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Abstract

Causal analyses of longitudinal data generally as-
sume that the qualitative causal structure relating
variables remains invariant over time. In structured
systems that transition between qualitatively differ-
ent states in discrete time steps, such an approach
is deficient on two fronts. First, time-varying vari-
ables may have state-specific causal relationships
that need to be captured. Second, an intervention
can result in state transitions downstream of the in-
tervention different from those actually observed in
the data. In other words, interventions may counter-
factually alter the subsequent temporal evolution of
the system. We introduce a generalization of causal
graphical models, Path Dependent Structural Equa-
tion Models (PDSEMs), that can describe such
systems. We show how causal inference may be
performed in such models and illustrate its use in
simulations and data obtained from a septoplasty
surgical procedure.

1 INTRODUCTION

Many scientific questions and engineering tasks may only
be approached by analyzing the behavior of a system over
time. Tasks such as discovering long term health risk factors
[Belanger et al., 1978], object trajectory tracking [Richards,
2005], and speech recognition [Rabiner, 1989] all require
modeling temporal evolution of relationships among a set of
variables. Many models for longitudinal data, such as hidden
Markov models or Kalman filters, are graphical models, and
most may be viewed as dynamic Bayesian networks (DBNs)
[Murphy, 2012]. These models are used to predict the fu-
ture evolution of systems, or find latent structures that best
explain observations, and deal fundamentally with associa-
tive relationships. However, testing empirical hypotheses or
providing decision support often requires causal modeling.

Causal models based on graphs [Pearl, 2009, Richardson
and Robins, 2013] have become increasingly popular in part
because of their ability to display complex relationships
in multivariate systems in an intuitive visual way. These
models have been extended to dynamic causal Bayesian
networks [Blondel et al., 2017] that can model causal rela-
tionships in temporal processes that evolve in discrete time.
However, these models have generally been used in settings
with causal structure that remains invariant over time. For
example, analysis of the impact of anti-retroviral therapy on
HIV infection progression assumed the same variables rele-
vant for the patient health and the same causal relationships
linking them at each time point in the study [Hernán et al.,
2000]. Changes tracked over time (such as HIV developing
resistance to the current drug) are thus quantitative, with
the underlying causal structure remaining unchanged over
time. However, many systems undergo qualitative changes
as well, where observability, relevance, and causal relation-
ships of variables vary over time.

Consider the task of modeling surgical procedures to make
informed decisions on resident surgeon training. Surgeries
are often divided into discrete stages, each with an interme-
diate goal [Ahmidi et al., 2015]. Each stage is associated
with a distinct set of variables and relationships among them
that may not be shared across stages. For instance, stitch-
ing together a previously made incision is a routine task
requiring few tools that may be executed by a surgical robot,
while reconstructing cartilage is a skill-intensive task requir-
ing multiple tools, high surgical skill and manual dexterity.
Another feature of surgeries is that procedures performed at
a particular stage can go wrong, forcing surgeons to "dou-
ble back" to correct mistakes or deal with complications.
Surgeon experience often determines how likely it is that
previous stages of the surgery need to be revisited.

The goal of causal inference in this setting is to help assign
surgeons to perform different stages of the surgery while
navigating the tradeoff between the need to train resident
surgeons on the one hand, and operating costs and patient
safety on the other. Addressing this tradeoff entails using ret-
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rospective data to estimate outcomes of surgery trajectories
that differ from those actually observed due to counterfactu-
ally different choices of surgeon assignment in past stages
of the surgery. Following the convention in the economics
literature, we call the phenomenon where the evolution of a
system changes in response to counterfactually different past
choices path dependence [Liebowtiz and Margolis, 2002].
Other examples where path dependence may naturally arise
include life course studies examining economic disparities
in society or patient outcomes in hospitals using Electronic
Health Record (EHR) data.

Our contributions to the literature are as follows. We
introduce the path-dependent structural equation model
(PDSEM) for causal systems that exhibit qualitative changes
over time, observed or unobserved confounding, and path-
dependence on counterfactual choices in the past. PDSEMs
generalize causal dynamic Bayesian networks by allowing
complex and looping stage transitions between distinct yet
tractable causal models, and generalize Markov decision
processes used in reinforcement learning [Sutton and Barto,
2018, Zhang and Bareinboim, 2016] by representing each
state as a graphical causal model that allows confounding
between actions and outcomes. We give a complete identi-
fication theory for our model. In particular, in the special
case where the PDSEM is first order Markov, all identifica-
tion queries may be decomposed into queries pertaining to
observed transition probabilities between states, a general-
ization of results for causal DBNs in [Blondel et al., 2017].
Finally, we show how statistical inference may be performed
by a combination of plug-in estimation and Monte Carlo
sampling, generalizing similar schemes developed for longi-
tudinal causal models [Westreich et al., 2012].

2 BACKGROUND

We review preliminaries on graphical causal modeling, be-
fore discussing extensions that allow path-dependence.

2.1 STATISTICAL AND CAUSAL DAG MODELS

The statistical model of a directed acyclic graph (DAG)
G(V) with a vertex set V ≡ {V1, . . . , Vk}, also called a
Bayesian network, is the set of distributions that Markov
factorize with respect to the DAG as p(V) =

∏
Vi∈V p(Vi |

paG(Vi)) where paG(Vi) are parents of Vi in G.

