
Supplementary Material: Learning Proposals
for Probabilistic Programs with Inference Combinators

Sam Stites*1 Heiko Zimmermann*1 Hao Wu1 Eli Sennesh1 Jan-Willem van de Meent1

1Khoury College of Computer Sciences, Northeastern University, Boston, Massachusetts, USA
1{stites.s, zimmermann.h, wu.hao10, sennesh.e, j.vandemeent}@northeastern.edu

A RELATED WORK

A.1 IMPORTANCE SAMPLING AND MCMC IN VARIATIONAL INFERENCE

This work fits into a line of recent methods for deep generative modeling that seek to improve inference quality in stochastic
variational methods. We briefly review related literature on standard methods before discussing advanced methods that
combine variational inference with importance sampling and MCMC, which inspire this work.

Variants of SVI maximize a lower bound, which equates to minimizing a reverse KL divergence, whereas methods that
derive from RWS minimize an upper bound, which equates to minimizing a forward KL divergence. In the case of SVI,
gradients can be approximated using reparameterization, which is widely used in variational autoencoders (Kingma, Welling,
2013; Rezende et al., 2014) or by using likelihood-ratio estimators (Wingate, Weber, 2013; Ranganath et al., 2014). In the
more general case, where the model contains a combination of reparameterized and non-reparameterized variables, the
gradient computation can be formalized in terms of stochastic computation graphs (Schulman et al., 2015). Work by Ritchie
et al. (2016) explains how to operationalize this computation in probabilistic programming systems. In the case of RWS,
gradients can be computed using simple self-normalized estimators, which do not require reparameterization (Bornschein,
Bengio, 2015). This idea was recently revisited in the context of probabilistic programming systems by (Le et al., 2019),
who demonstrate that RWS-based methods are often competitive with SVI.

Importance-weighted Variational Inference. There is a large body of work that improves upon standard SVI by defining
tighter bounds, which results in better gradient estimates for the generative model. Many of these approaches derive from
importance-weighted autoencoders (IWAEs) (Burda et al., 2016), which use importance sampling to define a stochastic lower
bound E[log Ẑ] ≤ logZ based on an unbiased estimate E[Ẑ] = Z (see Section G.1). Since any strictly properly weighted
importance sampler can be used to define an unbiased estimator Ẑ = 1

L

∑
l w

l, this gives rise to many possible extensions,
including methods based on SMC (Le et al., 2018; Naesseth et al., 2018; Maddison et al., 2017) and thermodynamic
integration (Masrani et al., 2019). Salimans et al. (2015) derive a stochastic lower bound for variational inference which
uses an importance weight defined in terms of forward and reverse kernels in MCMC steps. Caterini et al. (2018) extend this
work by optimally selecting reverse kernels (rather than learning them) using inhomogeneous Hamiltonian dynamics. The
work on AVO (Huang et al., 2018) learn a sequence of transition kernels that performs annealing from the initial encoder to
the posterior, which we use as a baseline in our annealing experiments.

A somewhat counter-intuitive property of these estimators is tightening the bound typically improves the quality of gradient
estimates for the generative model, but can adversely affect the signal-to-noise ratio of gradient estimates for the inference
model (Rainforth et al., 2018). These issues can be circumvented by using RWS-style estimators1, or by implementing
doubly-reparameterized estimators (Tucker et al., 2019).

1Note that the gradient estimate for the generative model in Equation 7 is identical to the gradient estimate of the corresponding IWAE
bound, so these two approaches only differ in the gradient estimate that they compute for the inference model.

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

SMC Samplers and MCMC. In addition to enabling implementation of variational methods based on SMC, this work
enables the interleaving of resampling and move operations to define so-called SMC samplers (Chopin, 2002). One recent
example of are the APG samplers that we consider in our experiments (Wu et al., 2020). It is also possible to interleave
importance sampling with any MCMC operator, which preserves proper weighting as long as the stationary distribution of
this operator is the target density. In this space, there exists a large body of relevant work.

Hoffman (2017) apply Hamiltonian Monte Carlo to samples that are generated from the encoder, which serves to improve
the gradient estimate w.r.t. the generative model, while learning the inference network using a standard reparameterized
lower bound objective. Li et al. (2017) also use MCMC to improve the quality of samples from an encoder, but additionally
use these samples to train the encoder by minimizing the forward KL divergence relative to the filtering distribution of the
Markov chain. Since the filtering distribution after multiple MCMC steps is intractable, Li et al. (2017) use an adversarial
objective to minimize the forward KL. Wang et al. (2018) develop a meta-learning approach to learn Gibbs block conditionals.
This work assumes a setup in which it is possible to sample data and latent variables from the true generative model. This
approach minimizes the forward KL, but uses the learned conditionals to define an (approximate) MCMC sampler, rather
than using them as proposals in a SMC sampler.

