
PLSO: A generative framework for decomposing nonstationary time-series into
piecewise stationary oscillatory components (Supplementary material)

Andrew H. Song1 Demba Ba2 Emery N. Brown3,4,5

1Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
2School of Engineering and Applied Sciences, Havard University, Cambridge, Massachusetts, USA

3 Picower Institute of Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
4 Institute of Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
5 Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA

APPENDIX

References to the sections in the section headings are made
with respect to the sections in the main text. Below is the
table of contents for the Appendix.

A. Continuous model interpretation of PLSO (Section 3)

B. PSD for complex AR(1) process

C. Proof for Proposition 1 (Section 3.2.1)

D. Proof for Proposition 2 (Section 3.2.2)

E. Initialization for PLSO (Section 4)

F. Optimization for {σ2
j,m}j,m via proximal gradient up-

date (Section 4.1.1)

G. Lipschitz constant for ∇f({σ2
j,m}j,m; θ) (Section

4.1.1)

H. Inference with p({zj}j | {σ
2
j,m}j,m,y, θ) (Section

4.2)

I. Computational efficiency of PLSO vs. GP-PS

J. Simulation experiment (Section 5.1)

K. Details of TVAR model (Section 5.2)

L. Anesthesia EEG dataset (Section 5.3)

A. CONTINUOUS MODEL
INTERPRETATION OF PLSO

We can establish the equivalent continuous model of the
PLSO in Eq. 2, using stochastic different equation

dz̃j(t)

dt
=

((
− 1

lj

)
⊕
(

0 −ωj
ωj 0

))
︸ ︷︷ ︸

F

z̃j(t)+ε(t), (A.1)

where z̃j(t) : R→ R2, ⊕ denotes the Kronecker sum and
ε(t) ∼ N (0, σ2

j I2×2). Discretizing the solution of Eq. A.1

at ∆, such that z̃j,k = z̃j(k∆), yields Eq. 2. Consequently,
we obtain the following for ∆ > 0

exp (F∆) = exp(−∆/lj)R(ωj),

σ2
j

∫ ∆

0

exp (F(∆− τ)) exp (F(∆− τ))
T
dτ

= σ2
j (1− exp (−2∆/lj)) I2×2.

This interpretation extends to the nonstationary PLSO. The
corresponding continuous model for z̃j,mN+n in Eq. 3 is the
same as Eq. A.1, with different variance E[εj(t)ε

T
j (t)] =∑M

m=1 σ
2
j,m · 1

((
m−1
M

)
T ≤ t <

(
m
M

)
T
)
I2×2.

B. PSD FOR COMPLEX AR(1) PROCESS

We compute the steady-state covariance denoted as Pj∞.
Since we assume Pj1 = σ2

j I2×2, it is easy to show that Pjk
is a diagonal matrix from R(ωj)R

T(ωj) = I2×2. Denoting
Pj∞ = αI2×2, we use the discrete Lyapunov equation

Pj∞

= exp(−2∆/lj)R(ωj)P
j
∞RT(ωj)

+ σ2
j (1− exp (−2∆/lj)) I2×2

⇒ α = exp(−2∆/lj)α+ σ2
j (1− exp (−2∆/lj))

⇒ Pj∞ = σ2
j I2×2,

which implies that under the assumption Pj1 = σ2
j I2×2, we

are guaranteed Pjk = σ2
j I2×2, ∀k. To compute the PSD of

the stationary process zj , we now need to compute the auto-
covariance. Since only z<j,k contributes to yk, we compute
the autocovariance of E[z<j,kz

<
j,k+n] as

E[z<j,kz
<
j,k+n] = E[z<j,k · <(ρnj exp(iωjn)zj,k)]

= ρnj E[z<j,kz
<
j,k cosωjn]

= ρnj cosωjn · E[{z<j,k}2]

= ρnj σ
2
j coswjn,

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

where <(·) denotes the operator that extracts the real
part of the complex argument and we used the fact that
E[z<j,kz

=
j,k] = 0. The spectra for the jth component, Sj(ω)

can be written as

Sj(ω) =

∞∑
n=−∞

E
[
z<j,kz

<
j,k+n

]
exp (−iωn)

=

∞∑
n=−∞

ρnj σ
2
j coswjn exp (−iωn)

= σ2
j

∞∑
n=−∞

ρnj {exp(iωjn) + exp(−iωjn)} exp (−iωn)

= σ2
j

∞∑
n=−∞

ρnj exp(−i(ω ± ωj)n).