Causal models of a DAG are also sets of distributions
but on counterfactual random variables. Each variable Vi
in a causal model is determined from values of its par-
ents paG(Vi) and an exogenous noise variable εi via an
invariant causal mechanism called a structural equation
fi(paG(Vi), εi). Causal models allow counterfactual inter-
vention operations, denoted by the do(a) operator in [Pearl,
2009]. Such operations replace each structural equation
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Figure 1: (a) Prior network DAG G0, representing the state
of the dynamic Bayesian network at time t = 0. (b) A condi-
tional DAG Gt,t+1 representing the transitions in a dynamic
Bayesian network. (c) A dynamic Bayesian network model
unrolled to four time steps.

fi(paG(Vi), εi) for Vi ∈ A ⊂ V by one that sets Vi to a
constant value in a corresponding to Vi. The joint distribu-
tion of variables in Y ≡ V \A after the intervention do(a)
was performed is denoted by p(Y | do(a)), equivalently
written as p({Vi(a) : Vi ∈ Y}), or p(Y(a)), where Vi(a)
is a counterfactual random variable or a potential outcome.1

A popular causal model called the non-parametric struc-
tural equation model with independent errors (NPSEM-IE)
[Pearl, 2009] assumes, aside from the structural equations
for each variable being functions of their parents in the DAG
G(V), that the joint distribution of all exogenous terms are
marginally independent: p(ε1, ε2, . . .) =

∏
Vi∈V p(εi). The

NPSEM-IE implies the DAG factorization of p(V) with
respect to G(V), and a truncated DAG factorization known
as the g-formula:

p(Y(a)) =
∏

Vi∈Y

p(Vi | paG(Vi))|A=a (1)

for every A ⊆ V, and Y = V \A.

2.2 GRAPHICAL MODELS IN DISCRETE TIME

While Bayesian networks lend themselves well to the model-
ing of static data, data that changes over time requires more
sophisticated models. A generalization of the Bayesian net-
work model for discrete time temporal systems is the dy-
namic Bayesian network (DBN) model [Murphy, 2012].

A DBN is specified by a pair of DAGs, and a correspond-
ing pair of factorized distributions. The prior network G1
and its corresponding distribution p(V1) =

∏
Vi∈V1

p(Vi |
paG1(Vi)) represent the state of the system at the first
time step. The transition network Gt,t+1 is a conditional
DAG (CDAG) with random vertices Vt+1 representing

1Our use of the word counterfactual here follows standard
usage in the statistics and public health literature, see e.g. [Hernan
and Robins, 2020], and represents the fact that Vi(a) represents the
outcome Vi if variables A were altered possibly contrary to fact to
attain values a. Another sense of this word refers to a change of an
actually occurring prior event, see e.g. the discussion of abductive
inference in twin network models in [Pearl, 2009]. The models we
develop in this paper also allow us to consider counterfactually
different temporal evolution in the latter sense of the word.
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variables at time point t + 1, and fixed vertices Vt rep-
resenting context in the previous time point t. We will
describe such conditional graphs by a shorthand “Gt+1,t

on Vt+1 given Vt”. In this conditional DAG no arrow-
heads into vertices in Vt are allowed. The correspond-
ing conditional distribution p(Vt+1 | Vt) represents the
way variables at point t+ 1 depend on each other, and on
variables at the prior time point t (and on no other prior
variables, such as those at time point t − 1). This depen-
dence leads to a first-order Markov DBN. This distribu-
tion factorizes with respect to the CDAG Gt,t+1 as follows:
p(Vt+1 | Vt) =

∏
Vi∈Vt+1

p(Vi | paGt,t+1
(Vi)).

The joint distribution for the DBN system over a finite num-
ber of discrete time steps T is given by the product of the
prior network distribution, and the transition conditional
probability distributions for a set of time steps, as follows:

∏
V ∈V1

p(V | paG1(V )) ·
T−1∏
t=1

∏
V ∈Vt+1

p(V | paGt,t+1
(V )) (2)

A simple DBN is shown in Figure 1, where the prior net-
work (1(a)) contains two variables A and L, and the tran-
sition network (1(b)) shows connections among the state
variables in the prior state at time t and the subsequent state
at time t + 1. We represent fixed vertices in a transition
network via squares. Figure 1(c) shows the DBN implied by
these prior and transition networks unrolled to 4 time steps.

DBNs can be naturally extended to represent causal mod-
els by assuming that both prior and transition networks are
causal DAGs. In other words, we assume values of every
variable Vi in both the prior and the transition network is
determined, via a structural equation fi(.), in terms of its
observed parents paG1(Vi) (or paGt,t+1

(Vi)) and an exoge-
nous noise term εi. If we further assume that all exogenous
noise variables are marginally independent, we arrive at a
DBN version of the NPSEM-IE, where in addition to the
g-formula (1) holding for the prior network, the conditional
g-formula holds for the transition network:

p(Yt+1(a)|Vt) =
∏

Vi∈Yt+1

p(Vi| paG(Vi))|A=a, (3)

for any A ⊆ Vt+1, and Yt+1 = Vt+1 \ A. Thus, a
causal DBN “unrolled” to a set of time points 1, . . . , T
yields a standard causal DAG model with vertices V1:T ≡
V1 ∪ V2 ∪ . . . ∪ VT . For an intervention that sets A ⊆
V1:T to constant values a, the interventional distribution
p(Y1:T (a)), where Y1:T = V1:T \A, is identified by:

∏
V ∈V1\A

p(V | paG1(V ))

T−1∏
t=1

∏
V ∈Vt+1\A

p(V | paGt,t+1
(V ))

∣∣∣∣∣
A=a

(4)
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Figure 2: (a) A hidden variable DAG, and (b) its latent
projection ADMG.

