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A PROOF OF LEMMA 1

Lemma 1 If E and G are optimal encoder and generator
networks, i.e., PX,G(E(X)) = PX,X , then x = G(E(x))

Proof:

PX,X̂ = PX,X

p(x̂ = k) =

∫
x

p(x, x̂ = k)dx

= p(x = k, x̂ = k)

Therefore p(x̂ = k) is meaningful only if when x̂ = x, which
means G(E(x)) = x

B ARCHITECTURE AND TRAINING
DETAILS

We present the complete architecture information of Adver-
sarial Mirrored AutoEncoder (AMA) for CIFAR-10 and
SVHN experiments in Table-1 and for Fashion MNIST
and MNIST experiments in Table-2. We have used Spec-
tral GAN normalization only in CIFAR-10; SVHN experi-
ments where, in the discriminator D, BatchNorm is replaced
by Spectral Norm similar as implemented in SN-GAN pa-
per Miyato et al. [2018].

The whole pipe-line of our model, AMA, is trained end-to-
end with Adam optimizer with β1 = 0 and β2 = 0.9 for
Generator and Discriminator and β1 = 0.5 and β2 = 0.9
for Encoder, initial learning rate of 3e-4 and decaying it by
a factor of 0.1 at 30, 60 and 90 training epochs. We trained
each model for 100 epochs with a batch size of 256 for all
the datasets. If Atypical selection is enabled, we train the
model for first the 10 epochs only on normal samples, and
from 11th epoch onward we generate synthetic anomalies
and use them along with normal samples in training. We
use λinter = 0.5, λneg = 5 and λreg = 1 in all of our

CIFAR-10 and SVHN experiments. Refer to the appendix
for the hyperparameter values of MNIST experiments. In
OOD experiments, for CIFAR-10, we sampled for synthetic
anomalies inward and for SVHN and Fashion MNIST we
sampled outward. Experiments are performed using two
NVIDIA GTX-2080TI GPUs.

C LATENT SPACE REGULARIZATION
ABLATIONS

Simplex Interpolation vs MixUp MixUp Zhang et al.
[2017] is a popular augmentation technique based on 2-
point interpolation in image space. So we have performed
a comparative analysis of Simplex Interpolation in latent
space with MixUp in image space as shown in Fig. 1 using
AMA architecture. In this figure, we show the results when
the anomalies arise within the same dataset i.e. CIFAR-
10 where one class is considered normal and the rest 9
as anomalous. Except for 2 classes (‘dog’ and ‘airplane’),
AMA with Simplex Interpolation outperformed AMA with
MixUp in the rest. On average, AMA with Simplex Interpo-
lation model has 4% AUROC absolute gain over AMA with
Mixup.

Atypical selection vs Sipple 2020 Performance compar-
ison of Atypical Selection against Negative Sampling pro-
posed in Sipple [2020] is presented in Table 3. Atypical
Selection outperforms Sipple [2020]’s technique in all stud-
ied cases. We hypothesize that, since Atypical Selection
samples near the boundary of the latent space, it enforces
the encoder to create more compact latent space for normal
samples.

D ADDITIONAL ANALYSIS AND
RESULTS

Results on Tabular data: We present the performance of
AMA and a few baselines on two tabular datasets Arrhyth-
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Generator Encoder Discriminator
z ∈ R128

Dense, 4*4*256
ResBlock up 256
ResBlock up 256
ResBlock up 256

BN,ReLU,3 × 3 Conv, Tanh
Adam(β1= 0, β2= 0.999)

x ∈ R32×32×3

((4,4),2,1,64)
BN + LeakyReLU(0.2)

((4,4),2,1,128)
BN + LeakyReLU(0.2)

((4,4),2,1,256)
BN + LeakyReLU(0.2)

((4,4),1,0,128)
Adam(β1= 0.5, β2= 0.999)

(x, x̂) ∈ R32×32×6

ResBlock down 128
ResBlock down 128

ResBlock 128
ResBlock 128

ReLU
Global sum pooling

dense→ 1
Adam(β1= 0, β2= 0.999)

LR = 3e-4, Batch Size = 256, Epoch=100, λinter = 0.5, λneg = 5, λreg = 1 and δ = 0.5.