Unpacking the infinite sum for one of the terms,

∞∑
n=−∞

ρnj exp(−i(ω − ωj)n)

= 1 +

∞∑
n=1

ρnj exp(−i(ω − ωj)n) + ρnj exp(i(ω − ωj)n)

= 1 +
ρj exp(−i(ω − ωj))

1− ρj exp(−i(ω − ωj))
+

ρj exp(i(ω − ωj))
1− ρj exp(i(ω − ωj))

= 1 +
2ρj cos(ω − ωj)− 2ρ2

j

(1− ρj exp(−i(ω − ωj))) (1− ρj exp(i(ω − ωj)))

=
1− ρ2

j

1 + ρ2
j − 2ρj cos(ω − ωj)

.

Using the relation ρj = exp(−∆/lj) and unpacking the
infinite sum for the other term, we have

Sj(w)

=
σ2
j (1− exp(−2∆/lj))

1 + exp(−2∆/lj)− 2 exp(−∆/lj) cos(ω − ωj)

+
σ2
j (1− exp(−2∆/lj))

1 + exp(−2∆/lj)− 2 exp(−∆/lj) cos(ω + ωj)
.

Since Fourier transform is a linear operator, we can conclude
that γ(ω) = σ2

ν +
∑J
j=1 Sj(ω).

C. PROOF FOR PROPOSITION 1 (SECTION
3.2.1)

Proposition 1. For a given m, as ∆ → 0, the samples on
either side of the interval boundary, which are z̃j,(m+1)N

and z̃j,(m+1)N+1, converge to each other in mean square,

lim
∆→0

E[∆z̃j,(m+1)N∆z̃T
j,(m+1)N] = 0,

where we use ∆z̃j,(m+1)N = z̃j,(m+1)N+1 − z̃j,(m+1)N .

Proof. To analyze Eq. 3 in the limit of ∆ →
0, we use the equivalent continuous model. It suf-
fices to show that lim∆→0 exp(F∆) = I2×2 and
lim∆→0 E[εj,(m+1)N+1ε

T
j,(m+1)N+1] = 0. We have,

lim
∆→0

exp(F∆) = I2×2 + lim
∆→0

∞∑
k=1

∆k

k!
Fk = I2×2

lim
∆→0

E[εj,(m+1)N+1ε
T
j,(m+1)N+1]/σ2

j,m+1

= lim
∆→0

∫ ∆

0

exp (F(∆− τ)) exp (F(∆− τ))
T
dτ = 0.

Since this implies lim∆→0 E[∆z̃j,(m+1)N∆z̃T
j,(m+1)N] =

0, we have convergence in mean square.

D. PROOF FOR PROPOSITION 2 (SECTION
3.2.2)

Proposition 2. Assume lj � N∆, such that Pjm,N =

Pjm,∞. In Eq. 3, the difference between Pjm,∞ = σ2
j,mI2×2

and Pjm+1,∞ = σ2
j,m+1I2×2 decays exponentially fast as a

function of n, for 1 ≤ n ≤ N ,

Pjm+1,n = Pjm+1,∞ + exp (−2n∆/lj) (Pjm,∞ −Pjm+1,∞).

Proof. We first obtain the steady-state covariance Pjm,∞,
similar to Appendix B. Since we assume Pj1,1 = σ2

j,1I2×2,
we can show that ∀m,n, Pjm,n is a diagonal matrix, noting
that R(ωj)R

T(ωj) = I2×2. Denoting Pjm,∞ = αI2×2, we
now use the discrete Lyapunov equation

Pjm,∞ = exp(−2∆/lj)R(ωj)P
j
m,∞RT(ωj)

+ σ2
j,m (1− exp (−2∆/lj)) I2×2

⇒ α = exp(−2∆/lj)α+ σ2
j,m (1− exp (−2∆/lj))

⇒ Pjm,∞ = σ2
j,mI2×2.

We now prove the proposition by induction. For fixed j and
m, and for n = 1,

Pjm+1,1

= exp(−2∆/lj)R(ωj)P
j
m,NRT(ωj)

+ σ2
j,m+1 (1− exp (−2∆/lj)) I2×2

=
{
σ2
j,m+1 + exp (−2∆/lj)

(
σ2
j,m − σ2

j,m+1

)}
I2×2.

