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A GRAPH PRELIMINARIES

Let capital letters X denote random variables, and let lower case letters x values of X. Sets of random variables are denoted
V, and sets of values v. For a subset A ⊆ V, vA denotes the subset of values in v of variables in A. Domains of X and X
are denoted by XX and XX, respectively.

Standard genealogic relations on graphs are as follows: parents, children, descendants, siblings and ancestors of X in a graph
G are denoted by paG(X), chG(X),deG(X), siG(X), anG(X), respectively [Lauritzen, 1996]. These relations are defined
disjunctively for sets, e.g. paG(X) ≡

⋃
X∈X paG(X). By convention, for any X , anG(X) ∩ deG(X) ∩ disG(X) = {X}.

We will also define the set of strict parents as follows: pasG(X) = paG(X) \X. Given any vertex V in an ADMG G, define
the ordered Markov blanket of V as mbG(V ) ≡ (disG(V ) ∪ paG(disG(V ))) \ V . Given a graph G with vertex set V, and
S ⊆ V, define the induced subgraph GS to be a graph containing the vertex set S and all edges in G among elements in S.

In the subsequent discussion, we will denote an ADMG G on V by notation G(V), and a CADMG G on V given W by
notation G(V,W).

B THE NESTED MARKOV FACTORIZATION

B.1 WHY DO WE NEED AN ALTERNATIVE FACTORIZATION?

A hidden variable CDAG G(V ∪H,W) may be used to define a factorization on distributions p(V|W) in terms of the
CDAG as: p(V|W) =

∑
H

∏
V ∈V∪H p(V |paG(V )). However, inferences may be sensitive to assumptions made about the

state spaces for the unobserved variables and the latent variable model may contain singularities at which asymptotics are
irregular [Drton, 2009]. Additionally, such a model does not form a tractable search space: an arbitrary number of hidden
variables and associated structures may be incorporated that are consistent with observed data distributions.

Alternatively, a factorization of the marginal distribution p(V|W) can be defined directly on the latent projection CADMG
G(V,W). This nested Markov factorization, described in [Richardson et al., 2017] completely avoids modeling hidden
variables, and leads to a regular likelihood in special cases [Evans and Richardson, 2018]. It captures all equality constraints
a hidden variable CDAG factorization imposes on the observed margin p(V|W) [Shpitser et al., 2018]. In addition,
p(Y (a)|W) (an interventional distribution given a fixed context W) identified in a hidden variable causal model represented
by G(V ∪H,W) is always equal to a modified version of a nested factorization [Richardson et al., 2017] associated with
G(V,W), described here.

B.2 THE NESTED MARKOV FACTORIZATION

The nested Markov factorization of p(V|W) with respect to a CADMG G(V,W) links kernels, mappings derived from
p(V|W) and CADMGs derived from G(V,W) via a fixing operation.
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Kernel: A kernel qV(V|W) is a mapping from values in W to normalized densities over V [Lauritzen, 1996]. A
conditional distribution is a familiar example of a kernel, in that

∑
v∈V qV(v|w) = 1. Conditioning and marginalization

are defined in kernels in the usual way: For A ⊆ V, qV(A|W) ≡
∑

V\A qV(V|W) and qV(V \A|A ∪W)≡ qV(V|W)
qV(A|W) .

Fixability and the fixing operator: A variable V ∈ V in a CADMG G is fixable if deG(V )∩ desG(V ) = ∅. In other words,
V is fixable if paths V ↔ ...↔ B and V → ...→ B do not both exist in G for any B ∈ V\{V }.

We define a fixing operator φV (G) for graphs, and a fixing operator φV (q;G) for kernels. Given a CADMG G(V,W), with
a fixable V ∈ V, φV (G(V,W)) yields a new CADMG G(V \ {V },W ∪ {V }) obtained from G(V,W) by moving V
from V to W, and removing all edges with arrowheads into V . Given a kernel qV(V|W), and a CADMG G(V,W), the
operator φV (qV(V|W),G(V,W)) yields a new kernel:

qV\{V }(V \ {V }|W ∪ {V }) ≡ qV(V|W)

qV(V |mbG(V ))

Fixing sequences: A sequence 〈V1, . . . , Vk〉 is said to be valid in G(V,W) if V1 fixable in G(V,W), V2 is fixable in
φV1

(G(V,W)), and so on. If any two sequences σ1, σ2 for the same set S ⊆ V are fixable in G, they lead to the same
CADMG. The graph fixing operator can be extended to a set S: φS(G). This operator is defined as applying the vertex fixing
operation in any valid sequence σ for set S.

Given a sequence σS, define η(σS) to be the first element in σS, and τ(σS) to be the subsequence of σS con-
taining all elements but the first. Given a sequence σS on elements in S valid in G(V,W), the kernel fix-
ing operator φσS

(qV(V|W),G(V,W)) is defined to be equal to qV(V|W) if σS is the empty sequence, and
φτ(σS)(φη(σS)(qV(V|W);G(V,W)), φη(σS)(G(V,W))) otherwise.

Reachability: Given a CADMG G(V,W), a set R ⊆ V is called reachable if there exists a sequence for V \R valid in
G(V,W). In other words, if S is fixable in G, V \ S is reachable.

Intrinsic sets: A set R reachable in G(V,W) is intrinsic in G(V,W) if φV\R(G) contains a single district, R itself. The
set of intrinsic sets in a CADMG G is denoted by I(G).

Nested Markov factorization: A distribution p(V|W) is said to obey the nested Markov factorization with respect to
the CADMG G(V,W) if there exists a set of kernels of the form {qS(S|paG(S)) : S ∈ I(G)}} such that for every valid
sequence σR for a reachable set R in G, we have:

φσR
(p(V|W);G(V,W)) =

∏
D∈D(φR(G(V,W)))

qD(D|pasG(D))

If a distribution obeys this factorization, then for any reachable R, any two valid sequences on R applied to p(V|W) yield
the same kernel qR(R|V \R). Hence, kernel fixing may be defined on sets, just as graph fixing. In this case, for every
D ∈ I(G), qD(D|pasG(D)) ≡ φV\D(p(V|W);G(V,W)).

