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A FURTHER RELATED WORK

In this section, we discuss more related work. There are two primary areas of related work: weather and climate forecasting
problems and spatial statistics.

We start with climate and weather forecasting. The subseasonal problem itself is considered by Cohen et al. [2019], DelSole
and Banerjee [2017], Hwang et al. [2019], Raff et al. [2017], Totz et al. [2017], White et al. [2017]. The methods given
by Hwang et al. [2019] include a joint-stepwise procedure based on cosine similarity for variable selection at different
spatial locations, a nearest-neighbor predictor, and an ensemble of the two. The prediction is over states in the western US as
defined by the Rodeo, and we use the same states but not the same grid of locations for which to predict temperature. Second,
Totz et al. [2017] considers a hierarchical clustering algorithm for predicting monthly precipitation in the Mediterranean.
Specifically, spatial patterns of precipitation over a given time are clustered, and the cluster identities can be thought of
as estimated latent variables. The latent variables are also assumed to affect the covariates linearly, and so given a new
prediction problem, predictions are simply a weighted average of the clusters with weights determined by the covariates.
Thus, the hierarchical clustering considered by Totz et al. [2017] is quite dissimilar from our use. Finally, another related
problem is considered by Gonçalves et al. [2016], who attempt to aggregate the output from multiple Earth System Models
to predict average monthly temperature in North and South America.

Now, we discuss the more relevant aspects of spatial statistics; for more comprehensive references, see Banerjee et al. [2014],
Cressie and Wikle [2011], Gelfand et al. [2010] and the references therein. Specifically, we consider spatial statistics related
to climate and then spatial statistics more broadly. In general, spatial statistics is concerned with building models to predict
quantities at different locations and, in the case of spatio-temporal statistics, times. This may be cumbersome because the
location and time need not lie within the observed data locations and times but merely near them, which necessitates good
spatio-temporal covariance functions. Alternatively, data is often missing for reasons as simple as cloud cover that obscures
satellite observations, and so models that permit interpolation are helpful. On the other hand, our problem is much simpler
since we do not need to interpolate.

First, there has been a variety of statistical work on climate problems [Cox and Isham, 1988, Brillinger, 1997, Gneiting
and Guttorp, 2010], and many of these models try to incorporate simplified versions of climate dynamics. Even within
statistical approaches, the use of Bayesian methods is far from recent [Epstein, 1985]. Berliner et al. [2000] and Wikle et al.
[2001] use Bayesian hierarchical models to predict Pacific sst months in advance and to provide high-resolution estimates
for Pacific wind speeds. Additionally, the models allow for time-varying regression coefficients to capture the non-linearity
of the underlying processes. Wikle and Anderson [2003] consider spatial Bayesian point process models for tornado counts
in the US. Milliff et al. [2011] model surface vector winds over the Mediterranean Sea up to 10 days into the future with a
Bayesian hierarchical model to quantify the uncertainty in forecasts.

Of course, spatial models have found widespread use outside of climate prediction; two examples are epidemiology and
crimonology. In epidemiology, one is interested in better understanding the spatial structure of disease [Anderson et al.,
2014, Feng et al., 2016]. Generally, one seeks to identify regions where individuals are at a greater risk of contracting disease.
In crimonology, one tries to predict trends in crime over time and where crimes are more likely to occur by neighborhood
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Climate Variable Location Spatial Resolution Temporal Range
tmp2m Land 2◦ × 2◦ 1981–2018
hgt500 Land, Sea 0.5◦ × 0.5◦ (Land) 1981–2018

rhum.sig995 2◦ × 2◦ (Sea)
sst Sea 2◦ × 2◦ 1981–2018
slp

Table 1: Climate variable data details. We use lower-resolution data for variables defined on the seas since the area is larger.
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Figure 1: Land and sea area from which data was used in our analysis (shaded in green).

[Balocchi and Jensen, 2019, Balocchi et al., 2019, Flaxman et al., 2019], and these are helpful for quantifying how cities are
changing and for predictive policing. Additionally, there are many more applications under the umbrella of econometrics
[Pace and LeSage, 2010].