Assuming the same holds for n = n′ − 1, we have for

n = n′,

Pjm+1,n′

= exp(−2∆/lj)R(ωj)P
j
m,n′−1R

T(ωj)

+ σ2
j,m+1 (1− exp (−2∆/lj)) I2×2

= exp(−2∆/lj)σ
2
j,m+1I2×2

+ exp (−2n′∆/lj)
(
σ2
j,m − σ2

j,m+1

)
I2×2

+ σ2
j,m+1 (1− exp (−2∆/lj)) I2×2

=
{
σ2
j,m+1 + exp (−2n′∆/lj)

(
σ2
j,m − σ2

j,m+1

)}
I2×2.

By the principle of induction, Eq. holds for 1 ≤ n ≤
N .

E. INITIALIZATION & ESTIMATION FOR
PLSO (SECTION 4)

E.1 INITIALIZATION

As noted in the main text, we use AIC to determine the opti-
mal number of J . For a given number of components J , we
first construct the spectrogram of the data using STFT and
identify the frequency bands with prominent power, i.e., fre-
quency bands whose average power exceeds pre-determined
threshold. The center frequencies of these bands serve as
the initial center frequencies {ωinit

j }j , which are either fixed
throughout the algorithm or further refined through the esti-
mation algorithm in the main text. If J exceeds the number
of identified frequency bands from the spectrogram, 1) we
first place {ωinit

j }j in the prominent frequency bands and 2)
we then place the remaining components uniformly spread
out in [0, ωc], where ωc is a cutoff frequency to be further
determined in the next section. As for {linit

j }j , we set it to
be a certain fraction of the corresponding {ωinit

j }j . We then
fit {σ2

j,m}j,m and θ with λ = 0, through the procedure ex-
plained in Stage 1. We finally use these estimates as initial
values for other values of λ.

E.2 ESTIMATION FOR σ2
ν

There are two possible ways to estimate the observation
noise variance σ2

ν . The first approach is to perform maxi-
mum likelihood estimation of f({σ2

j,m}j,m; θ) with respect
to σ2

ν . The second approach, which we found to work better
in practice and use throughout the manuscript, is to directly
estimate it from the Fourier transform of the data. Given a
cutoff frequency ωc, informed by domain knowledge, we
take the average power of the Fourier transform of y in
[ωc, fs/2]. For instance, it is widely known that the spectral
content below 40 Hz in anesthesia EEG dataset is physio-
logically relevant and we use ωc ' 40 Hz.

F. OPTIMIZATION FOR {σ2
j,m}j,m VIA

PROXIMAL GRADIENT UPDATE
(SECTION 4.1.1)

We discuss the algorithm to obtain a local optimal so-
lution of {σ2

j,m}j,m to the MAP optimization problem
in Eq. 8. We define ψj,m = log σ2

j,m and Ψ =

[ψ1,1, . . . , ψ1,M , . . . , ψJ,M] ∈ RJM for notational declut-
tering, to be used in this section.

We rewrite Eq. 8 as

min
Ψ
− log p(Ψ|y, θ)︸ ︷︷ ︸

h(Ψ;θ)

= min
Ψ

1

2

M∑
m=1

N∑
n=1

{
log γ(m)(ωn) +

I(m)(ωn)

γ(m)(ωn)

}
︸ ︷︷ ︸

−f(Ψ;θ)

+
λ

2

J∑
j=1

M∑
m=1

(ψj,m − ψj,m−1)
2

︸ ︷︷ ︸
−g(Ψ;θ)

= min
Ψ
−f(Ψ; θ)− g(Ψ; θ).

The algorithm is described in Algorithm 1. It follows the
steps outlined in the inexact accelerated proximal gradient
algorithm [Li and Lin, 2015]. For faster convergence, we
use larger step sizes with the Barzilai-Borwein (BB) step
size initialization rule [Barzilai and Borwein, 1988]. For rest
of this section, we drop dependence on θ. The main novelty
of our algorithm is the proximal gradient update

u(l+1)

= prox−α(l)
w g

(w(l) + α(l)
w ∇f(w(l)))

= arg min
Ψ

1

2α
(l)
w

‖Ψ− (w(l) + α(l)
w ∇f(w(l)))‖2 − g(Ψ)

= arg min
Ψ

J∑
j=1

M∑
m=1

((
w

(l)
j,m + α

(l)
w · ∂f(w(l))

∂wj,m

)
− ψj,m

)2

2α
(l)
w

+
λ

2
(ψj,m − ψj,m−1)2,

where the same holds for x(l+1) = prox−α(l)
Ψ g

(Ψ(l) +

α
(l)
Ψ ∇f(Ψ(l))). The auxiliary variables w,u,x ∈ RJM

ensure convergence of Ψ. We use w
(l)
j,m to denote

((m− 1)J + j)
th entry of w(l). As mentioned in the main

text, this can be solved in a computationally efficient manner
by using Kalman filter/smoother.