Table 1: CIFAR-10 and SVHN Architecture Detail. We use architecture from Miyato et al. [2018] and Gulrajani et al. [2017],
Encoder Structure is represented as (filter_size,stride,padding,output_ channel). The input to the discriminator is (x, x) or
(x, x̂), where images are stacked on the channel dimension. x̂ is the reconstruction of x. Atypical Selection done inward for
CIFAR-10 experiments while it is done outward for SVHN experiments.

Generator Encoder Discriminator
z ∈ R64

Linear(64,1024)+ReLU
Linear(1024,7*7*128)

+ReLU
ConvTranspose2d(4,4),2,2,64 +

RELU
ConvTranspose2d(4,4),2,2,1 + Tanh

x ∈ R28×28×1

Conv((4,4),2,2,64) + RELU
Conv((4,4),2,2,128) + RELU

Dense(1024) + RELU
Dense(64)

(x, x̂) ∈ R28×28×2

Conv((4,4),2,2,64) +
LeakyReLU(0.2)

Conv((4,4),2,2,128) +
LeakyReLU(0.2)

Dense(1024) + LeakyReLU(0.2)
Dense(1)

LR = 3e-4, Batch Size = 256, Epoch=100, λinter = 0.5, λneg = 5, λreg = 1 and δ = 0.5. Atypical Selection done outward.

Table 2: FashionMNIST and MNIST Architecture Detail for OOD as well as the within-dataset anomalies experiments.
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Figure 1: Comparative analysis - Simplex Interpolation
vs MixUp augmentation when either of them are used in
AMA during training. The experiments are performed on
CIFAR-10 dataset with respective class on X-axis consid-
ered normal while rest of the 9 classes considered anoma-
lous. We observe that Simplex Interpolation in training leads
to a better model than using MixUp augmentation. The per-
formance is reported in AUC scores, higher the better.

mia1 and KDD992 in Table 4.

Loss function ablations: In the main paper, we have shown
both qualitatively and quantitatively how Mirrored Wasser-
stein loss improves the performance compared to Wasser-

1http://odds.cs.stonybrook.edu/arrhythmia-dataset/
2http://kdd.ics.uci.edu/databases/kddcup99

Table 3: In this table we present the performance of vari-
ous models trained using Negative selection proposed by
Sipple [Sipple, 2020] vs Atypical Selection proposed by us,
in presence and absence of Simplex interpolation. Values
reported are AUROC scores in format Sipple / Atypical Se-
lection

Experiment No interpolation With interpolation

FashionMNIST vs MNIST 0.778 /0.960 0.824 / 0.987
CIFAR-10 vs SVHN 0.752 / 0.820 0.819 / 0.958
SVHN vs CIFAR-10 0.723/0.991 0.896/0.993

stein loss. We explored a different paradigm where we add
an L2 loss to the regular Wasserstein loss and see how the
performance changes. We observe that the L2 loss term
indeed improves the performance. However it does not per-
form better than the Mirrored Wasserstein loss. We present
results on 3 OOD detection cases in Table 5.

Interpolation ablations: We also explore how applying
Berthelot interpolation Berthelot et al. [2018] in our model
impacts the performance. We observe that the interpolation
proposed by us performs better than the Berthelot interpola-
tion. We present the results on 3 datasets in Table 6

How do the synthetic anomalies look like? Because of
curse of dimensionality, the space spanned by all possible
negatives (or anomalies) is huge and sampling from this
space is a non-trivial problem. Hence, we use Atypical Se-



Table 4: Performance of AMA and a few baselines on tabu-
lar datasets. The performance is measured using AUROC
scores, higher the better.

