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Abstract

To capture the slowly time-varying spectral con-
tent of real-world time-series, a common paradigm
is to partition the data into approximately station-
ary intervals and perform inference in the time-
frequency domain. However, this approach lacks
a corresponding nonstationary time-domain gen-
erative model for the entire data and thus, time-
domain inference occurs in each interval separately.
This results in distortion/discontinuity around in-
terval boundaries and can consequently lead to
erroneous inferences based on any quantities de-
rived from the posterior, such as the phase. To
address these shortcomings, we propose the Piece-
wise Locally Stationary Oscillation (PLSO) model
for decomposing time-series data with slowly time-
varying spectra into several oscillatory, piecewise-
stationary processes. PLSO, as a nonstationary
time-domain generative model, enables inference
on the entire time-series without boundary effects
and simultaneously provides a characterization of
its time-varying spectral properties. We also pro-
pose a novel two-stage inference algorithm that
combines Kalman theory and an accelerated prox-
imal gradient algorithm. We demonstrate these
points through experiments on simulated data and
real neural data from the rat and the human brain.

1 INTRODUCTION

With the collection of long time-series now common, in ar-
eas such as neuroscience and geophysics, it is important to
develop an inference framework for data where the station-
arity assumption is too restrictive. We restrict our attention
to data 1) with spectral properties that change slowly over
time and 2) for which decomposition into several oscilla-
tory components is warranted for interpretation, often the

case in electroencephalogram (EEG) or electrophysiology
recordings. One can use bandpass filtering [Oppenheim
et al., 2009] or methods such as the empirical mode decom-
position [Huang et al., 1998, Daubechies et al., 2011] for
these purposes. However, due to the absence of a generative
model, these methods lack a framework for performing in-
ference. Another popular approach is to perform inference
in the time-frequency (TF) domain on the short-time Fourier
transform (STFT) of the data, assuming stationarity within
small intervals. This has led to a rich literature on inference
in the TF domain, such as Wilson et al. [2008]. A drawback
is that most of these methods focus on estimates for the
power spectral density (PSD) and lose important phase in-
formation. To recover the time-domain estimates, additional
algorithms are required [Griffin and J. Lim, 1984].

This motivates us to explore time-domain generative models
that allow time-domain inference and decomposition into
oscillatory components. We can find examples based on the
stationarity assumption in the signal processing/Gaussian
process (GP) communities. A superposition of stochastic
harmonic oscillators, where each oscillator corresponds to a
frequency band, is used in the processing of speech [Cemgil
and Godsill, 2005] and neuroscience data [Matsuda and Ko-
maki, 2017, Beck et al., 2018]. In GP literature [Rasmussen
and Williams, 2005], the spectral mixture (SM) kernel [Wil-
son and Adams, 2013, Wilkinson et al., 2019] models the
data as samples from a GP, whose kernel consists of the su-
perposition of localized and frequency-modulated kernels.

These time-domain models can be applied to nonstationary
data by partitioning them into stationary intervals and per-
forming time-domain inference within each interval. How-
ever, we are faced with a different kind of challenge. As the
inference is localized within each interval, the time-domain
estimates in different intervals are independent conditioned
on the data and do not reflect the dependence across inter-
vals. This also causes discontinuity/distortion of the time-
domain estimates near the interval boundaries, and conse-
quently any quantities derived from these estimates.
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To address these shortcomings, we propose a generative
framework for data with slow time-varying spectra, termed
the Piecewise Locally Stationary Oscillation (PLSO) frame-
work1. The main contributions are:

Generative model for piecewise stationary, oscillatory
components PLSO models time-series as the superposition
of piecewise stationary, oscillatory components. This allows
time-domain inference on each component and estimation
of the time-varying spectra.

Continuity across stationary intervals The state-space
model that underlies PLSO strikes a balance between en-
suring time-domain continuity across piecewise stationary
intervals and stationarity within each interval. Moreover, by
imposing stochastic continuity on the interval-level, PLSO
learns underlying smooth time-varying spectra accurately.

Inference procedure We propose a two-stage inference pro-
cedure for the time-varying spectra and the time-series. By
leveraging the Markovian dynamics, the algorithm combines
Kalman filter theory [Kalman, 1960] and inexact accelerated
proximal gradient approach [Li and Lin, 2015].

In Section 2 we introduce necessary background, followed
by the PLSO framework in Section 3. In Section 4, we
discuss inference for PLSO. In Section 5, we discuss how
PLSO relates to other frameworks. In Section 6, we present
experimental results and conclude in Section 7.

2 BACKGROUND

2.1 NOTATION

We use j ∈ {1, . . . , J} and k ∈ {1, . . . ,K} to denote
frequency and discrete-time sample index, respectively. We
use ω ∈ [−π, π] for normalized frequency. The jth latent
process centered at ω = ωj is denoted as zj ∈ CK , with
zj,k ∈ C denoting the kth sample of zj and z<j,k, z=j,k its
real and imaginary parts. We also represent zj,k as a R2

vector, z̃j,k = [z<j,k, z
=
j,k]T. The elements of zj are denoted

as zj,k:k′ = [zj,k, . . . , zj,k′ ]
T. The state covariance matrix

for zj,k is defined as Pjk = E[z̃j,k (z̃j,k)
T
]. To express an

enumeration of variables, we use {·} and drop first/last index
for simplicity, e.g. {zj}j instead of {zj}Jj=1.