Algorithm 1: Inference for Ψ via inexact APG

Result: Ψ̂
Initialize Ψ(0) = Ψ(1) = u(1),
β(0) = 0, β(1) = 1, δ > 0, ρ < 1

for l← 1 to L do
w(l) = Ψ(l) + β(l−1)

β(l) (u(l) −Ψ(l)) +

β(l−1)−1
β(l) (Ψ(l) −Ψ(l−1))

(BB step size initialization rule)
s(l) = u(l) −w(l−1),
r(l) = −∇f(u(l)) +∇f(w(l−1))

α
(l)
w = ((s(l))Ts(l))/((s(l))Tr(l))

s(l) = x(l) −Ψ(l−1),
r(l) = −∇f(x(l)) +∇f(Ψ(l−1))

α
(l)
Ψ = ((s(l))Ts(l))/((s(l))Tr(l))

(Proximal update step)
repeat

u(l+1) = prox−α(l)
w g

(w(l) + α
(l)
w ∇f(w(l)))

α
(l)
w = ρ · α(l)

w

until h(u(l+1)) ≤ h(w(l))− δ‖u(l+1) −w(l)‖2;
repeat

x(l+1) = prox−α(l)
Ψ g

(Ψ(l) + α
(l)
Ψ ∇f(Ψ(l)))

α
(l)
Ψ = ρ · α(l)

Ψ

until h(x(l+1)) ≤ h(Ψ(l))− δ‖x(l+1) −Ψ(l)‖2;

β(l+1) =
1+

√
4(β(l))

2
+1

2

Ψ(l+1) =

{
u(l+1) if h(u(l+1)) ≤ h(x(l+1))

x(l+1) otherwise
end
Ψ̂ = Ψ(L)

G. LIPSCHITZ CONSTANT FOR
∇f({σ2

j,m}j,m; θ) (SECTION 4.1.1)

In this section, we prove that under some assumptions, we
can show that the log-likelihood f({σ2

j,m}j,m; θ) has Lip-
schitz continuous gradient with the Lipschitz constant C.
As in the previous section, we use ψj,m = log σ2

j,m and
Ψ = [ψ1,1, . . . , ψ1,M , . . . , ψJ,M] ∈ RJM .

Let us start by restating the definition of Lipschitz continu-
ous gradient.

Definition A continuously differentiable function f : S →
R is Lipschitz continuous gradient if

‖∇f(x)−∇f(y)‖2 ≤ C‖x− y‖2 for every x,y ∈ S,

where S is a compact subset of RJM and C > 0 is the
Lipschitz constant.

Our goal is to find the constant C for the Whittle likelihood
f(Ψ; θ)

f(Ψ; θ) = −1

2

M∑
m=1

N∑
n=1

{
log γm,n +

Im,n
γm,n

}

= −1

2

M∑
m=1

N∑
n=1

log

σ2
ν +

J∑
j=1

exp (ψj,m)αj,n


︸ ︷︷ ︸

f1(Ψ;θ)

− 1

2

M∑
m=1

N∑
n=1

Im,n(
σ2
ν +

∑J
j=1 exp (ψj,m)αj,n

)
︸ ︷︷ ︸

f2(Ψ;θ)

,

where we use γm,n = γ(m)(ωn) and Im,n = I(m)(ωn) for
notational simplicity and

αj,n =
(1− exp (−2∆/lj))

1 + exp (−2∆/lj)− 2 exp (−∆/lj) cos(ωn − ωj)
.

We make the following assumptions

1. Im,n is bounded, i.e., Im,n ≤ CI . With the real-world
signal, we can reasonably assume that Im,n or energy
of the signal is bounded.

2. ∀j,m, ψj,m is bounded, i.e., |ψj,m| ≤ logCψ for some
Cψ > 1. This implies 1/Cψ ≤ exp(ψj,m) ≤ Cψ .