Causal DBNs have been considered in prior work. [Peters
et al., 2013] illustrated how structural equations can be used
in the context of time series data, addressing issues of identi-
fiability. [Malinsky and Spirtes, 2018, 2019, Mogensen et al.,
2018] presented structure learning algorithms for causal dy-
namic networks and applied them to macroeconomic data.
[Blondel et al., 2017] developed an identification algorithm
and transportability results for dynamic causal networks.
The first-order Markov assumption in DBN models may be
relaxed to a kth-order Markov assumption, where the model
at any time step depends on variables in at most k prior time
steps, a generalization we describe in Appendix C.2.

2.3 HIDDEN VARIABLE CAUSAL MODELS

The g-formula (1) provides an elegant link between observed
data and counterfactual distributions in causal models where
all relevant variables are observed. Causal models that arise
in practice, however, contain hidden variables. Representing
such models using a DAG G(V ∪ H) where V and H
correspond to observed and hidden variables, respectively,
is not very helpful, since applying (1) to G(V ∪H) results
in an expression that involves unobserved variables H. A
popular alternative is to represent a class of hidden variable
DAGs Gi(V∪Hi) by a single acyclic directed mixed graph
ADMG G(V) that contains directed (→) and bidirected
(↔) edges and no directed cycles via the latent projection
operation [Verma and Pearl, 1990] (see Section B of the
Appendix). The latent projection ADMG G(V) captures
relationships between observed variables V implied by the
factorization of p(V∪H) with respect to G(V∪H) via the
nested Markov factorization of p(V) with respect to G(V)
[Richardson et al., 2017].

In particular, just as identification in DAGs may be viewed
in terms of a modified DAG factorization (1), identifi-
cation in a hidden variable DAG G(V ∪ H) may be
viewed in terms of a modified nested factorization of G(V).
The nested Markov factorization of p(V) with respect to
G(V) is defined in terms of Markov kernels of the form
qD(D|paG(D) \ D), where set D ⊆ V is intrinsic in
G(V). Kernels qD(D|paG(D) \ D) are objects that re-
semble conditional densities p(Vi | paG(Vi)) that arise
in the Markov factorization for a DAG, in the sense that
they are non-negative and normalize to 1 for every value of
paG(D) \D. Kernels making up the nested Markov factor-
ization are all functionals of p(V). A set S is intrinsic in
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G(V) if p(S|do(pa(S) \ S)) is identified.

The nested Markov factorization asserts that the ob-
served margin p(V) can be expressed as a product∏

D∈D(G(V)) qD(D | paG(D) \ D) of kernels where
D(G(V)) is the set of bidirected connected components,
called districts, in G(V). The factorization implies certain
other kernels associated with reachable sets may be ex-
pressed as similar products of intrinsic kernels. Finally, the
modified form of the factorization may be used to express
any interventional distribution identified from p(V).

Given a latent projection ADMG G(V) representing a hid-
den variable causal model, and any disjoint subsets Y,A of
V, let Y∗ be the set of ancestors of Y in G(V) via directed
paths that do not pass through A, and let GY∗ be the induced
subgraph of G(V) containing only vertices in Y∗ and edges
among these vertices. [Shpitser and Pearl, 2006, Richard-
son et al., 2017] showed that any interventional distribution
p(Y(a)) is identified from p(V) given G(V) if and only if
every bidirected connected component in GY∗ is intrinsic.
Moreover, if p(Y(a)) is identified, it is given by the fol-
lowing margin of the modified nested Markov factorization,
made up of the appropriate kernels:

p(Y(a)) =
∑

Y∗\(Y∪A)

∏
D∈D(GY∗ )

qD(D| paG(D) \D)|A=a. (5)

As a simple example, consider the hidden variable
DAG in Fig. 2(a). Its latent projection ADMG in
Fig. 2(b), called the front-door graph, has intrinsic sets
{A}, {M}, {A, Y }, {Y }, with the corresponding kernels:
qA(A) ≡ p(A), qM (M |A) ≡ p(M |A), qA,Y (A, Y |M) ≡
p(Y |M,A)p(A), and qY (Y |M) ≡

∑
A p(Y |M,A)p(A).

By the nested Markov factorization, the observed mar-
gin p(A,M, Y ) factorizes as qA,Y (A, Y |M)qM (M |A).
In addition, certain other distributions also factor-
ize. For example, the margin p(A,M) is equal to
qA(A)qM (M |A). Further, p(Y (a)) is identified from
p(A,M, Y ) and equal to

∑
M qY (Y |M)qM (M |a) =∑

M (
∑

A′ p(Y |M,A′)p(A′)) p(M |a), which is the front-
door formula [Pearl, 1995]. See Section B of the Appendix
for details on the nested Markov factorization, reachable
and intrinsic sets, and identification theory in ADMGs.