The district factorization or Tian factorization of p(V|W) results from the nested factorization:

p(V|W) =
∏

D∈D(G(V,W))

qD(D|pasG(D))

=
∏

D∈D(G(V,W))

( ∏
D∈D

p(D | pre≺(D))

)
,

where pre≺(D) is the set of predecessors of D according to a topological total ordering ≺. Each factor
∏
D∈D p(D |

pre≺(D)) is only a function of D ∪ paG(D) under the nested factorization.

An important result in [Richardson et al., 2017] states that if p(V∪H|W) obeys the factorization for a CDAG G(V∪H,W),
then p(V|W) obeys the nested factorization for the latent projection CADMG G(V,W).



B.3 IDENTIFICATION

Not every interventional distribution p(Y(a)) is identified in a hidden variable causal model. However, every p(Y(a)|W)
identified from p(V|W) can be expressed as a modified nested factorization as follows:

p(Y(a)|W)

=
∑

Y∗\Y

∏
D∈D(GY∗ )

p(D|do(pasG(D)))|A=a

=
∑

Y∗\Y

∏
D∈D(GY∗ )

φV\D(p(V|W);G(V,W))|A=a

where Y∗ ≡ anG(V(a),W)(Y) \ a. That is, p(Y(a)|W) is only identified if it can be expressed as a factorization, where
every piece corresponds to a kernel associated with a set intrinsic in G(V,W). Moreover, no piece in this factorization
contains elements of A as random variables.

B.4 EXAMPLE OF THE NESTED FACTORIZATION OF A HIDDEN VARIABLE PDSEM

A hidden variable PDSEM can be unrolled into a latent-projected ADMG if the model obeys restrictions given in Section 5.
For instance, Fig. 1 in this Appendix shows an example where the first two states of the system involve hidden variables.
In particular, the system at s2 is the front-door-graph previously encountered in Section 2. Transition graphs are in Fig.
1(c)-(e).

The nested factorization for the initial graph in Fig. 1 (a) has intrinsic sets

(a) : {A1}, {B1}, {C1}, {A1, B1}, {S1}

with corresponding kernels
(a) : qA1

(A1) ≡ p(A1); qB1
(B1) = p(B1);

qC1
(C1|A1, B1) ≡ p(C1|A1, B1);

qA1,B1
(A1, B1) ≡ p(A1, B1); qS1

(S1) ≡ p(S1).

(1)

Similarly, the nested factorizations for the transition graphs in Fig. 1 (c),(d),(e) have intrinsic sets:

(c) : {A12}, {B12}, {C12}, {A12, C12}, {S12}
(d) : {A23}, {B23}, {C23}, {S23}
(e) : {A21}, {B21}, {A21, B21}, {C21}, {S21},

with corresponding kernels

(c) : qA12(A12|C1) ≡ p(A12|C1); qB12(B12|A12)) ≡ p(B12|A12);

qC12
(C12|C1, B12) ≡

∑
A12

p(C12|B12, A12, C1)p(A12|C1);

qA12,C12(A12, C12|B12, C1) ≡ p(C12|B12, A12, C1)p(A12|C1); qS12(S12|C12) ≡ p(S12|C12).

(d) : qA23(A23|A2, C2) ≡ p(A23|A2, C2); qB23(B23|B2, A23) ≡ p(B23|B2, A23);

qC23(C23|C2, A23) ≡ p(C23|C2, A23); qS23(S23) ≡ p(S23).

(e) : qA21(A21|A2) ≡ p(A21|A2); qB21(B21|B2) ≡ p(B21|B2); qA21,B21(A21, B21) ≡ p(A21, B21);

qC21(C21|C2, B21, A21) ≡ p(C21|C2, B21, A21); qS21(S21) ≡ p(S21).

(2)

Applying the Nested Markov factorization on the trajectory in 1 (f), we obtain the following factorization:

p(A1, B1, C1) · p(A12, B12, C12|A1, B1, C1) · p(A23, B23, C23|A12, B12, C12)

= {qA1,B1(A1, B1)qC1(C1 | A1, B1)}︸ ︷︷ ︸
(a)

· {qA12,C12(A12, C12|B12, A1, C1)qB12(B12|A12)}︸ ︷︷ ︸
(c)

·

{qA23(A23|A12, C12) · qA23(B23|B12, A23) · qC23(C23|C12, A23)}︸ ︷︷ ︸
(d)

,

where the kernels are given in (1) and (2) above.
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Figure 1: A hidden variable PDSEM. (a) Causal structure of the initial state S1. (b) The state transition diagram. (c),(d),(e)
Latent projected causal diagrams representing possible transitions and subsequent states. (f) A snapshot of a possible
PDSEM trajectory represented as an unrolled ADMG

C GENERALIZATIONS OF PDSEMS

C.1 PDSEMS WITH OBSERVED CONTEXT

Here we describe how PDSEMs may be generalized to a setting where variables in the prior network and all transition
networks depend on a vector of baseline covariates W. We start by describing how an ordinary graphical causal model may
be generalized in this way.

In a causal model G(V,W) with Y ∈ V, A ⊆ V \ {Y } and observed context (confounding) W, counterfactuals are
denoted by Y (a)|W. Given a set Y, Y(a)|W ≡ {Y (a)|W : Y ∈ Y}.