In addition, we have the following facts

1. Im,n, αj,n, and γm,n are nonnegative.

2. Im,n and γm,n are bounded. This follows from the
aforementioned assumptions.

3. For given {lj}j , we have bounded αj,n. To see this,

note that the maximum of αj,n is acheived at ωn = ωj ,

maxαj,n =
(1− exp (−2∆/lj))

1 + exp (−2∆/lj)− 2 exp (−∆/lj)

=
(1 + exp(−∆/lj))

(1− exp(−∆/lj))
.

Therefore, denoting lmax = maxj{lj}j ,

maxαj,n ≤
(1 + exp(−∆/lmax))

(1− exp(−∆/lmax))
= Cα.

Finally, we define S = [− logCψ, logCψ] ⊂ RJM .

We want to compute the Lipschitz constant for∇f1(Ψ) and
∇f2(Ψ) for Ψ,Ψ ∈ S, i.e.,

{
‖∇f1(Ψ)−∇f1(Ψ)‖2 ≤ C1‖Ψ−Ψ‖2
‖∇f2(Ψ)−∇f2(Ψ)‖2 ≤ C2‖Ψ−Ψ‖2,

where we dropped dependence on θ for notational simplicity.
Consequently, the triangle inequality yields

‖∇f(Ψ)−∇f(Ψ)‖2
≤ ‖∇f1(Ψ)−∇f1(Ψ)‖2 + ‖∇f2(Ψ)−∇f2(Ψ)‖2
≤ (C1 + C2)‖Ψ−Ψ‖2.

LIPSCHITZ CONSTANT C1 FOR ∇f1(Ψ)

Let us examine f1(Ψ) first. The derivative with respect to
ψj,m is given as

∂f1(Ψ)

∂ψj,m
=

N∑
n=1

αj,n ·
exp (ψj,m)

σ2
ν +

∑J
j′=1 exp (ψj′,m)αj′,n︸ ︷︷ ︸

f̃(ψj,m)

=

N∑
n=1

αj,nf̃(ψj,m).

We now have

∣∣∣∣∂f1(Ψ)

∂ψj,m
− ∂f1(Ψ)

∂ψj,m

∣∣∣∣ =

N∑
n=1

|αj,n|·
∣∣∣f̃ (ψj,m)− f̃(ψj,m)

∣∣∣ .
Without loss of generality, we assume ψj,m ≥ ψj,m. We
now apply the mean value theorem (MVT) to f̃(ψj,m)

f̃(ψj,m)− f̃(ψj,m) = f̃ ′(ψ′j,m)(ψj,m − ψj,m),

where ψ′j,m ∈ [ψj,m, ψj,m].We can compute and bound
f̃ ′(ψ′j,m) = df̃(ψ′j,m)/dψ′j,m as follows

f̃ ′(ψ′j,m) =
exp(ψ′j,m)

σ2
ν +

∑J
j′=1 exp(ψ′j′,m)αj′,n

−
αj,n exp2(ψ′j,m)

(σ2
ν +

∑J
j′=1 exp(ψ′j′,m)αj′,n)2

=
exp(ψ′j,m)

σ2
ν +

∑J
j′=1 exp(ψ′j′,m)αj′,n

×

(
1−

αj,n exp(ψ′j,m)

σ2
ν +

∑J
j′=1 exp(ψ′j′,m)αj′,n

)
︸ ︷︷ ︸

≤1

≤
exp(ψ′j,m)

σ2
ν +

∑J
j′=1 exp(ψ′j′,m)αj′,n

≤ Cψ
σ2
ν

.

Combining both, we have
N∑
n=1

|αj,n| ·
∣∣∣f̃ (ψj,m)− f̃(ψj,m)

∣∣∣
=

N∑
n=1

|αj,n| ·
∣∣∣f̃ ′(ψ′j,m)(ψj,m − ψj,m)

∣∣∣
≤ NCαCψ

σ2
ν

∣∣ψj,m − ψj,m∣∣ .
We thus have,

‖∇f1(Ψ)−∇f1(Ψ)‖22 =

J∑
j=1

M∑
m=1

(
∂f1(Ψ)

∂ψj,m
− ∂f1(Ψ)

∂ψj,m

)2

≤
(
JMNCαCψ

σ2
ν

)2

‖Ψ−Ψ‖22.

