (2019) recast the problem of finding an invari-
ant representation as one about prediction. In this context,
the goal of IRM is to learn a representation such that there
is a single classifier w that is optimal in all environments.
Thus IRM seeks a composition w ◦ Φ(T e, Xe) that is a
good estimate of Y e in the given set of environments. This

3An admissible representation is analogous to an ‘admissible
set’ (Pearl, 2000), which is a valid adjustment set.

estimate is composed of a representation Φ(T,X) and a
classifier w that estimates Y from the representation.

Definition 3.3 (Invariant representation via predictor Ar-
jovsky et al., 2019). A data representation Φ : X → H
elicits an invariant predictor across environments E if there
is a classifier w : H → Y that is simultaneously optimal for
all environments. That is,

w ∈ arg min
w̄:H→Y

Re(w̄ ◦ Φ) for all e ∈ E , (3.4)

where Re is the the training objective’s risk in environment
e.

The invariant representations in Definitions 3.2 and 3.3
align if we choose a loss function for which the mini-
mizer of the associated risk in (3.4) is a conditional ex-
pectation. (Examples include squared loss and cross en-
tropy loss.) In this case, we can find an invariant predictor
Qinv = w ◦ Φ(T e, Xe) = E [Y |Φ(T,X)] by solving (3.4)
for both w and Φ.

However, the general formulation of (3.4) is computationally
intractable, Arjovsky et al. (2019) introduce IRMv1 as a
practical alternative.

Definition 3.4 (IRMv1Arjovsky et al., 2019 ). IRMv1 is:

Φ̂ = arg min
Φ

∑
e∈E

Re(1.0·Φ)+λ ‖ ∇w|w=1.0R
e(w·Φ) ‖2 .

(3.5)

Notice here, IRMv1 fixes the classifier to the simplest pos-
sible choice: multiplication by the scalar constant w = 1.0.
The task is then to learn a representation Φ such that
w = 1.0 is the optimal classifier in all environments. In
effect, Φ becomes the invariant predictor, as Qinv = 1.0 ·Φ.
The gradient norm penalizes model deviations from the op-
timal classifier in each environment e, enforcing the invari-
ance. The hyperparameter λ controls the trade-off between
invariance and predictive accuracy.4

In practice, we parameterize Φ with a neural network that
takes {tei , xei} as input and outputs a real number. Let ` be a
loss function, such as squared error or cross entropy, and ne
be the number of units sampled in environment e. Then, we
learn Φ̂ by solving IRMv1 where each environment risk is
replaced with the corresponding empirical risk:

R̂e(Q) =
1

ne

∑
i

`(yei , Q(tei , x
e
i )). (3.6)

Q̂inv = 1.0 · Φ̂ is an empirical estimate of E [Y |Φ(T,X)].

4For details on IRMv1, see (Arjovsky et al., 2019, section 3.1)
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3.3 NEARLY INVARIANT CAUSAL ESTIMATION

We now introduce nearly invariant causal estimation (NICE).
NICE is a causal estimation procedure that uses data col-
lected from multiple environments. NICE exploits invari-
ance across the environments to perform causal adjustment
without detailed knowledge of which covariates are bad
controls.

Informally, the key connection between causality and invari-
ance is that if a representation is invariant across all valid
environments then the information in that representation is
the information in the causal parents of Y . Since the causal
structure relevant to the outcome is invariant across envi-
ronments, a representation capturing only the causal parents
will also be invariant. We can see that Pa(Y ) is the minimal
information required for invariance. A representation that is
invariant over all valid environments will be minimal; hence,
an invariant representation must capture only the parents of
Y .

NICE is based on two insights. First, as just explained,
if Φ(T,X) is invariant over all valid environments, then
E [Y |T,Pa(Y ) \ {T}] = E [Y |Φ(T,X)]. Second, Pa(Y )\
{T} suffices for causal adjustment. That is, Pa(Y ) \ {T}
blocks any backdoor paths and does not include bad controls.
Following (3.2),

ψ = E[E [Y | T = 1,Pa(Y ) \ {T}]
− E [Y | T = 0,Pa(Y ) \ {T})] |T = 1]

(3.7)

Since E [Y |T,Pa(Y ) \ {T}] = E [Y |Φ(T,X)],

ψ = E [E [Y | Φ(1, X)]− E [Y | Φ(0, X)] |T = 1] .
(3.8)

Recall the invariant predictor Qinv(T,X) =
E [Y | Φ(T,X)]. The NICE procedure is

1. Input: multiple datasets De := {(Xe
i , Y

e
i , T

e
i )}ne

i=1.