In an arbitrary PDSEM with observed variables V , and observed context W, the pieces that define the model are a CDAG
G1(V1,W) for the initial state s1, and for each transition (i, j) ∈ T , a CDAG Gij(Vij , ~Vi ∪W)

As before, we will impose Assumptions 1 and 2. Define V ≡ V1 ∪
(⋃

(i,j)∈T Vij

)
. A PDSEM yields an observed data

distribution p∞(V,W) with the following factorization:

p(W)p1(V1|W)

∞∏
t=1

 ∏
(i,j)∈T

(pij(Vij |W))I(s
i
t−1,s

j
t )

 1I(s
∗
t−1)

where p1(V1|W) =
∏
V ∈V1

p(V |paG1(V )) and pij(Vij |W) =
∏
V ∈Vij

p(V |paGij (V )).

Since W is a set of context variables, we assume this set cannot be intervened on. We can define interventions A ≡⋃
(i,j)∈T Aij , and set to values a with the property that for any (i, j), (k, j) ∈ T , the same values aj are being set to Aij

and Akj , the same as before. Define Yij in each transition graph Gij to be all variables in that state not in Aij or W,
with their corresponding values being yj , their union being Y, and the values of the union being y. This gives the new
counterfactual distribution to be:

p1(Y1(a1)|W) ·
∞∏
t=1

 ∏
(i,j)∈T

(pij(Yij(aj)|Yi(ai),W))I(s
i
t,s
j
t+1)

1I(s∗t )
Thus, Lemma 2 in the main paper can be rewritten as follows:

Given a fully observed PDSEM, each factor of the distribution p∞(Y(a)) is identified from p∞(V,W) as:

p1(Y1(a1)|W) ≡
∏

V ∈Y1\A1

p1(V |paG1(V ))
∣∣∣
A1=a1

pij(Yij(aj)|Yi(ai),W) ≡
∏

V ∈Yij\Aj

pij(V | paGij (V ))
∣∣∣Ai=ai,
Aj=aj

,



where p(W) is given as a part of the observed data distribution.

A PDSEM with hidden variables and observed context can be defined given the initial state CDAG is G on V1,H1,W and the
set of transition CDAGs Gij on Vij ,Hij ,W given Vi, for all (i, j) ∈ T , such that S1 ∈ V1, Sij ∈ Vij for every (i, j) ∈ T ,
for every j and all (i, j), (k, j) ∈ T , Hij = Hkj and Vij = Vkj . We assume the variables V ≡ {V1} ∪

⋃
(i,j)∈T Vij ,

and W are observed and H ≡ {H1} ∪
⋃

(i,j)∈T Hij are hidden.

The observed data distribution p∞(V,W) is obtained from p(W), p1(V1|W) ≡
∑

H1
p1(V1∪̇H1|W), and

pij(Vij |Vi,W) ≡
∑

Hij
pij(Vij∪̇Hij |Vi,W). Fix a set of observed treatment variables A, the union of {Aij : (i, j) ∈

T }, such that aj are set to Aij ,Akj for any (i, j), (k, j) ∈ T , and the set of outcomes Yij = Vij \Aij for any (i, j) ∈ T ,
with Y the union of {Yij : (i, j) ∈ T }. As before, we do not intervene on W. Identification for p∞(Y(a)) in a latent
variable PDSEM reduces to identification theory for p1(Y1(a1)|W) in the latent projection ADMG G1(V1,W), and
pij(Yij(aj)|Vi(ai),W) in the latent projection CADMG Gij on Vij given Vi,W.

Lemma 3 in the main paper can be restated with observed context as follows:

Under Assumptions 1, 2 and 3, given a latent variable PDSEM represented by G1 and {Gij : (i, j) ∈ T }, p∞(Y(a))
is identified from p∞(V,W) if and only if every bidirected component in G1Y1

is intrinsic in G1, and every bidirected
component in GijYj

is intrinsic in Gij for every i and j. Moreover, if p∞(Y(a)) is identified, it may be obtained from
p(W), which is a part of the observed data distribution, as well as:

p1(Y1(a1)|W) ·
∞∏
t=1

 ∏
(i,j)∈T

(pij(Yij(aj)|Yi(ai),W))I(s
i
t−1,s

j
t )

1I(s∗t−1)

where

p1(Y1(a1)|W) =
∏

D∈D(G1Y∗1
)

q1D(D| pasG1(D))
∣∣∣
A1=a1

,

where each kernel q1D(D|pasG1(D)) is in the nested Markov factorization of p1(V1) with respect to G1, and

pij(Yij(aj)|Yi(ai),W) =
∏

D∈D(GVij\Aij )

qijD(D| pasGij (D))
∣∣∣Ai=ai,
Aj=aj

where each kernel qijD(D|pasGij (D)) is in the nested Markov factorization of pij(Vij |Vi) with respect to Gij .

C.2 kTH-ORDER MARKOV TEMPORAL CAUSAL MODELS

Both causal DBNs and PDSEMs may be generalized to kth-order Markov models, where variables in a particular time step
depend on variables in at most k prior states.

A kth-order Markov DBN consists of a single prior network G1, which is a DAG with vertices V1, a set of k − 1 initial
transition networks G2, . . . ,Gk, where each Gi is a CDAG with random vertices Vi and fixed vertices

⋃i−1
j=1

~Vj , and a
transition network Gt with random vertices Vt and fixed vertices

⋃t−1
j=t−k

~Vj . Each DAG and CDAG in a kth-order DBN is
associated with a factorization of the corresponding joint or conditional distribution. The “unrolled” factorization of the
DBN makes use of the prior distribution p1(V1) and initial transition network distributions pi(Vi|V1, . . . ,Vi−1) for the
first k − 1 steps, and then uses a repeated version of the transition network distribution pt(Vt|Vt−k, . . . ,Vt−1):

∏
V ∈V1

p1(V | paG1(V ))

k−1∏
t̃=1

∏
V ∈Vt̃

pt̃(V | paGt̃(V )) ·
T−1∏
t̃=k

∏
V ∈Vt

pt(V | paGt(V )). (3)

The causal version of a kth-order Markov DBN is obtained in the natural way by endowing each DAG and CDAG with
structural equation model semantics, and obtaining standard identification results, via the g-formula, and the ID algorithm in
cases hidden variables are present.