We use yk and zj,k for the discrete-time counterpart of the
continuous observation and latent process, y(t) and zj(t).
With the sampling frequency fs = 1/∆, we have yk =
y(k∆), zj,k = zj(k∆), and T = K∆.

2.2 PIECEWISE LOCAL STATIONARITY

The concept of piecewise local stationarity (PLS) for nonsta-
tionary time-series with slowly time-varying spectra [Adak,

1Code is available at https://github.com/andrewsong90/plso.git

1998] plays an important role in PLSO. A stationary pro-
cess has a constant mean and a covariance function which
depends only on the difference between two time points.

For our purposes, it suffices to understand the following
on PLS: 1) It includes local stationary [Priestley, 1965,
Dahlhaus, 1997] and amplitude-modulated stationary pro-
cesses. 2) A PLS process can be approximated as a piece-
wise stationary (PS) process (Theorem 1 of [Adak, 1998])

z(t) =

M∑
m=1

1(um ≤ t < um+1) · zm(t), (1)

where zm(t) is a continuous stationary process and the
boundaries are 0 = u1 < · · · < uM+1 = T . Note that
Eq. 1 does not guarantee continuity across different PS in-
tervals,

lim
t→u−m

z(t) = lim
t→u−m

zm−1(t) 6= lim
t→u+

m

zm(t) = lim
t→u+

m

z(t).

3 THE PLSO MODEL AND ITS
MATHEMATICAL PROPERTIES

Building on the Theorem 1 of [Adak, 1998], PLSO models
nonstationary data as PS processes. It is a superposition
of J different PS processes {zj}j , with zj corresponding
to an oscillatory process centered at frequency ωj . PLSO
also guarantees stochastic continuity across PS intervals.
We show that piecewise stationarity and continuity across
PS intervals are two competing objectives and that PLSO
strikes a balance between them, as discussed in Section 3.2.

Figure 1: A simulated example. (a) Time domain. Data
(black) around boundaries (gray) and inferred oscillatory
components using PLSO (red) and regularized STFT (blue).
(b) Frequency domain. Spectrum of the data (gray), PLSO
components for J = 2 (purple) and their sum (red).

Fig. 1 shows an example of the PLSO framework applied to
simulated data. In the time domain, the oscillation inferred
using the regularized STFT (blue) [Kim et al., 2018], which
imposes stochastic continuity on the STFT coefficients, suf-
fers from discontinuity/distortion near window boundaries,
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whereas that inferred by PLSO (red) does not. In the fre-
quency domain, each PLSO component corresponds to a
localized spectrum Sj(ω), the sum of which is the PSD
γ(ω), and is fit to the data STFT (or periodogram) I(ω). We
start by introducing the PLSO model for a single window.

3.1 PLSO FOR STATIONARY DATA

As a building block for PLSO, we use the discrete stochastic
harmonic oscillator for a stationary time series [Qi et al.,
2002, Cemgil and Godsill, 2005, Matsuda and Komaki,
2017]. The data y are assumed to be a superposition of J
independent zero-mean components

z̃j,k = ρjR(ωj)z̃j,k−1 + εj,k

yk =

J∑
j=1

z<j,k + νk,
(2)

where R(ωj) =

(
cos(ωj) − sin(ωj)
sin(ωj) cos(ωj)

)
, εj,k ∼

N (0, αjI2×2), and νk ∼ N (0, σ2
ν), correspond to the ro-

tation matrix, the state noise, and the observation noise,
respectively. The imaginary component z=j,k, which does
not directly contribute to yk, can be seen as the auxiliary
variable to write zj in recursive form using R(ωj) [Koop-
man and Lee, 2009]. We assume Pj1 = σ2

j · I2×2 ∀j.

We reparameterize ρj and αj , using lengthscale lj and
power σ2

j , such that ρj = exp(−∆/lj) and αj = σ2
j (1 −

ρ2
j ). Theoretically, this establishes a connection to 1) the

stochastic differential equation [Brown et al., 2004, Solin
and Särkkä, 2014], detailed in Appendix A, and 2) a super-
position of frequency-modulated and localized GP kernels,
similar to SM kernel [Wilson and Adams, 2013]. Practically,
this ensures that ρj < 1, and thus stability of the process.

Given Eq. 2, we can readily express the frequency spec-
tra of PLSO in each interval, through the autocovariance
function. The autocovariance of zj is given as Qj(n′) =
E[z<j,kz

<
j,k+n′ ] = σ2

j cos(ωjn
′) exp (−n′∆/lj). It can also

be thought of as an exponential kernel, frequency-modulated
by ωj . The spectra for zj , denoted as Sj(ω), is obtained by
taking the Fourier transform (FT) of Qj(n′)

Sj(ω) =

∞∑
n′=−∞

Qj(n
′) exp (−iωn′) = ϕj(ω) + ϕj(−ω)

ϕj(ω) =
σ2
j (1− exp (−2∆/lj))

1 + exp (−2∆/lj)− 2 exp (−∆/lj) cos(ω − ωj)
,

with the detailed derivation in Appendix B.