2. Estimate the invariant predictor Q̂inv = 1.0 · Φ̂ using
an invariant objective, such as IRMv1.

3. Compute ψ̂e = 1∑
i t

e
i

∑
i:tei =1

Q̂inv(1, xei )− Q̂inv(0, xei )

for each environment e.

Similar to the function Q̂ in (3.2), Q̂inv can come from
any prediction model that uses an invariant objective. In
Section 5, we use linear regression, TARNet (Shalit et al.,
2016), and Dragonnet (Shi et al., 2019).

We call the procedure ‘nearly’ invariant as we only ever
have access to a limited number of environments, so we
cannot be certain that we’ll achieve invariance across all
valid environments.

4 JUSTIFICATION OF NICE

We now establish the validity of NICE as a causal estimation
procedure. All proofs are in the appendix.

First consider the case where we observe data from a suffi-
ciently diverse set of environments that the learned represen-
tation is invariant across all valid environments. We prove
that conditioning on a fully invariant representation is the
same as conditioning on the parents of Y .

Lemma 4.1. Suppose that E [Y |Pa(Y ) = a] 6=
E [Y |Pa(Y ) = a′] whenever a 6= a′.Then a repre-
sentation Φ is invariant across all valid environments if
and only if E [Y e|Φ(T e, Xe)] = E [Y |Pa(Y )] for all valid
environments.

Lemma 4.1 helps show that a representation that elicits an
invariant predictor suffices for adjustment.

Theorem 4.2. Let L be a loss function such that the mini-
mizer of the associated risk is a conditional expectation, and
let Φ be a representation that elicits a predictor Qinv that is
invariant for all valid environments. Assuming Xe does not
contain mediators between the treatment and the outcome,
then ψe = E

[
Qinv(1, Xe)−Qinv(0, Xe)|T e = 1

]
.

Theorem 4.2 shows that the NICE estimand is equal to the
ATT as long as the predictor Qinv is invariant across all
valid environments.

In practice, if a predictor is invariant across a limited set of
diverse environments, it may generalize to all valid environ-
ments. Assuming a linear data generating process, Arjovsky
et al. (2019) establish sufficient conditions on the number
and diversity of the training environments such that the
learned representation generalizes to all valid environments.
In the non-linear case, there are no known sufficiency results.
However, Arjovsky et al. (2019) give empirical evidence
that access to even a few environments may suffice.5

In addition to identifiability, non-parametric estimation of
treatment effects with finite data, i.e., (3.3), requires ‘pos-
itivity’ or ‘overlap’ – both treatment and non-treatment
have a non-zero probability for all levels of the confounders
(Rosenbaum and Rubin, 1983; Imbens, 2004). Let Φ(Xe)
be the covariate representation, i.e., Φ(Xe) = {Φ(T e =
1, Xe),Φ(T e = 0, Xe)}, in the following theorem, we es-
tablish that if the covariate set X is sufficient for overlap,
then Φ(Xe) is sufficient for overlap.

Theorem 4.3. Suppose ε ≤ P (T e = 1|Xe) ≤ 1 − ε with
probability 1, then ε ≤ P (T e = 1|Φ(Xe)) ≤ 1 − ε with
probability 1.

The intuition is that the richer the covariate set is, the more
likely it is to accurately predict the treatment assignment

5Establishing the sufficiency result of IRM is an open question.
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Figure 2: We observe {X1, X2}, but do not know its com-
position. In (a) {X1, X2} is a valid adjustment. In (b) and
(c), X2 is downstream of Y , so {X1, X2} is not a valid
adjustment.

(D’Amour et al., 2020). The covariate representation Φ(Xe),
by definition, contains less information than Xe, therefore
Φ(Xe) satisfies overlap if Xe satisfies overlap.

Even when invariance across all valid environments is not
guaranteed, NICE may still improve the estimation quality
when there are possible colliders in the adjustment set. If
the observed environments are induced by valid interven-
tions, either atomic or stochastic, on the bad controls, an
invariant representation over these environments can also
exclude bad controls. Even when the representation does
not exclude the bad controls, invariance may remove at least
some (if not all) collider dependence. Intuitively, condition-
ing on a subset of collider information should reduce bias in
the resulting estimate. Theorem 7.1 in the appendix shows
that this intuition holds for at least one illustrative causal
structure. A fully general statement remains open.