The relaxation of the first-order Markov assumption in these models does not come without a cost: additional transition
networks must be specified, and all transition networks may potentially depend on a larger set of variables, resulting in a
more difficult statistical inference problem on model parameters.

PDSEMs may similarly be relaxed to a kth-order Markov model. For example, given a model with 3 states, if we wish all
transitions to depend on two rather than one prior state, we would need to specify a prior network (with a corresponding



causal model), a set of 3 single-step transition networks (corresponding to steps from the initial state to any of the 3 possible
states), and then finally a set of 9 transition networks, representing variables in one of three states that depend on any
two prior states (which may involve states repeating). Such a model would have a separate transition network G〈1,2,3〉 for
variables in state 3 at time t, where state 2 was visited at time t− 1, and state 1 was visited at time t− 2, and a transition
network G〈2,1,3〉 for variables in state 3 at time t, where state 1 was visited at time t− 1, and state 2 was visited at time t− 2.

In general, a kth-order Markov PDSEM with S states will have a single prior network DAG corresponding to the initial state,
Si transition networks CDAGs that depend on i prior states (for i = 1, . . . , k − 1), indexed by sequences of states visited
(starting with the initial state and ending in one of the states s ∈ S), and Sk+1 transition network CDAGs that depend on k
prior states, indexed by sequences of states visited, and ending in one of the states s ∈ S. Note that the initial transition
networks all assume that the starting state is the initial state, while the transition network does not.

In addition, a kth-order Markov PDSEM makes the following assumption, that generalizes Assumption 2:

Assumption 1 For every state sj , any CDAG G〈...j...〉 or DAG Gj that mentions variables in state j will have corresponding
random variables that share state spaces.

As was the case with DBNs, each DAG or CDAG in a PDSEM is associated with a causal model, which induces an
appropriate DAG or CDAG factorization and g-formula for identification of interventional distributions. These, in turn, yield
PDSEM factorizations that naturally generalize those in Section 4.2.

Let Tk̃ be a set of all valid state transition sequences σk̃ of size k̃ = 1, . . . , k − 1 that start with the initial state, and T be
a set of all valid state transition sequences σk of size k. Further, let Vσ be random variables in the final state in a state
transition sequence σ, while Wσ be fixed variables in states prior to the final state in σ. Finally, let I(σ) be the indicator that
the current state is the final state in σ, and the |σ| − 1 prior states were the states prior to the last state in σ. We then obtain
the following observed data factorization of the kth-order Markov PDSEM:

p1(V1)

k−1∏
t=1

 ∏
σ
k̃
∈T
k̃

(
p(Vσ

k̃
|Wσ

k̃
)
)I(σ

k̃
)

 ∞∏
t=k

 ∏
σk∈T

(p(Vσk |Wσk ))
I(σk)

 1I(s
∗
t )

p1(V1) =
∏
V ∈V1

p(V | paG1(V )); pσ
k̃
(Vσ

k̃
|Wσ

k̃
) =

∏
V ∈Vσ

k̃

p(V | paGσ
k̃
(V )); pσk (Vσk |Wk̃) =

∏
V ∈Vσk

p(V | paGσk (V ));

Extensions to truncated factorizations representing interventional distributions, and hidden variable versions of these models
are straightforward generalizations of the k = 1 case, described in the main body of the paper.

As was the case with DBNs, relaxation of the first-order Markov assumption to a kth-order Markov assumption comes at a
cost – many additional transition networks must be specified, and the resulting statistical inference is more likely to suffer
from the curse of dimensionality.

C.3 IDENTIFICATION IN CAUSAL DBNS AND PDSEMS THAT VIOLATE THE FIRST ORDER MARKOV
ASSUMPTION

We show that identification in a hidden variable causal DBN for any finite horizon T may be reformulated as a standard
causal effect identification problem in a hidden variable causal model obtained by concatenating prior and transition networks
in a DBN.

Lemma 1 Consider a causal DBN represented by the prior network DAG G1 with observed variables V1 and hidden
variables H1, and the transition network conditional DAG Gt+1,t with observed variables Vt+1, hidden variables Ht+1,
that depends on observed variables Vt and hidden variables Ht in the prior time step.

Given a fixed set of time points 1, . . . , T , let G1:T be the unrolled hidden variable DAG obtained by concatenating the
prior network G1, and the transition networks Gt,t+1 for time points 2, . . . , T , V1:T ≡

⋃
iVi, and G1:T (V1:T ) the latent

projection of G1:T onto V1:T .

Given disjoint A,Y ⊆ V1:T , p(Y(a)) is identified from p(V1:T ) in the hidden variable causal DBN model represented by
G1 and Gt,t+1 if every district in (G1:T (V1:T ))Y∗ (the induced subgraph of G1:T (V1:T )) is intrinsic, where Y∗ is the set of
ancestors of Y in G1:T (V1:T ) not through A. Moreover, if p(Y(a)) is identified, it is equal to∑

Y∗\Y

∏
D∈D(G1:T (V1:T )Y∗ )

qD(D| paG1:T (D) \D)|A=a,



where qD are kernels corresponding to intrinsic sets that are districts in D(G1:T (V1:T )Y∗).

Proof: This follows directly from standard results on identification in latent projections [Shpitser and Pearl, 2006, Richardson
et al., 2017] and the fact that G1:T represents a hidden variable causal model. �

Hence, if Assumption 1 does not hold, causal effects in causal DBNs are still identified for any finite number of timepoints
1, . . . , T , by constructing a hidden variable DAG via “unrolling” the hidden variable causal DBN for T steps, applying
the latent projection operation to this DAG to obtain an “unrolled” ADMG, and applying the ordinary ID algorithm to
this ADMG. While this approach yields very general identification, the resulting functional will likely be computationally
intractable, since the nested Markov factors in ADMGs that are not first-order Markov will generally be high dimensional
objects.