Model Arrhythmia KDD99

Ano-GAN 0.59 0.89
ALAD 0.74 0.94

AMA (Ours) 0.83 0.99

Table 5: AMA’s performance with different losses. The per-
formance is measured using AUROC scores, higher the
better.

Dataset Wass. loss Wass. loss + L2 Mirrored W. loss

FashionMNIST vs MNIST 0.653 0.921 0.987
CIFAR-10 vs SVHN 0.8 0.87 0.958
SVHN vs CIFAR-10 0.503 0.819 0.993

lection to sample synthetic anomalies. We choose the points
lying on the line passing a random normal sample and origin.
Since we are sampling in latent space, for Fig. 2, we use
the generator to visualize them in image space. In reality
these synthetic anomalies look like low-contrast version of
normal samples. This is due to the fact that they are lying
on the line connecting a normal sample and origin. It would
be extremely hard to chance upon the latent representation
of other datasets in such high dimensional spaces.

Convergence analysis In Fig. 3, we present the case of
OOD detection in CIFAR-10 case and show how the AU-
ROC scores converge with progressing number of epochs.
We show 4 cases, (1) AMA with Mirrored Wasserstein loss
and Latent space regularization aspects (2) AMA without
Mirrored Wasserstein loss (3) AMA without simplex inter-
polation of normal samples in latent space (4) AMA without
Atypical selection. In most of the cases, model converges
by 30th epoch except for case 2. It seems Mirrored Loss is
important for quick convergence and better AUROC scores.

Corruption in the training data One of the primary as-
sumptions we made in our problem setup is, the training
data consists of only normal samples. It is not a very realistic
assumption since anomalies get stowed away as normal sam-
ples sometimes. We checked how our model performance
gets affected when a few anomalies masked as normals
(corruptions) are mixed in during the training time. We anal-
ysed the case where anomalies arise from the same manifold
(same dataset) since it is a harder problem compared to OOD
anomalies from different dataset. We present the results of
experiments performed on CIFAR-10 dataset at different
levels of corruptions in Fig. 4. Following the same setting
from the main paper, in each of the experiments, one class
is considered normal and rest of the 9 classes are considered
anomalous. Let’s consider case of ‘dog’ as normal class with
5% corruption, in this experiment, in training we will have
5000 images of ‘dog’ class with 250 images randomly sam-

Table 6: Performance of AMA with different types of in-
terpolations on OOD detection case. The performance is
measured using AUROC scores, higher the better.

Dataset AMA w. Berthelot AMA

FashionMNIST vs MNIST 0.93 0.99
CIFAR-10 vs SVHN 0.87 0.96
SVHN vs CIFAR-10 0.92 0.99

0 25 0 25 0 25 0 25

0 25 0 25 0 25 0 25

0 25 0 25 0 25 0 25

0 25 0 25 0 25 0 25
Figure 2: Generations of synthetic anomalies sampled by
Atypical selection. Since the sampling is done on the line
connecting the origin and a random normal sample, some
of the synthetic anomalies look like low-contrast version of
normal samples.

pled from rest of the 9 classes and are marked normal. As
the level of corruption increases, intuitively the AUC scores
are dropping, but the performance drop is not quite drastic,
between 0 and 10% corruption, the average AUC drops by
4.6% in absolute. But anomalies, by definition should be
sparse, so 10% corruption model can be considered as the
lower bound of our model’s performance.

Additional ablation results In Fig. 5, we show ablation
studies of the regularization components of AMA. In this
figure we consider the case where anomalies arise from the
same dataset (In this case CIFAR-10). For few cases, the
contributions made by either of the components, Simplex
Interpolation or Atypical Selection is quite significant.

How do the reconstructions look like? We show how our
model is reconstructing the samples in Figures 6, 7 and
8. It is interesting that our model does not reconstruct the
anomalies well in some experiments, so while using our
model, it is possible to qualitatively tell apart which images
are normal and which ones are anomalies just by comparing
an image to its reconstruction.