3 IDENTIFICATION IN A CAUSAL DBN
WITH HIDDEN VARIABLES

[Blondel et al., 2017] showed how identification in hidden
variable causal DBNs may be decomposed into a set of inde-
pendent problems, pertaining to conditional state transition
distributions. We reformulate and generalize these results us-
ing the language of nested Markov models to facilitate iden-
tification theory and statistical inference in PDSEMs. We
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Figure 3: (a),(d) Prior network hidden variable DAGs G0,
representing the state at time t = 0. (b),(e) Conditional hid-
den variable DAGs Gt,t+1 representing the transitions in the
network, with (e) leading to a first-order Markov model, and
(b) leading to higher order dependences to unobserved hid-
den variables Ut linking multiple time points. (c),(f) Latent
projection ADMGs of the unrolled hidden variable DBNs
to three time steps.

start with an assumption that allows us to view the marginal
version of a DBN, defined only on observed variables, as a
first-order Markov DBN.

Assumption 1 Transition network Gt+1,t only depends on
fixed variables in the previous time step t that are observed.

If Gt+1,t depends on fixed variables that are hidden, the
resulting DBN may result in observed variables in step
t + 1 depending on observed variables earlier than t even
if observed variables in t are conditioned on, resulting in a
model that is not first order Markov.

For example, consider the DBN specified by prior and tran-
sition networks in Fig. 3 (a) and (b). Because the variable
Lt+1 depends on Ut, which is unobserved, and Ut influ-
ences Lt, “unrolling” this network, and taking the latent
projection yields an ADMG shown in Fig. 3 (c), where L3

ends up being dependent on L1, even after conditioning
on L2, A2 (due to the “explaining away” phenomenon aris-
ing when a shared effect L2 of two variables U2 and U1

is conditioned on). On the other hand, the DBN specified
by prior and transition networks in Fig. 3 (d) and (e) does
not suffer from this issue, as the transition network only
depends on observed variables Lt, At, yielding a latent pro-
jection of the “unrolled” model shown in Fig. 3 (f), which
factorizes into time step specific conditional distributions:
p(A1, L1)p(A2, L2|A1, L1)p(A3, L3|A2, L2).

In general, given a hidden variable prior network G1 on
V1,H1, and transition network Gt+1,t on Vt+1,Ht+1

given Vt, the hidden variable DBN may be represented
by latent projections of the prior and transition net-
works: an ADMG G1 on V1, and a conditional ADMG
(CADMG) Gt+1,t on Vt+1 given Vt, and the corre-
sponding marginal distributions p(V1) and p(Vt+1,t|Vt).
The “unrolled” version of the factorization of this model
is: p(V1)

∏T
t=1 p(Vt+1,t|Vt), where each term nested
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Markov factorizes with respect to either G1 or Gt+1,t by
results in [Richardson et al., 2017]. 2

If the underlying DAGs correspond to causal models, the
hidden variable DBN yields identification theory where
modified nested factorization (5) is applied at every time
point, just as (1) was applied at every point in a fully ob-
served causal DBN to yield (4). Given a fixed set of time
points 1, . . . , T , vertices V1:T ≡ V1 ∪ V2 ∪ . . . ∪ VT ,
and disjoint subsets A,Y ⊆ V1:T , we have the following
generalization of results in [Blondel et al., 2017]:

Lemma 1 Under Assumption 1 , p(Y(a)) is identified from
a hidden variable causal DBN model represented by latent
projections G1 on V1 and Gt+1,t on Vt+1 given Vt if and
only if every bidirected connected component in G1Y∗1 (the
induced subgraph of G1) is intrinsic in G1, and every bidi-
rected component in Gt+1,tY∗i

(the induced subgraph of
Gt+1,t) is intrinsic in Gt+1,t, where Y∗1 is the set of ances-
tors of Y ∩V1 not through A ∩V1 in G1, and for every
i ∈ 2, . . . , T , Y∗i is the set of ancestors of Y ∩ Vi not
through A ∩Vi in Gt+1,t. Moreover, if p(Y(a)) is identi-
fied, we have

( ∑
Y∗1\((Y∪A)∩V1)

∏
D∈D(G1Y∗1

)

q1D(D|paG(D) \D)|A=a

)
×

T∏
i=2

( ∑
Y∗i \((Y∪A)∩Vi)

∏
D∈D(Gt+1,tY∗

i
)

qt+1,t
D (D| paG(D) \D)|A=a

)
,

where q1D and qt+1,t
D are kernels corresponding to intrinsic

sets that are districts in D(G1Y∗1 ) and D(Gt+1,tY∗1
) in the

nested Markov factorizations of G1 and Gt+1,t, respectively.

This result, unlike in [Blondel et al., 2017], allows arbitrary
sets of treatments in a DBN. The proof and an example
are presented in Section B of the Appendix. If Assumption
1 does not hold, causal effects in causal DBNs may still
be identified for any finite T (Lemma 1 in the Appendix),
Section 4.2 in [Blondel et al., 2017]. However, the resulting
functional will likely be computationally intractable.

4 FULLY OBSERVED PDSEMS

A crucial modeling assumption employed by causal DBNs
is that both structure and parameterization remain invariant
over time. This is ill-suited to capture the sort of path de-
pendence described in the introduction. We now describe
our approach to relaxing this assumption via path dependent

2The nested Markov factorization generalizes to CADMGs in
the natural way, see Section B of the Appendix for details.

structural equation models (PDSEMs), a generalization of
causal DBNs capturing path dependence. A PDSEM may
also be viewed as a generalization of a Markov decision pro-
cess that explicitly represents causal relationships, including
confounding, among variables that make up individual states
in a process. See Section D.2 of the Appendix for details.