Given Sj(ω), we can show that PSD γ(ω) of the entire pro-
cess

∑J
j=1 zj is simply γ(ω) =

∑J
j=1 Sj(ω). First, since

zj is independent across j, the autocovariance can be sim-
plified, i.e., E[

∑
j z
<
j,k

∑
j z
<
j,k+n′ ] =

∑
j E[z<j,kz

<
j,k+n′ ].

Next, using the linearity of FT, we can conclude that γ(ω)
is a superposition of individual spectra.

3.2 PLSO FOR NONSTATIONARY DATA

If y is nonstationary, we can still apply stationary PLSO of
Eq. 2 for the time-domain inference. However, this implies
constant spectra for the entire data (Sj(ω) and γ(ω) do not
depend on k), which is not suitable for nonstationary time-
series for which we want to track spectral dynamics. This
point is further illustrated in Section 6.

We therefore segment y into M non-overlapping PS inter-
vals, indexed by m ∈ {1, . . . ,M}, of length N , indexed by
n ∈ {1, . . . , N}, such that K = MN . We then apply the
stationary PLSO to each interval, with additional Markovian
dynamics imposed on σ2

j,m,

log(σ2
j,m) = log(σ2

j,m−1) + ηj,m

z̃j,mN+n = ρjR(ωj)z̃j,mN+(n−1) + εj,mN+n

ymN+n =

J∑
j=1

z<j,mN+n + νmN+n,

(3)

where εj,mN+n ∼ N (0, σ2
j,m(1 − ρ2

j )I2×2), ηj,m ∼
N (0, 1/

√
λ) and νmN+n ∼ N (0, σ2

ν). We define Pjm,n
as the covariance of z̃j,mN+n, with Pj1,1 = σ2

j,1I2×2,∀j.
The graphical model is shown in Fig. 2.

Figure 2: The graphical model for PLSO.

We can understand PLSO as providing a parameterized
spectrogram defined by θ = {λ, σ2

ν , {lj}j , {ωj}j} and
{σ2

j,m}j,m of the time-domain generative model. The length-
scale lj controls the bandwidth of the jth process, with
larger lj corresponding to narrower bandwidth. The vari-
ance σ2

j,m controls the power of zj and changes across differ-

ent intervals, resulting in time-varying spectra S(m)
j (ω) and

PSD γ(m)(ω). The center frequency ωj , and −ωj , at which
S

(m)
j (ω) is maximized, controls the modulation frequency.

As discussed previously, the segmentation approach for non-
stationary time-series produces distortion/discontinuity arti-
facts around interval boundaries - The PLSO, as described
by Eq. 3, resolves these issues gracefully. We now ana-
lyze two mathematical properties, stochastic continuity and
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piecewise stationarity, to gain more insights on how PLSO
accomplishes this.

3.2.1 Stochastic continuity

We discuss two types of stochastic continuity, 1) across the
interval boundaries and 2) on {σ2

j,m}.

Continuity across the interval boundaries In PLSO, the
state-space model (Eq. 3) provides stochastic continuity
across different PS intervals. The following proposition
rigorously explains stochastic continuity for PLSO.

Proposition 1. For a given m, as ∆→ 0, the samples on
either side of the interval boundary, which are z̃j,(m+1)N

and z̃j,(m+1)N+1, converge to each other in mean square,

lim
∆→0

E[∆z̃j,(m+1)N∆z̃T
j,(m+1)N ] = 0,

where we use ∆z̃j,(m+1)N = z̃j,(m+1)N+1 − z̃j,(m+1)N .

Proof. We use the connection between PLSO, which is a
discrete-time model, and its continuous-time counterpart.
Details are in the Appendix C.

This matches our intuition that as ∆ → 0, the adjacent
samples from the same process should coverge to each other.
For PS approaches without the sample-level continuity, even
with the interval-level constraint [Rosen et al., 2009, Kim
et al., 2018, Song et al., 2018, Das and Babadi, 2018, Soulat
et al., 2019], convergence is not guaranteed.

We can interpret the continuity in the context of posterior
for zj . For PS approaches without continuity, we have

p({zj}j |y)

∝
M∏
m=1

p(
{
zj,(m−1)N+1:mN

}
j
|y(m−1)N+1:mN ),

(4)

where {σ2
j,m}j,m and θ are omitted for notational ease. This

is due to p({zj}j) =
∏M
m=1 p({zj,(m−1)N+1:mN}j), as a

result of absence of continuity across the intervals. Conse-
quently, the inferred time-domain estimates are condition-
ally independent across the intervals. On the contrary, in
PLSO, the time-domain estimates depend on the entire y,
not just on a subset.

Continuity on σ2
j,m For a given j, we impose stochastic

continuity on log σ2
j,m. Effectively, this pools together esti-

mates of {σ2
j,m}m to 1) prevent overfitting to the noisy data

spectra and 2) estimate smooth dynamics of {σ2
j,m}m. The

use of log σ2
j,m ensures that σ2

j,m is non-negative.