The case of mediators. So far, we assumed the observed
covariate set X does not contain mediators between T and
Y . What happens to the interpretation of the learned param-
eter, ψ̂e, if the adjustment set contains mediators?

Intuitively, NICE captures the information in the direct link
between T and Y . Concretely, if there are no mediators,
the parameter reduces to ATT. If there are mediators but no
confounders, the parameter reduces to the Natural Direct
Effect (Pearl, 2000). If there are mediators and confounders,
we define the parameters as the natural direct effect on the
treated (NDET). The mathematics definitions are in the
appendix.

5 EMPIRICAL STUDIES

We study the performance of NICE with three experiments.
We are interested in three empirical questions: (1) Does
NICE strip out bad controls in practice? (2) Is NICE "cost-
less" when there are no bad controls? (3) What is the effect
of different amounts of environmental variation on NICE’s
performance.

We find that (1) when there are bad controls in the adjust-
ment set, NICE can reduce bias induced by the bad controls.

(2) When there are no bad controls in the adjustment set,
NICE does not hurt the estimation quality. (3) Whether
NICE can strip out bad controls depends on the diversity of
the environments. The more diverse the environments, the
more likely it is that NICE can strip out the bad controls.

5.1 EXPERIMENTAL SETUP

We construct three experiments corresponding to different
settings. We first consider the setting where NICE is theoreti-
cally guaranteed to strip out bad controls. In Section 5.2, the
data are collected from diverse environments, and the DGPs
are linear. In the non-linear setting, there are no known suf-
ficiency results for the generalizability of IRM. Therefore,
there is no theoretical guarantee that NICE can strip out bad
controls.

To study whether NICE can reduce bias from bad con-
trols empirically, we validate NICE using non-linear semi-
synthetic benchmark datasets in Section 5.3. Furthermore,
we study the effect of different amounts of environmental
variation on NICE’s performance in Section 5.4.

Causal Estimands & Evaluation metrics.
We consider two estimands: the sample av-
erage treatment effect on the treated (SATT),
ψs = 1∑

i ti

∑
i:ti=1 (Q(1, Z(xi))−Q(0, Z(xi)))

and the conditional average treatment effect (CATE),
τ(xi) = Q(1, Z(xi)) − Q(0, Z(xi)) (Imbens, 2004). For
the SATT, the evaluation metric is the mean absolute
error (MAE), εatt = |ψ̂s − ψs|. For the CATE, the metric
is the Precision in Estimation of Heterogeneous Effect
(PEHE) εPEHE = 1

n

∑n
0 (τ̂(xi) − τ(xi))

2 (Hill, 2011).
PEHE reflects the ability to capture individual variation in
treatment effects. The main paper shows the MAE of the
SATT averaged across environments. For the evaluation of
CATE, see the appendix.

Predictor Choices. Under the NICE procedure, the invari-
ant predictor Q̂inv can be any class of predictor trained with
an IRMv1 objective. In the linear settings, we use OLS-2 as
the predictor. OLS-2 is linear regression with two separate
regressors for the treated and the control population.

In the nonlinear settings, we consider two neural network
models similar to the structure of TARNet (Shalit et al.,
2016) and Dragonnet (Shi et al., 2019). TARNet is a two-
headed model with a shared representation Z(X) ∈ Rp,
and two heads for the treated and control representation.
The network has 4 layers for the shared representation and
3 layers for each expected outcome head. The hidden layer
size is 250 for the shared representation layers and 100 for
the expected outcome layers. We use Adam (Kingma and
Ba, 2014) as the optimizer, set the learning rate as 0.001, and
an l2 regularization rate of 0.0001. For Dragonnet, there’s an
additional treatment head, which makes treatment prediction
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Figure 3: NICE strips out bad controls, which leads to better
downstream treatment effect estimation. ICP (causal discov-
ery) strips out bad controls, but also useful confounders (see
figure 4). The non-causal error is measured by the mean
square error of the weights on X2. Lower is better.

from the shared representation. For the hyper-parameter λ
used in IRMv1, we use λ = 10 in the linear settings and
λ = 100 in the non-linear settings.

Since we use the same predictor across different DGPs, the
hyper-parameters are chosen arbitrarily. We use data from
all environments to train and evaluate the predictor. The
main paper presents results using TARnet. Results derived
from Dragonnet are in the appendix.