4.1 A SIMPLE PDSEM

To illustrate PDSEMs, we use a simple example inspired by
the surgery setting. We assume a surgery will consist of three
states: s1 (“incision”), s2 (“modification of bone/tissue”),
and s3 (“closing the incision”). Further, each state has the
following variables:A (patient status prior to any procedures
in the current stage), B (experience of surgeon performing
the procedure in the current stage) and C (the observed
patient outcome for the stage after procedure is performed),
all observed. The surgery always starts at s1, and concludes
upon reaching s3. Procedures performed in s2 may either
succeed, leading to s3, or fail with some probability, leading
the surgeon to revisit s1. The state transition diagram for
this scenario is shown in Fig. 4 (b).

The causal diagram in Fig. 4 (a) shows relationships between
variables in s1 and functions similar to the prior network
in a causal DBN. In addition to variables A1, B1 and C1, it
contains S1, representing the state to transition to at time
step 1. In our simple model, the state s1 transitions to s2

with probability 1, and so S1 represents a degenerate proba-
bility distribution and does not depend on any other variable.
In general, however, the probability associated with S1 may
depend on other variables in the current state. Transitions are
specified by multiple causal CDAGs, one for every allowed
state transition. These CDAGs are shown in Fig. 4(c),(d)
and (e) (where dashed edges are ignored). These graphs
include transition edges representing relationships between
variables in the state at time t and variables in the state at
time t+ 1, and state-specific relationships among variables
at time t + 1 We assume state spaces of variables associ-
ated with each state are the same across state transition and
prior graphs. For example, the state spaces of A1, B1, C1

in Fig. 4(a) and A21, B21, C21 in Fig. 4(c) are the same,
but the variables themselves (and the causal graphs relating
them) are not. This implies values may be indexed by state,
e.g. a1 can refer without loss of generality to a value of A1

or A21. Similarly, conditional distributions that depend on
variables in a prior state are well-defined if those variables
are indexed by the prior state only, e.g. p(A12|A1) is a short-
hand for “a density over A12 in transition (1, 2) given any
value a1 of any variable of the form Ai1.” Causal graphs in
4(a),(c),(d),(e), along with the state-transition diagram 4(b),
completely describe the fully observed PDSEM. Complex
state dynamics are captured by distinct state causal DAGs
and path-dependence is a consequence of state transitions
that may depend on variables in the current state, and not
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Figure 4: A simple PDSEM. (a) Causal structure of the
initial state S1. (b) The state transition diagram. (c),(d),(e)
Causal diagrams representing possible transitions and sub-
sequent states. (f) Causal relationships in a system evolving
according to the state transitions: s1 → s2 → s3. (g) A
snapshot of a possible PDSEM trajectory that terminates in
3 timepoints is represented as an unrolled ADMG.

just the state itself.

The model we describe represents a randomized controlled
trial where the surgeon operating during state s2 is randomly
assigned, hence B12 in the transition graph in Fig. 4 (c) has
no parents. Otherwise, we encode standard causal relation-
ships we expect: C in the previous state influences A,C
in the next, and A in the previous state influences A in the
next. Surgeon assignment B12 in s2 influences assignments
in subsequent stages, whether they are s1 or s3. The state
transition at s2 depends on the outcomeC at that state. In s3,
B does not influence C, since closing the incision is a task
adequately performed independent of surgeon experience.
The observed data factorization of a fully-observed PDSEM
is not finite, but yields a well defined joint distribution p∞
over possible trajectories shown schematically in 4(f):

p1
∏∞

t=1
(p12)

I(s1t ,s
2
t+1) (p23)

I(s2t ,s
3
t+1) (p21)

I(s2t ,s
1
t+1) 1I(s

3
t )

p1=p(A1)p(B1|A1)p(C1|A1,B1)p̃(S1)

p12=p(A12|A1,C1)p(B12)p(C12|B12,A12,C1)p(S12|C12)

p23=p(A23|A2,C2)p(B23|B2,A23)p(C23|A23,C2)p̃(S23)

p21=p(A21|A2,C2)p(B21|B2,A2,C2)p(C21|C2,B21,A21)p̃(S21),

where sit is the event “the state at time t is si, and all p̃ are
deterministic by definition of our model.

PDSEMs allow us to reason about counterfactual questions
such as: “what would happen if all procedures are performed
by the resident surgeon (B = b), possibly contrary to fact?”.
The counterfactual joint distribution p∞(b) is obtained by
standard structural equation replacement semantics [Pearl,
2009], on the state-specific marginal and conditional coun-
terfactual distributions:

p1(b)

∞∏
t=1

(p12(b))
I(s1t ,s

2
t+1)(p23(b))

I(s2t ),s
3
t+1)(p21(b))

I(s2t ,s
1
t+1)1I(s

3
t ),

which is identified by using the g-formula for every compo-
nent of the factorization, in a generalization of (4), yielding:

p∗0
∏∞

t=1
(p∗12)

I(s1t ,s
2
t+1) (p∗23)

I(s2t ),s
3
t+1) (p∗21)

I(s2t ,s
1
t+1) 1I(s

3
t )

p∗1 = p(A1)p(C1|A1, b)p̃(S1)

p∗12 = p(A12|A1, C1)p(C12|b, A12, C1)p(S12|C12)

p∗23 = p(A23|A2, C2)p(C23|A23, C2)p̃(S23)

p21 = p(A21|A2, C2)p(C21|C2, b, A21)p̃(S21).