LIPSCHITZ CONSTANT C2 FOR ∇f2(Ψ)

Computing C2 proceeds in a similar manner to computing
C1. The derivative with respect to ψj,m is given as

∂f2(Ψ)

∂ψj,m

= −
N∑
n=1

Im,nαj,n ·
exp(ψj,m)

(σ2
ν +

∑J
j′=1 exp(ψj′,m)αj′,n)2︸ ︷︷ ︸

f̃(ψj,m)

.

We now have∣∣∣∣∂f2(Ψ)

∂ψj,m
− ∂f2(Ψ)

∂ψj,m

∣∣∣∣
=

N∑
n=1

|Im,nαj,n| ·
∣∣∣−f̃(ψj,m) + f̃(ψj,m)

∣∣∣ .

Without loss of generality, assume ψj,m ≥ ψj,m. To apply
MVT, we need to compute and bound f̃ ′(ψ′j,m)

f̃ ′(ψ′j,m) =
exp(ψ′j,m)

(σ2
ν +

∑J
j′=1 exp(ψ′j′,m)αj′,n)2

−
2αj,n exp2(ψ′j,m)

(σ2
ν +

∑J
j′=1 exp(ψ′j′,m)αj′,n)3

=
exp(ψ′j,m)

(σ2
ν +

∑J
j′=1 exp(ψ′j′,m)αj′,n)2

×

(
1−

2αj,n exp(ψ′j,m)

σ2
ν +

∑J
j′=1 exp(ψ′j′,m)αj′,n

)
︸ ︷︷ ︸

≤1

≤
exp(ψ′j,m)

(σ2
ν +

∑J
j′=1 exp(ψ′j′,m)αj′,n)2

≤ Cψ
σ4
ν

.

Applying MVT,

N∑
n=1

|Im,nαj,n| ·
∣∣∣−f̃ (ψj,m) + f̃

(
ψj,m

)∣∣∣
=

N∑
n=1

|Im,nαj,n| ·
∣∣∣f̃ ′(ψ′j,m)(ψj,m − ψj,m)

∣∣∣
≤ NCICαCψ

σ4
ν

∣∣ψj,m − ψj,m∣∣ .
We thus have,

‖∇f2(Ψ)−∇f2(Ψ)‖22

=

J∑
j=1

M∑
m=1

(
∂f2(Ψ)

∂ψj,m
− ∂f2(Ψ)

∂ψj,m

)2

≤
(
JMNCαCψCI

σ4
ν

)2

‖Ψ−Ψ‖22.

Collecting the Lipschitz constants C1 and C2, we finally
have

‖∇f(Ψ)−∇f(Ψ)‖2 ≤
JMNCαCψ

σ2
ν

(
1 +

CI
σ2
ν

)
︸ ︷︷ ︸

C

‖Ψ−Ψ‖2.

H. INFERENCE WITH
p
(
{zj}j | {σ

2
j,m}j,m,y, θ

)
(SECTION 4.2)

We present the details for performing inference with
p({zj}j | {σ̂

2
j,m}j,m,y, θ̂), given the estimates {σ̂2

j,m}j,m
and θ̂ from window-level inference. First, we present the

Kalman filter/smoother algorithm to compute the mean
posterior trajectory, and the credible interval. Next, we
present the forward filtering backward sampling (FFBS)
algorithm Carter and Kohn [1994], Lindsten and Schön
[2013] to generate Monte Carlo (MC) sample trajectories.

First, we define additional notations.

1) z̃j,k|k′ = E[z̃j,k | {σ̂2
j,m}j,m,y1:k′ , θ̂] ∈ R2

Posterior mean of z̃j,k. We are primarily concerned with
the following three types: 1) z̃j,k|k−1, the one-step predic-
tion estimate, 2) z̃j,k|k, the Kalman filter estimate, and 3)
z̃j,k|MN , the Kalman smoother estimate.

2) z̃k|k′ = [(z̃1,k|k′)
T, . . . , (z̃J,k|k′)

T]T ∈ R2J

A collection of {z̃j,k|k′}j in a single vector.

3) Pj,k|k′ = E[
(
z̃j,k − z̃j,k|k′

) (
z̃j,k − z̃j,k|k′

)T |
{σ̂2

j,m}j,m,y1:k′ , θ̂] ∈ R2×2

Posterior covariance of z̃j,k. Just as in z̃j,k|k′ , we are inter-
ested in three types, i.e., Pj,k|k−1, Pj,k|k, and Pj,k|MN .