How do the interpolations look like? In Figures 9 and 10,
we show how the interpolated latent representations look



Figure 3: Convergence analysis: In this figure, we show
how the validation AUROC scores change with respect
to training epochs for AMA model trained on CIFAR-10
dataset. We show the trend in all 4 ablation cases we dis-
cussed in the main paper. Intuitively, Mirrored Wasserstein
Loss plays an important role in convergence.
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Figure 4: Comparative analysis of the case when corrup-
tions (anomalies masked as normals) are introduced in train-
ing for CIFAR-10. Each experiment considers the class(on
X-axis) as normal data and rest 9 as anomalous data. Perfor-
mance is measured as AUC scores, higher the better. Despite
corruption, performance drop is not too high. All the experi-
ments are conducted with same hyper-parameters.

like compared to interpolations in image space. It is very
visible in FashionMNIST case, the latent interpolations are
generating realistic images as we interpolate between two
points in test data set. For the sake of brevity we do not show
the plots for the model trained on SVHN as the interpolation
performance is similar to CIFAR-10.

Misclassified In Figures 11, 12 and 13, we show the mis-
classified images from both normal and anomaly data distri-
bution. The False Negatives from both of the experiments
seem to have sharp changes across the pixels, like dotted
pattern frogs in CIFAR10 case, and clothes with patterns
in FashionMNIST case. While in case of False positives
in FashionMNIST vs MNIST case are mostly 1’s and 7’s
which resemble ‘pants’ category of FashionMNIST data.
One interesting observation is False Negatives in Fashion-
MNIST dataset are very similar to the low likelihood ratio
images suggested by LLR method Ren et al. [2019], which
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Figure 5: Ablation analysis on the use of simplex inter-
polation and atypical selection. The plot shows anomaly
detection when one class of the respective dataset is used as
normal class, while the other 9 classes are used as anoma-
lies. We observe that both simplex interpolation and atypical
selection improve performance, and using both components
in combination yields the best results. (Top) Experiments on
CIFAR-10 dataset (Bottom) Experiments on MNIST dataset.
The performance measures are AUROC scores, higher the
better.

suggests that our anomaly metric might be related to LLR
metric.

E SEMI-SUPERVISED TRAINING

One of the main advantages of our model is that it can be
easily extended to semi-supervised scenario. What we mean
by semi-supervised setting here is, a few tagged anomalies
are available to us during train time along with many normal
samples. For the objective from Equation (2) in the main
paper and use real anomalies instead of synthetic anomalies
chosen by Atypical Selection.

In Table 7, we consider the case of Anomaly Detection
where anomalies arise within the dataset, which is CIFAR-
10. We present the results of various cases of training setting,
for varying availability of true anomlies. The Anom % col-
umn shows the ratio of true anomalies available during
training time to the number of normal samples available in
training. And each column represents the case where that
particular class of CIFAR-10 is considered normal and rest
of the 9 classes are considered anomalous. For eg, in 1%
anomalies in training for dog experiment has - 5000 dog
samples (normal), and 50 images randomly chosen for rest



Anom % airplane automobile bird cat deer dog frog horse ship truck Average

0 0.752 0.634 0.696 0.603 0.733 0.650 0.658 0.582 0.754 0.632 0.669
0.1 0.776 0.582 0.699 0.556 0.743 0.599 0.723 0.553 0.781 0.473 0.648
1 0.809 0.732 0.729 0.613 0.749 0.667 0.759 0.716 0.834 0.665 0.727
5 0.847 0.814 0.744 0.747 0.788 0.741 0.827 0.784 0.873 0.798 0.796
10 0.870 0.892 0.775 0.760 0.823 0.810 0.855 0.851 0.887 0.831 0.835
20 0.870 0.910 0.814 0.785 0.813 0.832 0.859 0.879 0.895 0.867 0.852