We next show that, similarly to the result for causal DBN above, identification in a hidden variable PDSEM for any finite
horizon up to time T may be reformulated as a standard causal effect identification problem in a hidden variable causal
model, provided the intervention on state variables S1, Sij are part of the intervention set at every time point up to T .

Consider a PDSEM represented by the prior network DAG G1 with observed variables V1 and hidden variables H1, and
a set of transition networks conditional DAGs Gij (for any transition (i.j) ∈ T )) with observed variables Vij , hidden
variables Hij , that depends on observed variables Vi and hidden variables Hi in the prior time step.

Given a fixed set of time points 1, . . . , T , and a particular sequence σ ≡ 〈sk1 , sk2 , . . . , skT 〉 of states, such that sk1 is the
initial state, and (ski , ski+1

) is a valid state transition in T , let Gσ1:T be the unrolled hidden variable DAG obtained from
G1 and {Gij : (i, j) ∈ T } inductively as follows. If T = 1, define Gσ1:T ≡ G1. Given Gσ1:i, define Gσ1:(i+1) as follows:
concatenate Gsisi+1

and Gσ1:i by replacing every fixed (square) vertex in Gsisi+1
by the corresponding vertex in Gσ1:i in time

slice i.

Finally, define V σ1:T as the set of all observed vertices in Gσ1:T , let Sσ1:T be the set of all state transition vertices in Gσ1:T , and
define Gσ1:T (V1:T ) to be the latent projection of Gσ1:T onto V1:T .

Lemma 2 Given disjoint A,Y ⊆ V1:T , such that Sσ1:T ⊆ A, and a value assignment a assigns Sσ1:T to the sequence
〈sk1 , . . . , skT 〉, p(Y(a)) is identified from p∞(V) in the PDSEM model represented by G1 and {Gij : (i, j) ∈ T } if every
district in (Gσ1:T (V1:T ))Y∗ (the induced subgraph of Gσ1:T (V1:T )) is intrinsic, where Y∗ is the set of ancestors of Y in
Gσ1:T (V1:T ) not through A. Moreover, if p(Y(a)) is identified, it is equal to∑

Y∗\Y

∏
D∈D(Gσ

1:T
(V1:T )Y∗ )

qD(D| paG1:T (D) \D)|A=a,

where qD are kernels corresponding to intrinsic sets that are districts inD(Gσ1:T (V1:T )Y∗), obtained by the usual sequential
fixing operation applied to the distribution p(V1) ·

∏T−1
t=1 p(Vskt ,skt+1

|Vskt
) and Gσ1:T (V1:T ).

Proof: This follows by induction on the length of the sequence 1 : T . The key observation is that since the treatment set
A includes all state transition variables, the counterfactual evolution of the PDSEM under the intervention that sets A
to a, where state transition variables in A are set to values consistent with σ = 〈sk1 , sk2 , . . . , skT 〉, is representable as a
generalization of a causal DBN (where transition networks are not necessarily all equal, but where each transition network
from ski to ski+1

is obtained from the PDSEM). Further, the only part of the observed data distribution p∞(V) of a PDSEM
that is relevant to identification of the query are variables causally ancestral of the outcome in the graph containing all
variables involved in transitions from 1 to T , which is just the graph Gσ1:T (V1:T ).

The result then follows directly from standard results on identification in latent projections [Shpitser and Pearl, 2006,
Richardson et al., 2017], and the fact that Gσ1:T (V1:T ) represents a hidden variable causal model. �

D RELATED MODELING APPROACHES

D.1 REPRESENTING A PDSEM AS A DBN

If variables in all transition networks in a PDSEM obey a single consistent topological order, one may encode a PDSEM
by a causal DBN as follows. First, define a transition variable T with values representing all possible state transition pairs
(si, sj) in a PDSEM. Then, use this variable as a parent of every variable in the single transition network allowed by a DBN,
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Figure 2: A causal DBN encoding the PDSEM in Fig. 4, via (a) the prior network, and (b) the complete transition network
with context-specific independences.

and use it to select a subset of all possible parents to implement transition specific networks of a PDSEM via context-specific
independence.

In the example in the Section 4.1 shown in Fig. 4, one topological order on variables that is consistent for the prior network
and all transition networks is A ≺ B ≺ C. Thus, a causal DBN representing the example PDSEM would have a prior
network shown in Fig. 2 (a), and a complete conditional DAG as a transition network shown in Fig. 2 (b), with a factorization:
p(Ct|Bt, At, Tt, Vt−1)) · p(Bt|At, Tt, Vt−1) · p(At|Tt, Vt−1) · p(Tt|Vt−1), where Vt−1 ≡ Ct−1, Bt−1, At−1, Tt−1. Note
that in this transition network, every state variable has the transition variable as a parent, and this parent is used to
implement state transition independences in a PDSEM via context-specific independence. For example, the Markov factor
p(Bt|At, Tt, Ct−1, Bt−1, At−1, Tt−1) will not depend on At unless Tt has value (s2, s3).

Note that this representation, is in some sense, isomorphic to PDSEMs. The causal DBN factorization exhibits no indepen-
dences, and all interesting probabilistic and causal structure is obtained via context-specific independences, which would be
represented explicitly in transition networks of a PDSEM.

In addition, if no consistent topological order on variables in all transition networks in a PDSEM exists, then there is no
known representation scheme for such a PDSEM using causal DBNs.