The choice of λ dictates the smoothness of {σ2
j,m}m, with

the two extremes corresponding to the familiar dynamics.
If λ→ 0, we treat each window independently. If λ→∞,

we treat the data as stationary, as the constraint forces
σ2
j,m = σ2

j , ∀m. Practically, the smooth regularization pre-
vents artifacts in the spectral analysis, arising from sudden
motion or missing data, as demonstrated in Section 6.

3.2.2 Piecewise stationarity

For the mth window to be piecewise stationary, the initial
state covariance matrix Pjm,1 should be the steady-state
covariance matrix for the window, denoted as Pjm,∞.

The challenge is transitioning from Pjm,∞ to Pjm+1,∞.
Specifically, to ensure Pjm+1,1 = Pjm+1,∞, given that
Pjm,N = Pjm,∞ 6= Pjm+1,∞, the variance of the process
noise between the two samples, εj,(m+1)N+1, has to equal
Pjm+1,∞ − exp (−2∆/lj)P

j
m,∞. However, this is infeasi-

ble. If Pjm+1,∞ < Pjm,∞, the variance is negative. Even if
it were positive, the limit as ∆→ 0 does not equal zero, i.e.,
Pjm+1,∞ −Pjm,∞. As a result, the Proposition 1 no longer
holds and the trajectory is discontinuous.

In summary, there exists a trade-off between maintaining
piecewise stationarity and continuity across intervals. PLSO
maintains continuity across the intervals while ensuring
that the state covariance quickly transitions to the steady-
state covariance. We quantify the speed of transition in the
following proposition.

Proposition 2. Assume lj � N∆, such that Pjm,N =

Pjm,∞. In Eq. 3, the difference between Pjm,∞ and Pjm+1,∞
decays exponentially fast as a function of n,

Pjm+1,n = Pjm+1,∞ + exp(−2n∆

lj
)(Pjm,∞ −Pjm+1,∞).

Proof. In Appendix D, we prove this result by induction.

This implies that, except for the transition portion at the be-
ginning of each window, we can assume stationarity. In prac-
tice, we additionally impose an upper bound on lj during
estimation and also use a reasonably-large N . Empirically,
we observe that the transition period has little impact.

4 INFERENCE

Given the generative model in Eq. 3, our goal is to perform
inference on the posterior distribution

p({zj}j , {σ
2
j,m}j,m | y, θ)

= p({σ2
j,m}j,m | y, θ)︸ ︷︷ ︸

window-level posterior

· p({zj}j | {σ
2
j,m}j,m,y, θ)︸ ︷︷ ︸

sample-level posterior

. (5)

We can learn θ or fix the parameters to specific values in-
formed by domain knowledge, such as the center frequency
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or bandwidth of the processes. Since the posterior distribu-
tion factorizes into two terms as in Eq. 5, the window-level
posterior p({σ2

j,m}j,m|y, θ) and the sample-level posterior
p({zj}j |{σ2

j,m}j,m,y, θ), we break the inference into two
stages.

Stage 1 We minimize the window-level negative log-
posterior, with respect to θ and {σ2

j,m}j,m. Specifically, we
obtain maximum likelihood (ML) estimate θ̂ML and maxi-
mum a posteriori (MAP) estimate {σ̂2

j,m,MAP}j,m. We drop
subscripts ML and MAP for notational simplicity.

Stage 2 Given {σ̂2
j,m}j,m and θ̂, we perform inference on

the sample-level posterior. This includes computing the
mean ẑj = E[zj |{σ̂2

j,m}j,m,y, θ̂] and credible intervals,
which quantifies the uncertainty of the estimates, or any
statistical quantity derived from the posterior distribution.

4.1 OPTIMIZATION OF {σ2
j,m}j,m AND θ

We factorize the posterior, p({σ2
j,m}j,m | y, θ) ∝ p(y |

{σ2
j,m}j,m, θ) · p({σ2

j,m}j,m | θ). As the exact inference is
intractable, we instead minimize the negative log-posterior,
− log p({σ2

j,m}j,m | y, θ). This is an empirical Bayes ap-
proach [Casella, 1985], since we estimate {σ2

j,m}j,m using
the marginal likelihood p(y | {σ2

j,m}j,m, θ). The smooth
hyperprior provides the MAP estimate for {σ2

j,m}j,m.

We use the Whittle likelihood [Whittle, 1953], defined for
stationary time-series in the frequency domain, for the log-
likelihood f({σ2

j,m}j,m; θ) = log p(y | {σ2
j,m}j,m, θ),

f({σ2
j,m}j,m; θ)

= −1

2

M,N∑
m,n=1

log(γ(m)(ωn) + σ2
ν) +

I(m)(ωn)

γ(m)(ωn) + σ2
ν

,

(6)

where the log-likelihood is the sum of the Whittle
likelihood computed for each interval, with discrete
frequency ωn = 2πn/N, and data STFT I(m)(ωn) =∣∣∣∑N

n′=1 exp (−2πi(n′ − 1)(n− 1)/N)ymN+n′

∣∣∣2 . The
Whittle likelihood, which is nonconvex, enables frequency-
domain parameter estimation as a computationally
more efficient alternative to the time domain estima-
tion [Turner and Sahani, 2014]. The concave log-prior
g({σ2

j,m}j,m; θ) = log p({σ2
j,m}j,m | θ), which arises

from the continuity on {σ2
j,m}j,m, is given as

g({σ2
j,m}j,m; θ) = −λ

2

J∑
j=1

M∑
m=1

(
log σ2

j,m − log σ2
j,m−1

)2
.