B DATA AND PREPROCESSING

Table 1 contains the different climate variables, the types of locations over which they are measured, the latitude-longitude
resolution of the measurements, and the time periods over which they are defined.

B.1 STANDARDIZATION

Here, we describe out standardization procedure. Before we discuss the details, we make the note of the notations used. s
denotes a location and t denotes a date - represented as an integer. For a climate variable m, denote c(m)(s, t) denote the
measurement at location s and date t. Let days(t) denote the set of set of dates for the same day of the year. For example,
days(December 31, 1999) is the set of all December 31sts from 1981 to 2010.

The first step is to obtain the rolling average every two weeks, since the targets are averaged over two weeks. Define the
temporal rolling average:

c(m)(s, t) =
1

14

t∑
t′=t−13

c(m)(s, t).

With the definition of the rolling averages, we proceed to standardize these. Define the average for the date t or the
climatology for date t by

c(m)
clim(s, t) =

1

days(t)

∑
t′∈days(t)

c(m)(s, t′).

Analogously, define the standard deviation for the date t by

c(m)
dev(s, t) =

√√√√ 1

|days(t)| − 1

∑
t′∈days(t)

(
c(m)(s, t′)− c(m)

clim(s, t′)
)2
.



The centered two-week anomaly is thus given by

a(m)(s, t) = c(m)(s, t)− c(m)
clim(s, t).

The centered two-week standardized anomaly or two-week z-score is given by

z(m)(s, t) =
c(m)(s, t)− c(m)

clim(s, t)

c(m)
dev(s, t)

.

The covariates and targets used in the clustering algorithms are matrices of these standardized anomalies. In the subseasonal
forecasting regime, the targets are defined to be

y(m)′(s, t) = z(m)(s, t+ 28).

However, for prediction, we are interested in the centered anomaly rather than the standardized anomaly. For this, we re-scale

our predictions using c(m)
dev. To be precise, given a prediction ŷ(m)

′
(s, t) = ẑ(m)(s, t+ 28), we obtain the prediction for

the centered anomaly as

ŷ(m)(s, t) = â(m)(s, t+ 28) = ŷ(m)
′
(s, t) · c(m)

dev(s, t).

B.2 SUBSAMPLING AND MISSING DATA

In the course of our analysis, we find it necessary to make decisions regarding subsampling and missing data.

First, we discuss subsampling. Here, we specifically refer to subsampling with respect to dates. We choose to have 14 days
between predictions, e.g., we would predict on the 1st and then on the 16th of a month, to limit dependence between samples.

Next, for missing data, we note that there are missing values for both the covariates and targets. We navigate this issue by
filling these missing instances by forward-filling. Specifically, if data corresponding to a location s and timestamp t for
climate variable m is missing, then we fill this missing entry with the latest value available before timestamp t.

x(m)(s, t) := x(m)

(
s, argmax

t′≤t
AVAIL(s, t′,m)

)
where AVAIL(s, t′,m) ∈ {0, 1} checks if data corresponding to a location s and timestamp t′ for a climate variable m is
available and returns 1 or 0 otherwise.

C HYPERPARAMETER TUNING FOR THE SPATIAL MODEL

In our regression analysis, we have a number of hyperparameters to tune. The first govern the scale of the variance of the
observed data, given by τε, and are denoted by aε and bε. This is one variable for which we used empirical Bayes tuning,
which was performed as follows. We compute the empirical variance of the anomalies on the 132 tmp2m locations from the
training set, which gives 0.906. Since tau2ε governs the variance in the noise, we set bε = 0.906(aε − 1). This ensures the
prior mean is 0.906, and now we only need to specify aε. We simply set aε = 32 so the prior variance would be reasonably
small.