While the distribution p(S12|C12) remains the same, the
probability that s1 is visited from s2 is likely higher in p∞(b)
compared to p∞. This is because B12, counterfactually set
to b, causes C12, and C12 causes S12. Thus, PDSEMs en-
code counterfactually changing state transition probabilities
from their observed values.

4.2 AN ARBITRARY PDSEM

An arbitrary PDSEM is defined using a set of states s, with
initial state s1, an absorbing state s∗, a set T of state index
pairs of the form (i, j), where si 6= s∗ representing allowed
state transitions, a DAG G1 on V1 for the initial state s1, and
for each (i, j) ∈ T , a CDAG Gij on Vij given Vi. Variables
S1 ∈ V1, {Sij ∈ Vij : (i, j) ∈ T } determine probabilities
of transitioning from state to state. Just as in a causal DBN,
the DAG G1, and CDAGs Gij represent structural equation
models for the initial state, and the appropriate state transi-
tions, respectively. That is, in the initial state, each variable
V ∈ V1 is determined via fV (paG(V ), εV ). Similarly, for
each variable V ∈ Vij in any state transition represented
by Gij . We assume S1, {Sij : (i, j) ∈ T } have no outgo-
ing edges (this is without loss of generality, as structural
equations are already state-specific in a PDSEM).
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We note that while we define PDSEMs using the structural
model semantics [Pearl, 2009], we only consider identifi-
cation and estimation of interventional distributions, which
only requires that interventional distributions in the full
data causal model may be represented by a truncated factor-
ization. Thus, the model we consider may be viewed as a
path-dependent version of a causal Bayesian network [Pearl,
2009], or the causal model described in [Spirtes et al., 2001].
Considering path-dependence for causal inference problems
that require the full generality of the structural equation
formalism, such as mediation analysis, is an interesting ex-
tension for future work.

A first order Markov PDSEM obeys the following assump-
tion that ensures that we need not condition on any context
in the past except variables in the prior state.

Assumption 2 For every state sj , any CDAG Gij or DAG
Gj will have random variables that share state spaces.

We thus denote the values of any Vij for any transition (i, j)
into state j by vj (note the lack of dependence on i). As in
our example, we index conditional densities that depend on
variables in a prior state by that state only, e.g. p(A12|A1).

Define V ≡ V1 ∪
(⋃

(i,j)∈T Vij

)
. A PDSEM yields an

observed distribution p∞(V) with the factorization:

p1(V1)

∞∏
t=1

 ∏
(i,j)∈T

(pij(Vij |Vi))
I(sit,s

j
t+1)

 1I(s
∗
t ) (6)

where pij(Vij |Vi) =
∏

V ∈Vij
p(V |paGij (V )) and

p1(V1) =
∏

V ∈V1
p(V |paG1(V )).

An intervention in a PDSEM is defined on a set of treatment
variables A ≡

⋃
(i,j)∈T Aij and set to values a with the

property that for any (i, j), (k, j) ∈ T , the same values aj
are being set to Aij and Aij . Define Yij in each transition
graph Gij to be all variables in that state not in Aij , with
their corresponding values being yj , their union being Y,
and the values of the union being y.

A new counterfactual distribution p∞(Y(a)) is obtained
from the counterfactual initial state distribution p1(Y1(a1)),
and transition distributions pij(Yij(aj)|Yi(ai)) as:

p1(Y1(a1))

∞∏
t=1

 ∏
(i,j)∈T

(pij(Yij(aj)|Yi(ai)))
I(sit,s

j
t+1)

1I(s∗t )

Individual counterfactual distributions are obtained using
standard structural equation replacement semantics. Since
the initial state and transitions are defined using structural
equations, we obtain the following identification result,
which generalizes the DBN g-formula (4) to PDSEMs.

Lemma 2 Given a fully observed PDSEM, each factor of
the distribution p∞(Y(a)) is identified from p∞(V) as:

p1(Y1(a1)) ≡
∏

V ∈Y1\A1

p1(V | paG1(V ))
∣∣∣
A1=a1

pij(Yij(aj)|Yi(ai)) ≡
∏

V ∈Yij\Aj

pij(V | paGij (V ))
∣∣∣Ai=ai,
Aj=aj

(7)

Just as with DBNs, a PDSEM may be generalized from a
first order to a kth-order Markov model, where variables
in a particular state, can depend on variables in at most k
prior states. This involves an appropriate generalization of
Assumption 2, and specification of a larger set of transition
networks. Details are in Section C.2 od the Appendix.

If all transition networks in a PDSEM obey a single consis-
tent topological order, it is possible to encode a PDSEM by
a causal DBN. Such an encoding will be inefficient and non-
intuitive, however, since this causal DBN would represent
restrictions of a PDSEM via context-specific independences
in a large transition network representing a Cartesian prod-
uct of possible transition networks of a PDSEM. If a con-
sistent topological order on variables in transition networks
does not exist, PDSEMs do not have a known causal DBN
representation. Details are in Section D.1 of the Appendix.

5 PDSEM WITH HIDDEN VARIABLES

In extending causal inference to latent variable PDSEMs, in
addition to Assumption 1 and Assumption 2, we assume the
probabilities of any state transition trajectories are observed.