(7)

This yields the following nonconvex problem

min
{σ2

j,m}j,m,θ
− log p

(
{σ2

j,m}j,m | y, θ
)

= min
{σ2

j,m}j,m,θ
−f({σ2

j,m}j,m; θ)− g({σ2
j,m}j,m; θ).

(8)

We optimize Eq. 8 by block coordinate descent [Wright,
2015] on {σ2

j,m}j,m and {σ2
ν , {lj}j , {ωj}j}. For σ2

ν ,
{lj}j , and {ωj}j , we minimize −f({σ2

j,m}j,m; θ), since
g({σ2

j,m}j,m; θ) does not affect them. We perform conju-
gate gradient descent on {lj}j and {ωj}j . We discuss ini-
tialization and how to estimate σ2

ν in the Appendix E.

4.1.1 Optimization of {σ2
j,m}j,m

We introduce an algorithm to compute a local optimal solu-
tion of {σ2

j,m}j,m for the nonconvex optimization problem
in Eq. 8, by leveraging the regularized temporal structure of
{σ2

j,m}j,m. It extends the inexact accelerated proximal gra-
dient (APG) method [Li and Lin, 2015], by solving the prox-
imal step with a Kalman filter/smoother [Kalman, 1960].
This follows since computing the proximal operator for
g({σ2

j,m}j,m; θ) is equivalent to MAP estimation for J inde-
pendent 1-dimensional linear Gaussian state-space models

{log σ
(l+1),2
j,m }j,m = prox−α(l)g(v

(l))

= arg min
{σ2

j,m}j,m

∑J,M
j,m (v

(l)
j,m − log σ2

j,m)2

2α(l)
− g({σ2

j,m}j,m)︸ ︷︷ ︸∑J
j=1 qj

(9)

where α(l) > 0 is a step-size for the lth iteration, qj =∑M
m=1

(v
(l)
j,m−log σ2

j,m)2

2α(l) + λ
2 (log σ2

j,m − log σ2
j,m−1)2, and

v
(l)
j,m = log σ

(l),2
j,m + α(l) ∂f({σ2

j,m}j,m)

∂ log σ2
j,m

∣∣∣
{σ(l),2

j,m }j,m
.

The jth optimization problem, min{σ2
j,m}m qj , is equivalent

to estimating the mean of the posterior for {log σ2
j,m}m

in a linear Gaussian state-space model with observations
{v(l)

j,m}m, observation noise variance α(l), and state vari-
ance 1/λ. Therefore, the solution can efficiently be com-
puted with J 1-dimensional, Kalman filters/smoothers, with
the computational complexity of O(JM).

Note that Eq. 9 holds for all non-negative λ. If λ = 0, the
proximal operator is an identity operator, as log σ

(l+1),2
j,m =

v
(l)
j,m. This is a gradient descent with a step-size rule. If
λ → ∞, we have log σ2

j,m = log σ2
j,m−1, ∀m, which

leads to log σ
(l+1),2
j,m = (1/M)

∑M
m=1 v

(l)
j,m. The algorithm

is guaranteed to converge when α(l) < 1/C, where C is
the Lipschitz constant for f({σ2

j,m}j,m; θ). In practice, we
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select α(l) according to the step-size rule [Barzilai and Bor-
wein, 1988]. In Appendix F & G, we present the full algo-
rithm for optimizing {σ2

j,m}j,m and a derivation for C.

4.2 INFERENCE FOR p({zj}j | {σ
2
j,m}j,m,y, θ)

We perform inference on the posterior distribution p({zj}j |
{σ̂2

j,m}j,m,y, θ̂). Since this is a Gaussian distribution, the
mean trajectories {ẑj}j and the credible intervals can be
computed analytically. Moreover, Eq. 3 is a linear Gaus-
sian state-space model, we can use Kalman filter/smoother
for efficient computation with computational complexity
O(J2K), further discussed In Appendix H. Since we use
the point estimate {σ̂2

j,m}j,m, the credible interval for {ẑj}j
will be narrower compared to the full Bayesian setting
which accounts for all values of {σ2

j,m}j,m.

4.2.1 Monte Carlo Inference

We can also obtain posterior samples and perform Monte
Carlo (MC) inference on any posterior-derived quantity. To
generate the MC trajectory samples, we use the forward-
filter backward-sampling (FFBS) algorithm [Carter and
Kohn, 1994]. Assuming S number of MC samples, the
computational complexity for FFBS is O(SJ2K), since
for each sample, the algorithm uses Kalman filter/smoother
for sampling. This is different from generating samples with
the interval-specific posterior in Eq. 4. In the latter case,
the FFBS algorithm is run M times, the samples of which
have to be concatenated to form an entire trajectory. With
PLSO, the trajectory sample is conditioned on the entire
observation and is continuous across the intervals.