Proper weighting and nested variational inference. This work directly builds on seminal work by Liu (2008); Naes-
seth et al. (2015); Naesseth et al. (2019) that formalizes proper weighting. This formalism makes it possible to reason
compositionally about validity of importance samplers and corresponding variational objectives (Zimmermann et al., 2021).

A.2 PROBABILISTIC PROGRAMMING

Probabilistic programming systems implement methods for inference in programmatically specified models. A wide variety
of systems exist, which differ in the base languages they employ, the types of inference methods they provide, and their
intended use cases. One widely used approach to the design of probabilistic programming systems is to define a language in
which all programs are amenable to a particular style of inference. Exemplars of this approach include Stan (Carpenter et al.,
2017), which emphasizes inference using Hamiltonian Monte Carlo methods in differentiable models with statically-typed
support, Infer.NET (Minka et al., 2010) which emphasizes message passing in programs that denote factor graphs, Problog
(De Raedt et al., 2007) and Dice (Holtzen et al., 2020), in which programs denote binary decision diagrams, and LibBi
(Murray, 2013), which emphasizes particle-based methods for state space models. More generally, systems that emphasize
MCMC methods in programs with statically typed support fit this mold, including early systems like BUGS (Spiegelhalter
et al., 1995) and JAGS (Plummer, 2003), as well as more recent systems like PyMC3 (Salvatier et al., 2016).

A second widely used approach to probabilistic programming is to extend a general-purpose language with functionality
for probabilistic modeling, and implement inference methods that are generally applicable to programs in this language.
The advantage of this design is that it becomes more straightforward to develop simulation-based models that incorporate
complex deterministic functions, or to design programs that incorporate recursion and control flow. A well-known early
exemplar of this style of probabilistic programming is Church (Goodman et al., 2008), whose modeling language is based
on Scheme. Since then, many existing languages have been adapted to probabilistic programming, including Lisp variants
(Mansinghka et al., 2014; Wood et al., 2014), Javascript (Goodman, Stuhlmüller, 2014), C (Paige, Wood, 2014), Scala
(Pfeffer, 2009), Go (Tolpin, 2018), and Julia (Ge et al., 2018; Cusumano-Towner et al., 2019).

This second class of probabilistic programming systems is the most directly relevant to the work that we present here. A key
technical consideration in the design of probabilistic programming systems is whether the modeling language is first-order
or higher-order (sometimes also referred to as “universal”) (van de Meent et al., 2018). In first-order languages, a program
denotes a density in which the support is statically determinable at compile time. Since most general-purpose languages
support higher-order functions and recursion, the support of probabilistic programs in these languages is generally not
statically determinable. However, the traced evaluation model that we describe in Section 2.2 can be implemented in almost
any language, and inference combinators can therefore be implemented as a DSL for inference in most of these systems.

In the context of our work, we are particularly interested in systems that extend or interoperate with deep learning
systems, including Pyro (Bingham et al., 2018), Edward2 (Tran et al., 2018), Probabilistic Torch (Siddharth et al., 2017),
Scruff (Pfeffer, Lynn, 2018), Gen (Cusumano-Towner et al., 2019) and PyProb (Baydin et al., 2019). These systems provide
first-class support for inference with stochastic gradient methods. While support for stochastic variational inference in
probabilistic programming has been around for some time (Wingate, Weber, 2013; van de Meent et al., 2016b; Ritchie et al.,
2016), this style of inference has become much more viable in systems where variational distributions can be parameterized
using neural networks. However, to date, the methods that are implemented in these systems are typically limited to standard

SVI, RWS, and IWAE objectives. We are not aware of systems that currently support stochastic variational methods that
incorporate importance resampling, such as autoencoding SMC or APG samplers.

A.3 INFERENCE PROGRAMMING

The combinator-based language for inference programming that we develop in this paper builds on ideas that have been
under development in the probabilistic programming community for some time.