Assumption 3 The variables Sij for any (i, j) ∈ T gov-
erning state transition probabilities are observed.

The latent variable PDSEMs then decompose into an initial
state and a set of transitions such that causal inference results
may be stated without loss of generality using latent pro-
jection ADMGs (and CADMGs) of appropriate DAGs and
CDAGs. In addition, the fact that variables Sij are observed
implies we can evaluate counterfactual state transition prob-
abilities, provided they are identified.

Formally, fix a PDSEM defined given the initial state DAG
is G on V1,H1 and the set of transition CDAGs Gij on
Vij ,Hij given Vi, for all (i, j) ∈ T , such that: (i) the
variables V ≡ {V1} ∪

⋃
(i,j)∈T Vij , and H ≡ {H1} ∪⋃

(i,j)∈T Hij are observed, and hidden, respectively, (ii) all
state transition variables are observed (S1 ∈ V1, Sij ∈ Vij

for every (i, j) ∈ T ), and (iii) every state has the same
observed and hidden variables regardless of transition (for
every j and all (i, j), (k, j) ∈ T , Hij = Hkj and Vij =
Vkj).

Given this definition of a latent variable PDSEM, the
observed data distribution p∞(V) is obtained from ap-
plying the usual transition probabilities to the margin at
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the initial state p1(V1) ≡
∑

H1
p1(V1∪̇H1), and the

margins of all transition probabilities pij(Vij |Vi) ≡∑
Hij

pij(Vij∪̇Hij |Vi).

Fix a set of observed treatment variables A, the union of
{Aij : (i, j) ∈ T }, such that aj are set to Aij ,Akj for any
(i, j), (k, j) ∈ T , and the set of outcomes Yij = Vij \Aij

for any (i, j) ∈ T , with Y the union of {Yij : (i, j) ∈ T }.

Identification for p∞(Y(a)) in a latent variable PDSEM
reduces to identification theory for p1(Y1(a1)) in the la-
tent projection ADMG G1 on V1, and pij(Yij(aj)|Vi(ai))
in the latent projection CADMG Gij on Vij given Vi, as
follows:

Lemma 3 Under Assumptions 1, 2 and 3, given a latent
variable PDSEM represented by G1 and {Gij : (i, j) ∈ T },
p∞(Y(a)) is identified from p∞(V) if and only if every
bidirected component in G1Y1

is intrinsic in G1, and every
bidirected component in GijYj

is intrinsic in Gij for every i
and j. Moreover, if p∞(Y(a)) is identified, it is equal to

p1(Y1(a1))

∞∏
t=1

 ∏
(i,j)∈T

(pij(Yij(aj)|Yi(ai)))
I(sit−1,s

j
t )

1I(s∗t−1)

(8)
where

p1(Y1(a1)) =
∏

D∈D(G1Y∗1
)

q1D(D| pasG1(D))
∣∣∣
A1=a1

, (9)

where each kernel q1D(D|pasG1(D)) is in the nested Markov
factorization of p1(V1) with respect to G1, and

pij(Yij(aj)|Yi(ai)) =
∏

D∈D(GVij\Aij
)

qijD(D|pasGij (D))
∣∣∣Ai=ai,
Aj=aj

(10)

where each kernel qijD(D|pasGij (D)) is in the nested Markov
factorization of pij(Vij |Vi) with respect to Gij .

An example of a hidden variable PDSEM and identifying
functionals are given in Section B of the Appendix. If As-
sumption 1 is violated, path dependence makes identifica-
tion complicated in PDSEMs (Section C.3 of the Appendix).

6 EXPERIMENTS

6.1 SIMULATION STUDY

We simulate data and perform statistical inference using
the PDSEM shown in Fig. 4 in Section 4.1. Details on
inference are in Section F.1 of the Appendix. The system
has states {s1, s2, s3} and variables {A,B,C} in each state.
Additionally, s2 has a hidden common cause of A and B.
This is represented by the red (dotted) bidirected edge A↔
B in the latent projected ADMG in Fig. 4(c). Patient health
status A, surgeon experience B, and duration of the stage of
surgery C, are all continuous variables. State and transition

graphs are identical to those in Fig. 4. This PDSEM was
used to consider the causal impact of surgeon experience
(measured by total operating time in their career) on average
surgery length. This outcome is easy to measure, and is
known to serve as an informative proxy for other measures
of surgery quality, such as follow-up assessments of quality
of life [Rambachan et al., 2013, Jackson et al., 2011].

Parameters associated with the given generative model are
p(St+1 = sj |St = si,Vt), where sit → sjt+1 is a transition
allowed by the model, and p(V ij

t+1 = v|St+1 = sj , St =

si,Vt), where V ij ∈ {Aij , Bij , Cij}, where sit → sjt+1 is
an allowed transition. These are chosen to be reasonable
for the surgery application, yielding a distribution Markov
relative to appropriate graphs. We simulated N = 10000
“surgeries,” with initial state s1. Transition probabilities were
generated using a logistic regression on variables in the
current state, with transitions eventually terminating at the
absorbing state. Each variable Vi is generated from a set
of linear structural equations with correlated errors. Using
generated data, state transition probabilities were estimated
using maximum likelihood. Parameters for the structural
equation model were estimated using the RICF algorithm
[Drton et al., 2009], implemented in the Ananke package
[Bhattacharya et al.].