D.2 MARKOV DECISION PROCESSES

In a finite MDP, an agent and environment interact at discrete time steps t = 0, 1, . . . , T , with the agent observing the
environment in state Vt, taking action At, to land in state Vt+1, receiving a reward Rt+1 [Sutton and Barto, 2018]. A finite
MDP is defined by the tuple

(
V,A,R, p(Vt+1 = v′, Rt+1 = r|Vt = v,At = a), γ

)
where V is a finite set of states, A is a

set of actions,R is a set of rewards, p(Vt+1 = v′, Rt+1 = r|Vt = v,At = a) is the probability of moving from state Vt = v
while taking action At = a to the state Vt+1 = v′, and getting reward Rt+1 = r, and 0 ≤ γ ≤ 1 is a discount factor that
represents diminishing importance of future rewards

A policy π(a|v) : V 7→ A is a map that represents the probability of taking an action a in state v. Policies are often
deterministic, mapping each state to a specific action. Under a policy π, we define value Gπ(v) of a state v as the expected
cumulative reward, starting at state v and following π(a|v) thereafter. Gπ(v) can be written in the form of a recursive
equation as follows:

Gπ(v) = Eπ
[ ∞∑
k=0

γkRt+k+1 | Vt = v
]
=
∑
a

π(a|v)
∑
s′

∑
r

p(s′, r|s, a)
[
r + γGπ(v

′)
]

(4)

This can be viewed as a consistency condition between values Gπ(v) and Gπ(v′) of possible successor state. Since value
functions define a partial ordering over policies, we have π ≥ π′ if and only if Gπ(v) ≥ Gπ′(v) for all v ∈ V . The optimal
policy π∗ may not be unique, and has optimal value function: G∗(v) = maxπ Gπ(v) for all v ∈ V .

An important special case: Consider an MDP with the following features: First, there are absorbing states V ∗ ≡
{v∗1 , . . . v∗k}. Second, the reward is non-zero only if there is a transition from a non-absorbing state v to absorbing state v∗.
That is, Rt = 0 if vt 6∈ V ∗ or if vt−1 ∈ V ∗. And Rt = r(v∗i ) if vt ∈ V ∗ and vt−1 /∈ V ∗. Finally, γ = 1, and the action is
fixed to a0, no matter what state, that is, π(a|v) = a0 for all v.



Then for every v, with state transition probabilities p(v′|v, a) = p(v′|v), we have:

G(v) =
∑

V ∗=v∗i

r(v∗i )

∞∑
k=1

pk(v∗i |v) =
∑

V ∗=v∗i

r(v∗i )p
∞(v∗i |v), (5)

where pk(vi∗|v) is the k-step transition probability from v to v∗i , and p∞(v∗i |v) is the probability of eventually reaching v∗i
from v.

As an example, consider a system that always evolves through three timesteps to reach an absorbing state, and at each
timestep may be in one of three possible states. That is, the set of states are V0 ≡ {v01, v02, v03}, V1 ≡ {v11, v12, v13} and
V2 ≡ V ∗ ≡ {v∗1 , v∗2 , v∗3}. We have the following simple transition diagram: v0i → v1j → v∗k, for all i, j, k and the above
expression for total expected reward yields:∑

V0,V1,V ∗

r(V ∗)p(V ∗|V1, a0)p(V1|V0, a0)p(V0) = Eqa [r(V
∗)], (6)

where the expectation is taken with respect to the distribution p(V ∗|V1, a0)p(V1|V0, a0)p(V0). If we have a deterministic
policy π(a|v) (that sets each vi to a corresponding ai), we have∑

V0,V1,V ∗

r(V ∗)p(V ∗|V1, a1 = π(V1))p(V1|V0, a0) = π(V0))p(V0) = Eqπ [r(V
∗)], (7)

Equations (6) and (7) resemble special cases of the g-formula, where structure of each state is simply represented by a
single variable.

This special case illustrates that classical MDPs, despite allowing complicated state transition structure, have an important
modeling disadvantage: they have difficulties handling confounding and other types of complex causal relationships within a
state, and across states. [Zhang and Bareinboim, 2016] introduce Markov Decision Processes with Unobserved Confounders
(MDPUCs) that are (causal) MDPs with local unobserved variables counfounding relationships between actions, effects and
states, while obeying Markovian dynamics (i.e., all previous states and actions can be best summarized by the current state).
There is more work related to causal MDPs and learning associated policies in the causal reinforcement literature [Forney
et al., 2017, Zhang and Bareinboim, 2019, Zhang, 2020]. Our work on PDSEMs generalizes both causal DBNs and causal
MDPs, by capturing complex state dynamics and complex state transitions in the presence of unobserved confounding.

E PROOFS

Lemma 1 Under Assumption 1, p(Y(a)) is identified from a hidden variable causal DBN model represented by latent
projections G1 on V1 and Gt+1,t on Vt+1 given Vt if and only if every bidirected connected component in G1Y∗1 (the
induced subgraph of G1) is intrinsic in G1, and every bidirected component in Gt+1,tY∗i

(the induced subgraph of Gt+1,t) is
intrinsic in Gt+1,t, where Y∗1 is the set of ancestors of Y ∩V1 not through A ∩V1 in G1, and for every i ∈ 2, . . . , T , Y∗i
is the set of ancestors of Y ∩Vi not through A ∩Vi in Gt+1,t. Moreover, if p(Y(a)) is identified, we have( ∑

Y∗1\((Y∪A)∩V1)

∏
D∈D(G1Y∗1

)

q1D(D|paG(D) \D)|A=a

)
×

T∏
i=2

( ∑
Y∗i \((Y∪A)∩Vi)

∏
D∈D(Gt+1,tY∗

i
)

qt+1,t
D (D|paG(D) \D)|A=a,

)

where q1D and qt+1,t
D are kernels corresponding to intrinsic sets representing elements of D(G1Y∗1 ) and D(Gt+1,tY∗1

) in the
nested Markov factorizations of G1 and Gt+1,t, respectively.