Table 7: Semi-supervised Anomaly Detection performance on CIFAR-10 dataset. Each column denotes the normal class and
the rest 9 classes from CIFAR-10 are considered as anomalies. Each row represents the case where a given percentage of
true anomalies are available during training. Only for 0% case, we sample synthetic anomalies using atypical selection and
use them in training. Performance reported are AUC scores. (Higher the better)

Figure 6: AMA trained on Fashion MNIST data: Here
we show the performance of the model on test time Fashion
MNIST images vs anomalies coming from MNIST dataset.
Odd rows represent ground truths, and the even rows show
the reconstructions. In this case, we can recognize anomalies
not only quantitatively, but also qualitatively based on the
reconstructions.

of the 9 classes (anomalies) are available during the train-
ing time. For 0% anomalies during training, we take the
default setting of AMA and generate synthetic anomalies
and use them during training. We can infer from the table,
intuitively, as the percentage of anomalies available during
training increases, the model performance increases.

One interesting case is when we have 0.1% of real anoma-
lies available during the training. While in few classes like
airplane;ship, using real anomalies certainly improves the
performance compared to 0% real anomalies case, it did
not improve in rest of the classes. This could be attributed
to the extremely small size of real anomalies set (5 in this
case). Hence in scenarios where very few real anomalies
are available, we can improve the model by coupling real
anomalies with some atypical sampled anomalies.

Figure 7: AMA trained on SVHN data: Here we show
the performance of the model on test time SVHN images
vs anomalies coming from CIFAR-10 dataset. Odd rows
represent ground truths, and the even rows show the recon-
structions. Similar to 6, the model performs well on normal
test time samples, but reconstructs anomalies badly.



Figure 8: AMA trained on CIFAR-10: Here we show the
performance of the model on test time CIFAR-10 images vs
anomalies coming from SVHN dataset. Odd rows represent
ground truths, and the even rows show the reconstructions.
In this case, we cannot qualitatively distinguish anomalies
from normal images. In such scenarios, we have to rely on
quantitative A-scores as mentioned in the main text.
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Figure 9: Interpolations of FashionMNIST images in latent and image spaces. Top panel shows how the reconstructions of
interpolations in latent space. Bottom panel shows results when images are interpolated in image space. Clearly the latent
interpolations look much better. The first and last images are from FashionMNIST dataset in each row.

Figure 10: Interpolations of CIFAR10 images. Similar to Fig. 9, the top panels shows interpolation in latent space, while
bottom panels shows interpolation in image space.

(a) True Positives (b) False Negatives (c) False Positives (d) True Negatives

Figure 11: We show here the plots with highest and lowest A-scores, A(x) (Main paper - equation 6) from both FashionM-
NIST (normal) and MNIST (anomaly) classes. (a) True positives are from Normal class and have high A(x) scores (b) False
Negatives are from Normal class and have low A(x) scores (c) False Positives are from Anomaly class and have high A(x)
scores. (d) True Negatives are from Anomaly class and have low A(x) scores.



(a) True Positives (b) False Negatives (c) False Positives (d) True Negatives

Figure 12: Similar to Fig. 11, here we show the plots with highest and lowest A(x) (Main paper - equation 6) from both
SVHN (normal) and CIFAR-10 (anomaly) classes. (a) True positives are from Normal class and have high A(x) scores (b)
False Negatives are from Normal class and have low A(x) scores (c) False Positives are from Anomaly class and have high
A(x) scores. (d) True Negatives are from Anomaly class and have low A(x) scores.

(a) True Positives (b) False Negatives (c) False Positives (d) True Negatives

Figure 13: Similar to Fig. 11, here we show the plots with highest and lowest A(x) (Main paper - equation 6) from both
CIFAR10 (normal) and SVHN (anomaly) classes. (a) True positives are from Normal class and have high A(x) scores (b)
False Negatives are from Normal class and have low A(x) scores (c) False Positives are from Anomaly class and have high
A(x) scores. (d) True Negatives are from Anomaly class and have low A(x) scores.
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