One quantity of interest is the phase. We obtain the phase
as φj,k = tan−1(z=j,k/z

<
j,k). Since tan−1(·) is a non-

linear operation, we compute the mean and credible in-
terval with MC samples through the FFBS algorithm.
Given the posterior-sampled trajectories {z(s)

j }j,s, where
s ∈ {1, . . . , S} denotes MC sample index, we estimate
φ̂j,k = (1/S)

∑S
s=1 tan−1(z

=,(s)
j,k /z

<,(s)
j,k ), and use empiri-

cal quantiles for the associated credible interval.

4.3 CHOICE OF J AND λ

We choose J that minimizes the Akaike Information Crite-
rion (AIC) [Akaike, 1981], defined as

AIC(J) = −(2/M) · log p(y | {σ̂2
j,m}j,m, θ̂) + 2 · 3 · J,

(10)
where 3 · J corresponds to the number of parameters
({lj}j , {ωj}j , {σ2

j,m}j). The regularization parameter λ is
determined through a two-fold cross-validation, where each
fold is generated by aggregating even/odd sample indices
[Ba et al., 2014].

4.4 CHOICE OF WINDOW LENGTH N

The choice of window length N presents the tradeoff be-
tween 1) spectral resolution and 2) the temporal resolution
of the spectral dynamics [Oppenheim et al., 2009]. For a
shorter window, the estimated spectral dynamics have a finer
temporal resolution, coarser spectral resolution, and higher
variance. For a longer window, these trends are reversed.
This suggests that the choice is application-dependent. For
electrophysiology data, a window on the order of seconds
is used, as scientific interpretations are made on the basis
of fine spectral resolution (< 1Hz). For audio signal pro-
cessing [Gold et al., 2011], short windows (10 ∼ 100 ms)
are used, since audio data is highly nonstationary and thus
requires fine temporal resolution for processing. A survey of
window lengths used in different applications can be found
in the supporting information of Kim et al. [2018].

5 RELATED WORKS

We examine how PLSO relates to other nonstationary frame-
works.

STFT/Regularized STFT In STFT, the harmonic basis
is used, whereas quasi-periodic components are used for
PLSO, which allows capturing of broader spectral content.
Recent works regularize STFT coefficients with stochastic
continuity across the windows, to infer smooth spectral
dynamics [Ba et al., 2014, Kim et al., 2018]. However, this
regularization leads to discontinuities at window boundaries.

Piecewise stationary GP GP regression and parameter es-
timation are performed within each interval [Gramacy and
Lee, 2008, Solin et al., 2018]. Consequently, the recov-
ered trajectories are discontinuous. Also, the inversion of
covariance matrix leads to an expensive inference. For ex-
ample, the time-complexity of mean trajectory estimation
is O(MN3) = O(N2K), whereas the time-complexity for
PLSO is O(J2K). Considering that the typical sampling
frequency for electrophysiology data is∼ 103 (Hz) and win-
dows are several seconds, which leads to N ∼ 103, PLSO
is computationally more efficient. In the Appendix I, we
confirm this through an experiment.

Time-varying Autoregressive model (TVAR) The TVAR
model [Kitagawa and Gersch, 1985] is given as

yk =

P∑
p=1

ap,kyk−p + εk,

with the time-varying coefficients {ap,k}p. Consequently, it
does not suffer from discontinuity issues. TVAR can also be
approximately decomposed into oscillatory components via
eigen-decomposition of the transition matrix [West et al.,
1999]. However, since the eigen-decomposition changes at
every sample, this leads to an ambiguous interpretation of
the oscillations in the data, as we discuss in Section 6.
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RNN frameworks Despite the popularity of recurrent neu-
ral networks (RNN) for time-series applications [Goodfel-
low et al., 2016], we believe PLSO is more appropriate for
time-frequency analysis for two reasons.

1. RNNs operate in the time-domain with the goal of
prediction/denoising and consequently less emphasis
is placed on local stationarity or estimation of second-
order statistics. Performing time-frequency analysis
requires segmenting the RNN outputs and applying the
STFT, which yields noisy spectral estimates.

2. RNN is not a generative framework. Although varia-
tional framework can be combined with RNN [Chung
et al., 2015, Krishnan et al., 2017], the use of varia-
tional lower bound objective could lead to suboptimal
results. On the other hand, PLSO is a generative frame-
work that maximizes the true log-posterior.

6 EXPERIMENTS

We apply PLSO to three settings: 1) A simulated dataset 2)
local-field potential (LFP) data from the rat hippocampus,
and 3) EEG data from a subject under anesthesia.

We use PLSO with λ = 0, λ → ∞, and λ determined by
cross-validation, λCV. We use interval lengths chosen by
domain experts. As baselines, we use 1) regularized STFT
(STFT-reg.) and 2) Piecewise stationary GP (GP-PS). For
GP-PS, we use the same {σ̂2

j,m}j,m and θ̂ as PLSO with
λ = 0, so that the estimated PSD of GP-PS and PLSO are
identical. This lets us explain differences in time-domain
estimates by the fact that PLSO operates in the time-domain.