Proof: We want to obtain p(Y(a)) from the observed joint p(V1:T ). Using identification result 5 on the unrolled ADMG
gives

∑
Y ∗\Y p(Y

∗(a)) =
∑

Y∗\Y
∏
D∈D(GunrolledY∗ )

p(D(pa(D) \ D))|A=a. Assumption 1 ensures that no district D
spans time points, and parents pa(D) at time t + 1 lie either at t or t + 1. This allows us to write

∑
Y∗\Y p(Y∗(a)) =∑

Y∗\Y
∏

D∈D(G1Y ∗ ) p(D(pa(D)\D))|A=a×
∏T−1
t=1

∏
D∈D(Gt+1,tY ∗ )

p(D(pa(D)\D))|A=a. Applying the identification
results in [Richardson et al., 2012] to the prior network ADMG G1 and extensions of these results in [Sherman and Shpitser,
2018] to the transition network CADMGs Gt+1,t, these counterfactual conditionals can be replaced by given modified nested
factorizations, provided every appropriate bidirected connected set in the prior or transition graph is intrinsic in that graph.

Note that completeness of our procedure does not immediately follow from the completeness argument in [Shpitser and Pearl,
2006]. This is because a completeness argument entails constructing in any ADMG G(V) where identification fails two
causal models which agree on the observed data distribution p(V), but disagree on p(Y(a)). Furthermore, the construction
employed in [Shpitser and Pearl, 2006] relied on an unrestricted causal model inducing a given latent projection ADMG



G(V). However, in the case of causal DBNs, the model is not unrestricted – indeed there is a very strong restriction that all
transition networks at any time point share all structural equations.

Nevertheless, it is possible to extend the completeness proof in [Shpitser and Pearl, 2006] to yield completeness of the
procedure in this lemma by employing an extended construction modeled after one in [Shpitser and Sherman, 2018].

From this point on, we will refer to G1:T (V1:T ) by G(V) for simplicity. Assume p(Y(a)) is not identified in G(V), and
assume there exists a hedge structure ancestral of Y′. Note that by first order Markov assumption, the hedge structure must
lie entirely in a transition network in a single time step. Fix a subgraph G̃ of G(V) containing the hedge, the set Y, a set of
vertices S making up directed paths from every element of the root set R to some element of Y′ (without loss of generality
we assume these vertices do not have more than one child).

We extend G̃ with a new set of vertices S∗ that are copies of S with the property that if S ∈ S has a parent in R, so does
the corresponding S∗ ∈ S∗, and if T ∈ S is a parent of S ∈ S, the corresponding T ∗ ∈ S∗ is a parent of S∗ ∈ S∗. We
then apply the counterexample construction connecting the hedge structure to Y′ appearing in [Shpitser and Pearl, 2006]
to elements of S∗. In particular, we make sure that

∑
S∗ p(Y

′|S∗)p(S∗|R) is a one-to-one map. This implies p(Y(a)) is
not identified in an extended model containing vertices V and S∗. Lemma 1 in [Shpitser and Sherman, 2018] then implies
p(Y(a)) is also not identified in G(V), establishing our result. �

Lemma 2 Given a fully observed PDSEM, each factor of the distribution p∞(Y(a)) is identified from p∞(V) as:

p1(Y1(a1)) ≡
∏

V ∈Y1\A1

p1(V | paG1(V ))
∣∣∣
A1=a1

pij(Yij(aj)|Yi(ai)) ≡
∏

V ∈Yij\Aj

pij(V |paGij (V ))
∣∣∣Ai=ai,
Aj=aj

Proof: This follows from the factorization of p∞(V(a)) into elements of the form p1(Y1(a1)), and pij(Yj(aj)|Yi(ai)),
the fact that G1, {Gij : (i, j) ∈ T } define causal models under standard structural equation semantics, and equation 1 . �

Lemma 3 Under Assumptions 1, 2 and 3, given a latent variable PDSEM represented by G1 and {Gij : (i, j) ∈ T },
p∞(Y(a)) is identified from p∞(V) if and only if every bidirected component in G1Y1

is intrinsic in G1, and every bidirected
component in GijYj is intrinsic in Gij for every i and j. Moreover, if p∞(Y(a)) is identified, it is equal to

p1(Y1(a1)) ·
∞∏
t=1

 ∏
(i,j)∈T

(pij(Yij(aj)|Yi(ai)))
I(sit−1,s

j
t )

1I(s∗t−1) (8)

where

p1(Y1(a1)) =
∏

D∈D(G1Y∗1
)

q1D(D| pasG1(D))
∣∣∣
A1=a1

, (9)

where each kernel q1D(D|pasG1(D)) is in the nested Markov factorization of p1(V1) with respect to G1, and

pij(Yij(aj)|Yi(ai)) =
∏

D∈D(GVij\Aij )

qijD(D|pasGij (D))
∣∣∣Ai=ai,
Aj=aj

(10)

where each kernel qijD(D|pasGij (D)) is in the nested Markov factorization of pij(Vij |Vi) with respect to Gij .
Proof: Assumption 3 implies all state transitions are known, and thus allows us to proceed by induction on any sequence of
state transitions with positive probability after t steps.

Unrolling the prior network, and appropriate transition networks for such a sequence yields an ADMG representing the
observed data distribution had that transition taken place, with Assumption 1 implying that districts in this ADMG do not
span multiple time steps. This immediately implies the conclusion by the same argument used in the proof of Lemma 1.

In fact, this argument works for any transition sequence of any size. �

F THE SEPTOPLASTY SURGICAL PROCEDURE, AND ITS PDSEM MODEL

Septoplasty is a surgical procedure performed on the nasal cartilage, called the septum, to relieve nasal obstruction [Tajudeen
and Kennedy, 2017]. A deviated or deformed septum is the most common cause of such an obstruction. Apart from nasal
obstruction, a significantly deviated nasal septum has also been implicated in epistaxis, sinusitis, obstructive sleep apnea,



and headaches which can act as diagnosis factors. The procedure involves cartilage resection, modification or a graft. The
outcome of septoplasty is typically a score/index constructed from a questionnaire investigating quality of life measures
and perceived nasal obstruction levels, like Nasal Obstruction Septoplasty Effectiveness (NOSE) and the Fairley Nasal
Questionnaire (FNQ) [Fettman et al., 2009].