Adjustment Schemes. We compare estimation quality
produced by the following adjustment schemes: (1) adjust-
ing for all covariates, (2) NICE, and (3) causal variable
selection. Under (1), we pool the data across environments
to fit a predictor Q̂ and compute SATT using (3.2). Under
(3), we first use Invariant Causal Prediction (ICP) (Peters
et al., 2016) to select an adjustment set. ICP is a variable
selection method that identifies the target variable’s causal
parents by leveraging data from multiple environments. We
then pool data across environments, use the adjustment set
to fit a predictor and compute SATT using (3.2). The esti-
mation procedure of NICE is described in Section 3.3.

5.2 NICE IN LINEAR SETTINGS

We simulate data with the three causal graphs in Figure 2.
With a slight abuse of notation, each intervention e gen-
erates a new environment e with interventional distribu-
tion P (Xe, T e, Y e). T e is the binary treatment and Y e is
the outcome. Xe is a 10-dimensional covariate set that dif-
fers across DGPs. Xe = (Xe

1 , X
e
2), where Xe

1 is a five-
dimensional confounder. Xe

2 is either noise, a descendant,

Figure 4: NICE reduces bias when the adjustment set con-
tains bad controls and does not hurt if the adjustment set is
valid. We use ICP for the causal discovery method, which
is often too conservative. When ICP returns an empty set,
estimated causal effect is zero. The figure reports average
MAE and standard error of the SATT over 10 simulations.

or a collider in each DGP. The DGPs are:

Xe
1 ← N (0, e2)

T e ← Bern(sigmoid(Xe
1 · wxte +N (0, 1)))

τ ← 5 +N (0, σ2)

Y e ← Xe
1 · wxye + T e · τ +N (0, e2)

In (a) Xe
2 ← N (0, 1), in (b) Xe

2 ← e ∗ Y e +N (0, 1), and
in (c) Xe

2 ← e ∗ Y e + T e +N (0, 1).

For evaluation, following (Arjovsky et al., 2019), we create
three environments E = {0.2, 2, 5}. We ran 10 simulations.
In each simulation, we draw 1000 samples from each envi-
ronment. We consider two types of variations: (1) whether
the observed covariates S(X) are scrambled versions of the
true covariates X . If scrambled, S is an orthogonal matrix.
If not scrambled, S is an identity matrix. (2) whether the
treatment effects are heteroskedastic across environments.
In the heteroskedastic setting τ ← 5 + N (0, e2). In the
environment-level homoskedastic setting τ ← 5 +N (0, 1).

We compare the estimation quality produced by four differ-
ent adjustment approaches: (1) adjusting for all covariates,
(2) causal variable selection, (3) NICE, and (4) No adjust-
ment. The results in Figure 4 and Figure 3 are under the
unscrambled and heteroskedastic variant. The results of the
other variants are in the appendix.

Analysis. Figure 4 reports the average of the MAE of
SATT estimates over all three environments. We observe
that when the covariate set does not include bad controls—
simulation setting (a)— NICE performs as well as adjusting
for all covariates. When the covariate set includes bad con-
trols that are closely related to the outcome, that is (b) and
(c), NICE can help reduce the estimation bias.
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To understand why NICE reduces the estimation bias, we
look at the weights of the control predictor. Ideally, the
weights that correspond to the bad controls should be 0. As
shown in Figure 3, the predictor trained an IRMv1 objective
places less weight on the bad controls than the predictor
using empirical risk minimization. We observe ICP suc-
cessfully strips out most of the bad controls. However, it
produces worse causal estimates as it also strips out con-
founders. We believe that this is because (1) the amount of
noise in the DGP is non-trivial, and (2) in some settings,
the observed covariates are scrambled versions of the true
covariates. The result suggests that while ICP is a robust
causal discovery method, it should not be used for down-
stream estimation. A similar observation is made in Zhao et
al. (2016), where slight perturbations on ICP’s assumptions
might lead to poor performance.

5.3 NICE IN NON-LINEAR SETTINGS

We validate NICE for the non-linear case on a benchmark
dataset, SpeedDating. SpeedDating was collected to study
the gender difference in mate selection (Fisman et al., 2006).
The study recruited university students to participate in
speed dating, and collected objective and subjective infor-
mation such as ‘undergraduate institution’ and ‘perceived
attractiveness’. It has 8378 entries and 185 covariates. ACIC
2019’s simulation samples subsets of the covariates to simu-
late binary treatment T and binary outcome Y . Specifically,
it provides four modified DGPs: Mod1: parametric models;
Mod2: complex models; Mod3: parametric models with
poor overlap; Mod4: complex models with treatment het-
erogeneity. Each modification includes three versions: low,
med, high, indicating an increasing number of covariates
included in the models for T and Y .