6.1 SIMULATED DATASET

We simulate from the following model for 1 ≤ k ≤ K

yk = 10

(
K − k
K

)
z<1,k + 10 cos4(2πω0k)z<2,k + νk,

where z1,k and z2,k are as in Eq. 2, with (ω0, ω1, ω2) =
(0.04, 1, 10) Hz, fs = 200 Hz, T = 100 seconds, l1 =
l2 = 1, and νk ∼ N (0, 25). This stationary process com-
prises two amplitude-modulated oscillations, namely one
modulated by a slow-frequency sinusoid and the other a
linearly-increasing signal [Ba et al., 2014]. We simulate
20 realizations and train on each realization, assuming 2-
second PS intervals. For PLSO, we use J = 2. Additional
details are provided in the Appendix J.

Results We use two metrics: 1) Mean squared error (MSE)
between the mean estimate ẑj and the ground truth zTrue

j

and 2) jump(zj). The averaged results are shown in Table 1.
We define jump(zj) = 1

M−1

∑M−1
m=1 |ẑj,mN+1 − ẑj,mN |

to be the level of discontinuity at the interval boundaries.
If jump(zj) greatly exceeds jump(zTrue

j ), this implies the
existence of large discontinuities at the boundaries.

Figure 3: Spectrograms for simulation (in dB). (a) True data
(b) True spectrogram (c) regularized STFT (d) PLSO with
λ→∞ (e) PLSO with λ = 0 (f) PLSO with λ = λCV.

Table 1: Simulation results. For jump(zj) and MSE,
left/right metrics correspond to z1/z2, respectively.

jump(zj) MSE IS div.
Truth 0.95/12.11 0/0 0
λ = 0 0.26/10.15 2.90/3.92 4.08
λ→∞ 0.22/10.32 3.26/4.53 13.78
λ = λCV 0.25/10.21 2.88/3.91 3.93
STFT-reg. 49.59/81.00 6.89/10.68 N/A

GP-PS 16.99/23.28 3.00/4.04 4.08

Fig. 3 shows the true data in the time domain and spectro-
gram results. Fig. 3(c) shows that although the regularized
STFT detects activities around 1 and 10 Hz, it fails to delin-
eate the time-varying spectral pattern. Fig. 3(d) shows that
PLSO with stationarity (λ→∞) assumption is too restric-
tive. Fig. 3(e), (f) show that both PLSO with independent
window assumption (λ = 0) and PLSO with cross-validated
λ (λ = λCV) are able to capture the dynamic pattern, with
the latter being more effective in recovering the smooth
dynamics across different PS intervals.

For GP-PS and STFT-reg., jump(zj) exceeds jump(zTrue
j ),

indicating discontinuities at the boundaries. An example
is in Fig. 1. PLSO produces a similar jump metric as the
ground truth metric, indicating the absence of discontinu-
ities. We attribute the lower value to Kalman smoothing. For
the TF domain, we use Itakura-Saito (IS) divergence [Itakura
and Saito, 1970] as a distance measure between the ground
truth spectra and the PLSO estimates. That the highest di-
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Figure 4: Result of analyses of hippocampal data. (a) Theta phase distribution of population neuron spikes, computed with
bandpass-filtered LFP (black), PLSO estimate of ẑ2 with credible intervals estimated from 200 posterior samples (red).
Horizontal gray line indicates the uniform distribution. (b-c) Spectrogram (in dB) for 500 seconds (b) STFT (c) PLSO with
λCV. Learned frequencies are (ω̂1, ω̂2, ω̂3) = (2.99, 7.62, 15.92) Hz, with ω̂4 ∼ ω̂5 > 25 Hz. (d-e) Time-domain results.
(d) Reconstructed signal (e) phase for ẑ2 and interval boundary (vertical gray), with bandpass-filtered data (dotted black),
STFT-reg. (blue), and PLSO (red). Shaded area represents 95% credible interval from S = 200 sample trajectories.

vergence is given by λ→∞ indicates the inaccuracy of the
stationarity assumption.

6.2 LFP DATA FROM THE RAT HIPPOCAMPUS

We use LFP data collected from the rat hippocampus during
open field tasks [Mizuseki et al., 2009], with T = 1, 600 sec-
onds and fs = 1, 250 Hz2. The theta neural oscillation band
(5 ∼ 10 Hz) is believed to play a role in coordinating the
firing of neurons in the entorhinal-hippocampal system and
is important for understanding the local circuit computation.

We fit PLSO with J = 5, which minimizes AIC as shown
in Table 2, with 2-second PS interval. The estimated ω̂2 is
7.62 Hz in the theta band. To obtain the phase for non-PLSO
methods, we perform the Hilbert transform on the theta-band
reconstructed signal. With no ground truth, we bandpass-
filter (BPF) the data in the theta band for reference.

Table 2: AIC as a function of J for Hippocampus data

J 1 2 3 4 5 6
AIC 2882 2593 2566 2522 2503 2505

Spike-phase coupling Fig. 4(a) shows the theta phase
distribution of population neuron spikes in the hippocam-
pus. The PLSO-estimated distribution (red) confirms the
original results analyzed with bandpass-filtered signal
(black) [Mizuseki et al., 2009]–the hippocampal spikes show
a strong preference for a specific phase, π for this dataset,

2We use channel 1 of mouse ec013.528 for the LFP. The popu-
lation spikes were simultaneously recorded.

of the theta band. Since PLSO provides posterior sample-
trajectories for the entire time-series, we can compute as
many realizations of the phase distribution as the number
of MC samples. The resulting credible interval excludes
the uniform distribution (horizontal gray), suggesting the
statistical significance of strong phase preference.