The Venture paper described “inference programming” as one of the desiderata for functionality of future systems (Mans-
inghka et al., 2014). Venture also implemented a stochastic procedure interface for manipulating traces and trace fragments,
which can be understood as a low-level programming interface for inference. WebPPL (Goodman, Stuhlmüller, 2014) and
Anglican (Tolpin et al., 2016) define an interface for inference implementations that is based on continuation-passing-style
(CPS) transformations, in which a black-box deterministic computation returns continuations to an inference backend, which
implements inference computations and continues execution (van de Meent et al., 2016a). A number of more recent systems
have implemented similar interfaces, albeit by different mechanisms than CPS transformations. Turing (Ge et al., 2018) uses
co-routines in Julia as a mechanism for interruptible computations. Pyro (Bingham et al., 2018) and Edward2 (Tran et al.,
2018) implement an interface in which requests to the inference backend are dispatched using composable functions that are
known as “messengers” or “tracers”. The arguably most general instantiation of this idea is found in PyProb (Baydin et al.,
2019), which employs a cross-platform Probabilistic Programming eXecution (PPX) protocol based on flatbuffers to enable
computation between a program and inference backend that can be implemented in different languages (Baydin et al., 2018).
For a pedagogical discussion, see the introduction by van de Meent et al. (2018).

All of the above programming interfaces for inference are low-level, which is to say that it is the responsibility of the
developer to unsure that quantities like importance weights and acceptance probabilities are computed in a manner that
results in a correct inference algorithm. This means that users of probabilistic programming systems can in principle create
their own inference algorithms, but that doing so may require considerable expertise and debugging. For this reason, recent
systems have sought to develop higher-level interfaces for inference programming. Edward (Tran et al., 2016) provides
a degree of support for interleaving inference operations targeting different conditionals. Birch (Murray, Schön, 2018)
provides constructs for structural motifs, such as state space models, which are amenable to inference optimizations.

Exemplars of systems that more explicitly seek to enable inference programming include Gen (Cusumano-Towner et al.,
2019) and Functional Tensors (Obermeyer et al., 2019). Gen provides support for writing user-level code to interleave
operations such as MCMC updates or MAP estimation, which can be applied to subsets of variables. For this purpose, Gen
provides a generative function interface consisting of primitives generate, propose, assess, update, and choice_gradients.
Recursive calls to these primitives at generative function call sites serve to compositionally implement Gen’s built-in
modeling language, along with hierarchical traces. Lew et al. (2020) considered a type system for execution traces in
probabilistic programs, which allowed them to verify the correctness of certain inference algorithms at compile time.

Functional Tensors (funsors) provide an abstraction for integration that aims to unify exact and approximate inference.
Funsors providing a grammar and type system which take inspiration from modern autodifferentiation libraries. Expres-
sions in funsors denote discrete factors, Gaussian factors, point mass, delayed values, function application, substitution,
marginalization, and plated products. Types encapsulate tensor dimensions, which permit funsors to support broadcasting.
This defines an intermediate representation that can be used for a variety of probabilistic programs and inference methods.

The inference language that we develop here differs from these above approaches in that is designed to ensure that any
composition of combinators yields an importance sampler that is valid, in the sense that evaluation is properly-weighted
for the unnormalized density that a program denotes. In doing so, our work takes inspiration from Hakaru (Narayanan
et al., 2016), which frames inference as program transformations that be composed so as to preserve a measure-theoretic
denotation (Zinkov, Shan, 2017), as well as the work on validity of inference in higher-order probabilistic programs by
Ścibior et al. (2017), which we discuss in the next Section.

A.4 SAMPLING AND MEASURE SEMANTICS

Programming languages have been studied in terms of two kinds of semantics: what the programs do, operational semantics,
and what they mean, denotational semantics. For probabilistic programming languages, this has usually led to a denotational
measure semantics that interpret generative model programs as measures, and an operational sampler semantics that
interpret programs as procedures for using randomness to sample from a specified distribution. In the terms we use for our
combinators library, model composition changes the target density of a program, and thus its measure semantics, while

inference programming should alter the sampling semantics in a way that preserves the measure semantics.

Early work by Borgström et al. (2011); Toronto et al. (2015) characterized measure semantics for first-order probabilistic
programs, with the first enabling inference by compilation to a factor graph, and the second via semi-computable preimage
functions. This demonstrates one of the simplest, but most analytically difficult, ways to perform inference in a probabilistic
program: get rid of the sampling semantics and use the measure semantics to directly evaluate the relevant posterior
expectation. When made possible by program analysis, this can even take the form of symbolic disintegration of the joint
distribution entailed by a generative program into observations and a posterior distribution, as in Shan, Ramsey (2017).