For instructional and evaluation purposes, surgeries are often divided into discrete steps or "stages", each with its own
intermediate goal [Ahmidi et al., 2015]. Our data from the septoplasty procedure was manually annotated by clinical experts
and divided into the following states:

• s1: opening of the septum,

• s2: raising septal flaps,

• s3: removal of deviated septal cartilage and bone,

• s4: reconstruction,

• s5: closing of the incision,

• s6: activity not otherwise included in the above 5 phases,

• send: end of surgery state (which contains no variables).

The variables in our data are the following: V = { K: knife, G: gorney scissors, C1: cottle, D1: short needle driver, D2:
long needle driver, O: other tools, C2: suction cannula, M: main surgeon exists, S: suction exists, A1: main surgeon is an
attending, A2: suction done by attending, T: duration of that phase is greater than 10 seconds }

• Vs1 = {K, O, C2, M, S, A1, A2, T},
• Vs2 = {K, C1, O, C2, M, S, A1, A2, T},
• Vs3 = {K, C1, D1, D2, O, C2, M, S, A1, A2, T},
• Vs4 = {K, C1, G, O, C2, M, S, A1, A2, T},
• Vs5 = {D1, D2, O, C2, M, S, A1, A2, T},
• Vs6 = {K, C1, O, C2, M, S, A1, A2, T},

Since our target of interest is causal effect of surgeon experience on average surgery length, the interventions are considered
on variables A1 and A2.

To determine the allowed state transitions , we retained observed data state transitions where at least 5 such transitions
occurred. The permitted state transitions si → sj are summarized in Figure 7 in the main paper – note that transitions
other than those depicted have probability p(sj | si,vsi) = 0 for all vsi . To determine the state transition distributions
p(sj | si,vsi), we restricted the set vsi for all i to be {A1,M,A2, S} to increase tractability of estimation, and estimated
this discrete conditional distribution via a conditional probability table. The prior distribution on the initial state was set to
p(s1) = 1.

State DAGs were determined based on clinician recommendation and have been reproduced in Figure 3 for reference. These
immediately lead to prior variable distributions p(Vsi) for each state si.

Transition graphs from si → sj are constructed using a simple rule: the for any variable v in any state sj , the parents pa(vsj )
consists of the variable with the same name in the previous state si if it exists, and all parents in the state DAG for sj point
indicated by state DAGs. For example, in the transition s1 → s1 moving from time step t− 1→ t, variable K at time step t
has parents A1 at t, as given in Figure 3(a), as well as K from time step t− 1. However, in the transition s1 → s2 moving
from time step t− 1 to time step t, variable C1 has parent A1 in time step t, as given in Figure 3(b), but no parents from
the previous time step t− 1 since C1 does not exist in s1. Based on this rule, probability distributions p(vsj | pa(vsj )) are
estimated using conditional probability tables.

Goodness of fit of our model with respect to the original data distribution is shown in Figure 4. Trajectories simulated by our
model are able to capture the distribution of surgery duration originally seen in the data, quite well.

F.1 STATISTICAL INFERENCE

Given counterfactual distributions identified via (7), (9), and (10) in the main paper, if a parametric likelihood may be
specified in terms of components of these equations, statistical inference may be performed by plug-in estimation and
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Figure 3: (a)-(f) State DAGs corresponding to states s1: Opening of the septum, s2: Raising septal flaps, s3: Removal of
deviated septal cartilage and bone, s4: Reconstruction, s5: Closing of incision and s6: Activity not otherwise included in the
above phases.

Figure 4: Histograms of observed surgery (blue) versus simulated surgeries from the estimated model (orange).

Monte-Carlo simulation. In a fully observed PDSEM, the likelihood may be obtained from (6) by imposing parametric
models for every Markov factor. In a hidden variable PDSEM, the likelihood may be obtained from the nested Markov
factorization for the marginal distribution associated with the prior network ADMG, and the conditional distributions
associated with transition network CADMGs. These likelihoods are available in multivariate normal assumption on the
observed data, which we illustrate via the simulation study, and discrete state spaces, via the Moebius inversion formula
parameterization discussed in [Evans and Richardson, 2018].

Given model parameters obtained by maximizing the PDSEM observed data likelihood, counterfactual distributions in (7),
(9), and (10) (of the main paper) may be obtained by simulating PDSEM trajectories using these modified factorizations,
evaluated at MLE parameter values. Confidence intervals for any counterfactual parameter of interest may be obtained by
parametric bootstrap.

However, an analogous approach is not straightforward for nested Markov parameterizations of the marginal PDSEM
representing a PDSEM with hidden variables. In our simulations, we use a specific generative model for our continuous
variables, i.e, the linear Gaussian Structural Equation model. Another choice based on work in [Evans and Richardson,
2014] is the Möbius parameterization for binary variables. However, this is ill-suited for drawing samples. Instead, existing
approaches to sampling from a nested Markov discrete likelihood involve first converting the likelihood expressed in terms
of the Möbius parameters to one expressed as a the joint distribution p(V) (from which it is easy to generate samples for a
discrete sample space of V). Importantly, such a conversion leads to an intractable object that requires storage and running



time exponential in |V|. This holds even if the underlying model dimension of the nested Markov model is small. The
situation is radically different from that of DAG models, where a small model dimension directly leads to a computationally
efficient sampling scheme. For settings beyond Gaussian and discrete data, statistical inference strategies are significantly
more complicated and have been discussed in [Bhattacharya et al., 2020].

While there exist promising approaches, based on the nested Markov generalization of the variable elimination algorithm
[Shpitser et al., 2011], in general the problem remains open.

G COMPUTATION DETAILS

The septoplasty data application presented in Section 6 was computed on a Lenovo X1 Carbon with an Intel i7 1.8 GHz
processor and 16 GB of RAM. Computation for each scenario (generating from the model without interventions, attending
performing the whole surgery, and trainee performing the whole surgery) took between 1.5 to 2 hours each.
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