4) Pk|k′ = blkdiag
(
Pj,k|k′

)
∈ R2J×2J

A block diagonal matrix of J posterior covariance matrices.

5) A = blkdiag (exp (−∆/lj)R(ωj)) ∈ R2J×2J

A block digonal transition matrix.

6) H = (1, 0, . . . , 1, 0) The observation gain.

KALMAN FILTER/SMOOTHER

The Kalman filter equations are given as

z̃j,mN+n|mN+(n−1)

= exp (−∆/lj)R(ωj)z̃j,mN+(n−1)|mN+(n−1)

Pj,mN+n|mN+(n−1)

= exp (−2∆/lj)R(ωj)Pj,mN+(n−1)|mN+(n−1)R
T(ωj)

+ σ2
j,m (1− exp (−2∆/lj))

KmN+n

= PmN+n|mN+(n−1)H
T (HPmN+n|mN+(n−1)H

T + σ2
ν

)−1

z̃mN+n|mN+n

= z̃mN+n|mN+(n−1)

+ KmN+n

(
ymN+n −Hz̃mN+n|mN+(n−1)

)
PmN+n|mN+n = (I2J×2J −KmN+nH)PmN+n|mN+(n−1).

Subsequently, the Kalman smoother equations are given as

CmN+n

= PmN+n|mN+nA
TP−1

mN+(n+1)|mN+n ∈ R2J×2J

z̃mN+n|MN

= z̃mN+n|mN+n

+ CmN+n

(
z̃mN+(n+1)|MN − z̃mN+(n+1)|mN+n

)
PmN+n|MN

= PmN+n|mN+n

+ CmN+nPmN+(n+1)|MNCT
mN+n.

−CmN+nPmN+(n+1)|mN+nC
T
mN+n

To obtain the mean reconstructed trajectory for the jth oscil-
latory component, {ŷj,k}k, we take the real part of the jth

component of the smoothed mean, ŷj,k = eT
2j−1 · z̃k|MN ,

where e2j−1 ∈ R2J is a unit vector with the only non-zero
value, equal to 1, at the entry 2j − 1.

The 95% credible interval for ŷj,k, denoted as
CIlower

j,k /CIupper
j,k for the upper/lower end, respectively,

is given as

CIupper
j,k = eT

2j−1 · z̃k|MN + 1.96 ·
√
eT

2j−1Pk|MNe2j−1

CIlower
j,k = eT

2j−1 · z̃k|MN − 1.96 ·
√
eT

2j−1Pk|MNe2j−1.

FFBS ALGORITHM FOR p({zj}j | {σ
2
j,m}j,m,y, θ)

To generate the MC trajectory samples from the posterior
distribution p({zj}j | {σ̂

2
j,m}j,m,y, θ̂), we use the FFBS

algorithm. The steps are summarized in Algorithm 2, which
uses the Kalman estimates derived in the previous section.
We denote s = 1, . . . , S as the MC sample index.

Algorithm 2: FFBS algorithm

Result:
{
z̃

(s)
k

}MN,S

k,s

for s← 1 to S do
Sample z̃

(s)
MN from N

(
z̃MN |MN ,PMN |MN

)
.

for k ←MN − 1 to 1 do
Sample z̃

(s)
k from N (µ̃k, P̃k), where

µ̃k = z̃k|k + Pk|kA
TP−1

k+1|k(z̃
(s)
k+1 −Az̃k|k)

P̃k = Pk|k −Pk|kA
TP−1

k+1|kAPk|k.

end
end

I. COMPUTATIONAL EFFICIENCY OF
PLSO VS. GP-PS

We show the runtime of PLSO and piecewise stationary
GP (GP-PS) for inference of the mean trajectory of the hip-
pocampus data (fs = 1, 250 Hz, J = 5, 2-second window)
for varying data lengths (50, 100, 200 seconds correspond-
ing toK = 6.25×104, 1.25×105, 2.5×105 sample points,
respectively).

As noted in Section 5, the computational complexity of
PLSO is O(J2K), where as the computational complexity
of GP-PS is O(N2K). Since N , the number of samples per
window, is fixed (2, 500 samples), we expect both PLSO
and GP-PS to be linear in terms of the number of samples
K. Table 1 indeed confirms that this is the case. However,
we observe that PLSO is much more efficient than GP-PS.