Denoised spectrogram Fig. 4(b-c) shows the estimated
spectrogram. We observe that PLSO denoises the spectro-
gram, while retaining sustained power at ω̂2 = 7.62 Hz and
weaker bursts at (ω̂1, ω̂3) = (2.99, 15.92) Hz.

Time domain discontinuity Fig. 4(d-e) show a segment
of the estimated signal and phase near a boundary for
ω̂2. While the estimates from STFT-reg. (blue) and PLSO
(red) follow the BPF result closely, the STFT-reg. esti-
mates exhibit discontiunity/distortion near the boundary.
In Fig. 4(e), the phase jump at the boundary is 38.4 de-
grees. We also computed jump(φ2) in degrees/sample. Con-
sidering that the theta band roughly progresses 2.16 (=
7.5(Hz)×360/1250 (Hz)) degrees/sample, we observe that
BPF (2.23), as expected, and PLSO (λCV : 2.40, λ → ∞:
2.66) are not affected by the boundary effect. This is not the
case for STFT-reg. (26.83) and GP-PS (25.91).

Comparison with TVAR Fig. 5(a-b) shows a segment of
TVAR inference results3. Specifically, Fig. 5(a) and (b)
shows a time-varying center frequency ω̂1 and the corre-
sponding reconstruction, for the lowest frequency compo-
nent. Note that the eigenvalues, which correspond to {ωj}j ,
and the eigenvectors, which are used for oscillatory decom-
position, are derived from the estimated TVAR transition
matrix. Consequently, we cannot explicitly control {ωj}j ,
as shown in Fig. 5(a), the bandwidth of each component, as

3The details for TVAR is in the Appendix K.
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Figure 5: Hippocampus data. (a) time-varying ω̂1 for TVAR.
(b-d) Inferred mean trajectory (red) for (b) TVAR j = 1, (c)
PLSO j = 1, and (d) PLSO j = 2, with raw data (black).

well as the number of components J . This is further com-
plicated by the fact that the transition matrix changes every
sample. Fig. 5(b) shows that this ambiguity results in the
lowest-frequency component of TVAR explaining both the
slow (0.1 ∼ 2 Hz) and theta components. With PLSO, on
the contrary, we can explicitly specify or learn the parame-
ters. Fig. 5(c-d) demonstrates that PLSO is able to delineate
the slow/theta components without any discontinuity.

6.3 EEG DATA FROM THE HUMAN BRAIN
UNDER PROPOFOL ANESTHESIA

We apply PLSO to the EEG data from a subject anesthetized
with propofol anesthetic drug, to assess whether PLSO can
leverage regularization to recover smooth spectral dynamics,
which is widely-observed during propofol-induced uncon-
sciousness4 [Purdon et al., 2013]. The data last T = 2,300
seconds, sampled at fs = 250 Hz. The drug infusion starts
at t = 0 and the subject loses consciousness around t = 260
seconds. We use J = 6 and assume a 4-second PS interval.

Smooth spectrogram Fig. 6(a-b) shows a segment of the
PLSO-estimated spectrogram with λ = 0 and λ = λCV.
They identify strong slow (0.1 ∼ 2 Hz) and alpha oscilla-
tions (8 ∼ 15 Hz), both well-known signatures of propofol-
induced unconsciousness. We also observe that the alpha
band power diminishes between 1,200 and 1,350 seconds,
suggesting that the subject regained consciousness before be-
coming unconscious again. PLSO with λ = 0 exhibits PSD
fluctuation across windows, since {σ2

j,m}j,m are estimated

4The EEG recording is part of de-identified data collected from
patients at Massachusetts General Hospital (MGH) as a part of a
MGH Human Research Committee-approved protocol.

Figure 6: Spectrogram (in dB) under propofol anesthesia.
PLSO with (a) λ = 0 (b) λ = λCV (c) λ→∞.

independently. The stationary PLSO (λ→∞) is restrictive
and fails to capture spectral dynamics (Fig. 6(c)). In con-
trast, PLSO with λCV exhibits smooth dynamics by pooling
together estimates from the neighboring windows. The reg-
ularization also helps remove movement-related artifacts,
shown as vertical lines in Fig. 6(a), around 700 ∼ 800/1,200
seconds, and spurious power in 20 ∼ 25 Hz band. In sum-
mary, PLSO with regularization enables smooth spectral
dynamics estimation and spurious noise removal.

7 CONCLUSION

We presented the Piecewise Locally Stationary Oscillatory
(PLSO) framework to model nonstationary time-series data
with slowly time-varying spectra, as the superposition of
piecewise stationary (PS) oscillatory components. PLSO
strikes a balance between stochastic continuity of the data
across PS intervals and stationarity within each interval.
For inference, we introduce an algorithm that combines
Kalman theory and nonconvex optimization algorithms. Ap-
plications to simulated/real data show that PLSO preserves
time-domain continuity and captures time-varying spectra.
Future directions include 1) the automatic identification of
PS intervals and 2) the expansion to higher-order autore-
gressive models and diverse priors on the parameters that
enforce continuity across intervals.
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