Table 1: If the adjustment set is valid, NICE does not hurt
the estimation performance. The table reports average MAE
and bootstrap standard deviations of the SATT estimation.

Valid Adjustment εatt
Mod1 Mod2 Mod3 Mod4

Low Adjust All .04± .08 .05± .09 .07± .09 .01± .01
NICE .07± .03 .02± .01 .09± .03 .04± .02

Med Adjust All .07± .10 .05± .05 .04± .04 .07± .08
NICE .05± .02 .04± .03 .05± .03 .03± .02

High Adjust All .07± .07 .06± .05 .06± .07 .04± .04
NICE .02± .01 .06± .03 .04± .02 .07± .04

The ACIC simulations are designed to assess the estimation
quality of predictors and estimators. They do not come
in multiple environments, nor do the covariates include
bad controls. To create multiple environments, we draw
6000 samples and select a covariate x that’s not the causal
parent of Y . We sort the samples based on x and divide
them into three equal sized environments. For each DGP,
we draw 10 bootstrap samples. To simulate bad controls,
we included 20 copies of a collider in the adjustment set:

Table 2: NICE reduces estimation bias in the presence of bad
controls. The table reports the average MAE and bootstrap
standard deviation of SATT.

Bad Controls in Adjustment Set εatt
Mod1 Mod2 Mod3 Mod4

low Adjust All .26± .09 .42± .03 .34± .08 .46± .09
NICE .09± .07 .03± .01 .11± .04 .08± .04

med Adjust All .38± .10 .35± .06 .40± .17 .3± .09
NICE .06± .03 .06± .03 .06± .02 .03± .03

high Adjust All .32± .14 .38± .09 .42± .05 .28± .05
NICE .05± .03 .11± .03 .16± .05 .11± .05

At Ay A1

Xt Xy

T Y

Z

Figure 5: The DGP for Section 5.4. The adjustment set {X,
A} is valid. Adjustment set {X, A, Z} is not valid.

Xe
co = T e + Y e +N (0, e2), where e ∈ {0.01, 0.2, 1}.

Analysis. We compare two adjustment schemes: adjusting
for all covariates and NICE. We first consider the setting
where there are no bad controls. Table 1 reports the average
SATT MAE and standard deviations over 10 bootstraps
under two adjustment schemes. We observe that NICE does
not hurt the estimation quality in comparison to adjusting
for all covariates.

We also consider the setting where there is a strong collider.
As shown in Table 2, NICE reduces collider bias across
simulation setups. However, we also observe that while it
reduces the collider bias, it does not eliminate it completely.
One potential reason is that the predictor is not optimal.

5.4 THE EFFECT OF ENVIRONMENT
VARIATIONS ON NICE’S PERFORMANCE

In this experiment, we examine the effect of environment
variations on NICE’s performance. We simulate non-linear
data using the causal graph illustrated in Figure 5. The
details of the data simulation are in the appendix.

We first draw three source environments {P e1 , P e2 , P e3}
that are diverse. To control the level of environment varia-
tion, we construct three new environments {P e′1 , P e′2 , P e′3}
that are mixtures of the three source environments. Respec-
tively, P e′1 , P e′2 , P e′3 draw (p1, p2, p3) proportions from
P e1 , (p2, p3, p1) proportions from P e2 , and (p2, p3, p1)
proportions from P e3 . The proportions (p1, p2, p3) sum to
one.
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Figure 6: NICE mitigates bad controls more with access to
more diverse environments. The x-axis is the environmental
diversity. The y-axis is the average MAE of the SATT.

We approximate the diversity of the environments by the
diversity of the proportions. The diversity measure is:
1
3

∑
ij |pi−pj |. We consider 14 set of new environments, in-

duced by different combination of the mixture probabilities.
We compare the estimation quality of NICE when given a
covariate set that include bad controls {X,A,Z} against
adjusting for a valid covariate set {X,A}.

As shown in Figure 6, the more diverse the environments,
the more likely that NICE can strip out bad controls and
reduce bias. When environments are sufficiently diverse, the
learned representation is equivalent to a valid adjustment
set.

6 DISCUSSION

NICE lives at the intersection of representation learning and
causal inference, demonstrating how representation learning
ideas can be harnessed to improve causal estimation. Here
we have examined the causal setup where it’s unknown
which covariates are safe to adjust for. One important direc-
tion for future work is to expand this setting to one where
we combine partial causal knowledge with representation
learning for estimating effects in more general scenarios.
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