We assessed the causal impact of surgeon experience on
operating time by generating two sets of sampled surgery
trajectories where, in each stage of the surgery, the surgeon
was intervened to have higher (vs. lower) career operat-
ing time by one unit. These trajectories may be viewed as
a Monte Carlo sampling scheme for evaluating the func-
tional given by (8), (9) and (10). This approach generalizes
similar schemes developed for longitudinal causal models
[Westreich et al., 2012]. The comparison of these two sets
of trajectories may be viewed as a generalization of the av-
erage causal effect (ACE) from classical longitudinal causal
models to PDSEMs.

The results are shown in Fig. 5. Surgeries performed by
experienced surgeons are shorter ( µ = 5.79, q0.05 =
3,q0.95 = 13) than those performed by trainees (µ = 7.02,
q0.05 = 3, q0.95 = 17) where qp denotes the pth quantile.
Surgeries performed by trainees have higher variance.

6.2 DATA APPLICATION

We are interested in the causal impact of surgeon experi-
ence on the average length of surgery, in the context of
septoplasty. Such surgeries are characterized by multiple
phases involving different tools and procedures, and the
causal dynamics between variables differs from phase to
phase. Moreover, surgeries do not always proceed sequen-
tially, and may return to earlier phases depending on what
happened in a particular phase (see Appendix F). To accu-
rately model surgery lengths, we thus need to allow for a
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Figure 5: Histograms of the number of transitions in a
surgery under two different interventions: when a more ex-
perienced surgeon performs the entire procedure, and when
a less experienced trainee performs the entire procedure.

Figure 6: Histograms of hypothetical surgeries performed
only by a junior trainee surgeon (blue) versus hypothetical
surgeries performed only by a senior attending surgeon
(orange). Surgeries performed by the attending are slightly
longer (µ = 244.3.91, σ = 139.9) than those of the trainee
(µ = 233.5, σ = 125.9).

s1

s2

s3

s4

s5

s6

send

Figure 7: The state transition diagram for the surgery data
application.

variety of phases, and complex structure within each phase,
making PDSEM a suitable model.

Our dataset consists of 236 septoplasty procedures con-
ducted at our institution’s research hospital. A total of 57343
timestamped records were collected, including tool and per-
sonnel activity. Surgeries consist of six distinct phases: s1

(opening of the septum), s2 (raising septal flaps), s3 (re-
moval of deviated septal cartilage and bone), s4 (reconstruc-
tion), s5 (closing of the incision), and s6 (other activity).
An artificial absorbing state send represents the end of pro-
cedures. Procedures are often led by an attending, with a
surgeon trainee assisting. Of the surgeries, 42.79% of them
were performed fully by the leading attending; the others
by a team. Also, attending surgeons perform for 64.98%
of all operating time and trainees the rest. Twelve different
surgical tools were tracked for use. The state transition dia-
gram representing allowed state transitions is presented in
Fig 7. We discretized all variables into two categories, and
fit model parameters by maximum likelihood.

While there are certainly unobserved but relevant confound-
ing variables in the problem we consider (such as underlying

patient state), we assume these variables influence treatment
variables (identity of the surgeon), as well as variables in
the next stage only via relevant observed variables (such as
duration of the stage, and tools currently in use). In addition
to implying Assumption 1, this implies identifiability of
the parameter of interest (a contrast of the average length
of surgery had experienced vs inexperienced surgeon per-
formed all stages) is given by Lemma 2, and statistical
inference may be performed as if the prior network were
a DAG, and every transition network were a CDAG, with-
out loss of generality. An interesting area of future work
is generalizing sensitivity analysis methods developed in
classical causal models for assessing robustness to viola-
tions of the lack of unobserved confounding assumptions to
PDSEMs. PDSEMs that arise when Assumption 1 is relaxed
are discussed in Section C.2 of the Appendix.

Estimation of p(st|st−1,vt−1) at all levels of st−1,vt−1 is
not always possible due to finite sample limitations. To ad-
dress this, we apply additive smoothing to p(st|st−1,vt−1),
based on the empirical distribution p(st|st−1). Goodness of
fit is illustrated in Fig 4 of the Appendix and results are pre-
sented in Fig 6. We have made considerable assumptions in
modeling our PDSEM and have closely matched the genera-
tive model to the empirical distribution (Fig 4). We observe
that the causal effect of surgeon skill on surgery length,
given our learned parameters, is close to zero. This indicates
that policies that govern the trade-off between the need to
train surgeons, and overall surgery quality (as quantified by
our outcome) are effective at our institution.

7 CONCLUSIONS

In this paper, we have introduced the Path Dependent Struc-
tural Equation Model (PDSEM) for longitudinal data unify-
ing complex state structure from DBNs and complex state
transition dynamics from MDPs. It can also be seen as a
graphical model generalizing a Markov chain with state-
specific dynamics. We have described counterfactuals asso-
ciated with these causal models that can alter the subsequent
temporal evolution of the system, identification theory for
such counterfactuals in terms of the observed data distribu-
tion, and estimation. We showed the utility of the model in
clinical settings using simulations as well as data from a
septoplasty procedure. Developing novel methods for effi-
cient Monte Carlo sampling based statistical inference for
hidden variable versions of PDSEMs based on the nested
Markov model is a promising area of future work.
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