The remaining hyperparameters are aj and bj for j = 1, . . . , d corresponding to the Inverse Gamma parameters for each τ2j .
For this too, we use an empirical Bayes approach. Specifically, we obtain a vanilla multiple regression problem and check
the variance of each of j rows of parameters. We find this to be particularly small and almost invariant across covariates
i.e., j, so we set aj = 100 and bj = 0.01. This ensures that the prior mean of τ2j is roughly 10−4, and the high value of aj
ensures that the variance of the prior is small too.

C.1 IMPLEMENTATION SPECIFIC DETAILS

We use 1000 samples for the warmup phase and 4000 samples after that, which are our prediction samples. For all of
the unobserved variables, we see that the Gelman-Rubin statistic is 1, which indicates that the method has converged.
Furthermore, we verify that the implementation is stable by running it several times.



D FURTHER NUMERICAL RESULTS

Year Spatial-regression XGBoost Multi-task Lasso Neural Network
2011 3.53 · 10−1 2.44 · 10−2 3.69 · 10−1 3.62 · 10−1
2012 3.78 · 10−1 4.79 · 10−1 3.58 · 10−1 3.66 · 10−1
2013 −4.93 · 10−2 −8.78 · 10−2 −3.92 · 10−2 −3.95 · 10−2
2014 2.00 · 10−1 7.19 · 10−2 1.93 · 10−1 1.93 · 10−1
2015 5.12 · 10−2 3.88 · 10−1 2.48 · 10−2 3.85 · 10−2
2016 4.09 · 10−1 4.08 · 10−1 3.99 · 10−1 4.03 · 10−1
2017 2.38 · 10−1 2.75 · 10−1 2.26 · 10−1 2.23 · 10−1
2018 2.43 · 10−1 7.02 · 10−2 2.42 · 10−1 2.32 · 10−1

Table 2: Variation of cosine similarity annually on the test set. Note the considerable heterogeneity across years.
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Figure 2: Variation of cosine similarity by
location. Note the variance across locations,
especially those closer to the coast.

In this section, we provide additional numerical results that we had alluded
to earlier in Section 5.

First, we present the variation in cosine similarity annually. This is
available in Table 2. Note that the trends are similar to that observed in
Table 2: we see poor performance in a majority of the models in 2013 and
2015, which we hypothesize was due to the extreme winter and the El
Nĩno event that occurred in the respective years.

Next, we present the variation of cosine-similarity spatially for the predic-
tions from our Bayesian spatial model. Again, we notice that the variation
is very similar to skill as shown in Figure 1.
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Figure 3: Top row: Variation of skill by location. Bottom row: Variation of cosine-similarity by location.

In Figure 3, we depict the variation of the skill and cosine similarity of the baseline models spatially. Note that XGBoost has
average performance throughout, and in contrast to the other models, performs relatively badly in the northern states.
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Figure 4: The posterior means of regression coefficients by spatial location for all covariates.

We next show spatial variation of the posterior means of the regression coefficients corresponding to the remaining covariates.
For brevity we include the 4 shown in Figure 2. All of the regression coefficients are shown in Figure 4.

D.1 HYPERPARAMETER CHOICES

Finally, we specify the manner in which we performed model selection for XGBoost, Multi-Task Lasso and the nonlinear
neural network. We split the train set into two parts: we use data from years 1981 – 1995 to train the model, and 1996 –
2010 to test the model. We then pick the hyperparameter configuration that yields the lowest error. For each of the models,
we highlight the hyperparameters tuned and the choices used in Table 3. The chosen hyperparameters are in bold.



Model Hyperparameter Choices

XGBoost
learning rate {0.001,0.01, 0.1}

maximum depth {4, 8}
number of estimators {50,100, 200}

Multi-task
regularization

{0.001, 0.002,
0.005, 0.01, 0.02,

Lasso 0.02, 0.05,
0.1, 0.2,0.5}

architecture

20 - 76 - 132,
20 - 51 - 102 - 132,

Neural 20 - 38 - 76

Network - 114 - 132

activation ReLU, TanH, none

Table 3: Hyperparameters
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