Table 1: Runtime (s) for PLSO and GP-PS for varying length

PLSO GP-PS
T =50 1.7 346.8
T =100 3.1 700.6
T =200 6.5 1334.0

J. SIMULATION EXPERIMENT (SECTION
5.1)

We simulate from the following model for 1 ≤ k ≤ K

yk = 10

(
K − k
K

)
z<1,k + 10 cos4(2πω0k)z<2,k + νk,

where z1,k and z2,k are from the PLSO stationary generative
model, i.e., σ2

j,m = σ2
j . The parameters are ω0/ω1/ω2 =

0.04/1/10 Hz, fs = 200 Hz, T = 100 seconds, l1 = l2 =
1, and νk ∼ N (0, 25). This stationary process comprises
two amplitude-modulated oscillations, namely one modu-
lated by a slow-frequency (ω0 = 0.04 Hz) sinusoid and
the other a linearly-increasing signal Ba et al. [2014]. We
assume a 2-second PS interval. For PLSO, we use J = 2
components and 5 block coordinate descent iterations for
optimizing θ and {σ2

j,m}j,m.

K. DETAILS OF THE TVAR MODEL

As explained in Section 5, the TVAR model is defined as

yk =

P∑
p=1

ap,kyk−p + εk,

which can alternatively be written as yk
...

yk−P+1



=



a1,k a2,k · · · aP−1,k aP,k
1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

0 0 · · · 1 0


︸ ︷︷ ︸

Ak

yk−1

...
yk−P

+ εk.

It is the transition matrix Ak that determines the oscilla-
tory component profile at time k, such as the number of
components and the center frequencies. Specifically, {Ak}k
are first fit to the data y and then eigen-decomposition is
performed on each of the estimated {Ak}k. More in-depth
technical details can be found in West et al. [1999].

We use publicly available code for the TVAR implementa-
tion1. We use TVAR order of p = 70, as the models with
lower orders than this value did not capture the theta-band
signal - The lowest frequency band in these cases were the
gamma band (> 30 Hz). Even with the higher orders of p,
and various hyperparameter combinations, we observed that
the slow and theta frequency band was still explained by a
single oscillatory component. For the discount factor, we
used β = 0.999 to ensure that the TVAR coefficients and,
consequently, the decomposed oscillatory components do
not fluctuate much.

L. ANESTHESIA EEG DATASET (SECTION
5.3)

We show spectral analysis results for the EEG data of a
subject anesthetized with propofol (This is a different sub-
ject from the main text.) The data last T = 2,500 seconds,
sampled at fs = 250 Hz. We assume a 4-second PS inter-
val, use J = 9 components and 5 block coordinate descent
iterations for optimizing θ and {σ2

j,m}j,m.

Fig. 1 shows the STFT and the PLSO-estimated spectro-
grams. As noted in the main text, PLSO with stationar-
ity assumption is too restrictive and fails to capture the
time-varying spectral pattern. Both PLSO with λ = 0 and
λ = λCV are more effective in capturing such patterns, with
the latter able to remove the artifacts and better recover the
smoother dynamics.

1https://www2.stat.duke.edu/ mw/mwsoftware/TVAR/index.html

Figure 1: Spectrogram (in dB) under propofol anesthesia.
(a) STFT of the data (b) PLSO with λ→∞ (c) PLSO with
λ = 0 (d) PLSO with λ = λCV.

References

D. Ba, B. Babadi, P. L. Purdon, and E. N. Brown. Robust
spectrotemporal decomposition by iteratively reweighted
least squares. Proceedings of the National Academy of
Sciences, 111(50):E5336–E5345, 2014.

J. Barzilai and J. M. Borwein. Two-Point Step Size Gradient
Methods. IMA Journal of Numerical Analysis, 8(1):141–
148, 01 1988.

C. K. Carter and R. Kohn. On gibbs sampling for state space
models. Biometrika, 81(3):541–553, 1994.

H. Li and Z. Lin. Accelerated proximal gradient methods
for nonconvex programming. In Advances in Neural In-
formation Processing Systems 28, pages 379–387. Curran
Associates, Inc., 2015.

F. Lindsten and T. B. Schön. Backward Simulation Methods
for Monte Carlo Statistical Inference. 2013.

M. West, R. Prado, and A. D. Krystal. Evaluation and Com-
parison of EEG Traces: Latent Structure in Nonstationary
Time Series. Journal of the American Statistical Associa-
tion, 94(448):1083–1095, 1999.