Fong (2013) gave categorical semantics to causal Bayesian networks, and via the usual compilation to a graphical model
construction, to first-order probabilistic programs as well. Further work by Clerc et al. (2017); Dahlqvist et al. (2018) has
extended the consideration of categorical semantics for first-order PPLs.

Quasi-Borel spaces were discovered by Heunen et al. (2017) and quickly found to provide a good model for higher-order
probabilistic programming. Ścibior et al. (2017); Ścibior et al. (2018) applied these categorical semantics to prove that
inference algorithms could be specified by monad transformers on sampling strategies that would preserve the categorical
measure semantics over the underlying generative model. The work of Ścibior et al. (2018) included an explicit consideration
of importance weighting, which we have extended to cover the proper weighting of importance samples from arbitrarily
nested and extended inference programs.

B DENOTATIONAL SEMANTICS OF TARGET AND INFERENCE PROGRAMS

To reason about validity of inference, we need to specify what density a target program p or inference program q denotes. We
begin with target programs, which have the grammar p ::= f | extend(p, f). For a primitive program f, the denotational
semantics inherit trivially from the axiomatic denotational semantics of the modeling language. For a program extend(p, f)

we define the density as the composition of densities of the inputs

c1, τ1, ρ1, w1 ;p(c0) c2, τ2, ρ2, w2 ;f(c1)

dom(ρ1) ∩ dom(ρ2) = ∅ dom(ρ2) = dom(τ2) τ3 = τ2 ⊕ τ1
Jextend(p, f)(c0)K(τ3) = Jf(c1)K(τ2) Jp(c0)K(τ1)

In this rule, we omit subscripts J·Kγ and J·Kp, since this rule applies to both prior and the unnormalized density. As in the case
of primitive programs, we here adopt a convention in which the support is implicitly defined as the set of traces τ3 = τ2 ⊕ τ1
by combining disjoint traces τ1 and τ2 that can be generated by evaluating the composition of p and f.

Inference programs have a grammar q ::= p | compose(q′, q) | resample(q) | propose(p, q). For each expression form,
we define the density that a program denotes in terms of the density of its corresponding target program. To do so, we define
a program tranformation target(q). This transformation replaces all sub-expressions of the form propose(p, q) with their
targets p and all sub-expressions resample(q) with q. We define the transformation recursively

p = target(p) p = target(propose(p,q))

q′ = target(q)

q′ = target(resample(q))

q′1 = target(q1) q′2 = target(q2)

compose(q′2,q
′
1) = target(compose(q2,q1))

Since this transformation removes all instances of propose and resample forms, transformed programs q′ =target(q) define
a simplified grammar q′ ::= p | compose(q′1, q′2). We now define the denotational semantics for inference programs as

q′ = target(q)

Jq(c)K = Jq′(c)K

The denotational semantics for a transformed program are trivially inherited from those for target programs when q′ =p,
whereas the denotational semantics for a composition compose(q′2, q′1) are analogous to those of an extension extend(p, f)

c1, τ1, ρ1, w1 ;q′1(c0) c2, τ2, ρ2, w2 ;q′2(c1)

dom(ρ1) ∩ dom(ρ2) = ∅ τ3 = τ1 ⊕ τ2
Jcompose(q′2, q′1)(c0)K(τ3) = Jq′2(c1)K(τ2) Jq′1(c0)K(τ1)

C EVALUATION UNDER SUBSTITUTION

To use an extended program as a target for a proposal, we need to define its evaluation under substitution. We define the
operational semantics of this evaluation in a manner that is analogous to the unconditioned case

c1, τ1, ρ1, w1 ;p(c0)[τ0] c2, τ2, ρ2, w2 ;f(c1)[τ0]

dom(ρ1) ∩ dom(ρ2) = ∅ dom(ρ2) = dom(τ2)

c1, τ1 ⊕ τ2, ρ1 ⊕ ρ2, w1 · w2 ;extend(p, f)(c0)[τ0]

This rule, like other rules, defines a recursion. In this case, the recursion ensures that we can perform conditioned evaluation
for any target program p.

We define evaluation under substitution of an inference program q by performing an evaluation under substitution for the
corresponding target program

c, τ, ρ, w ;target(q)(c0)[τ0]

c, τ, ρ, w ;q(c0)[τ0]

As in the previous section, the transformed programs define a grammar q′ ::= p | compose(q′1, q′2). In the base case q′ = p,
evaluation under substitution is defined as above. Evaluation under substitution of a program compose(q′1, q′2) is once again
defined by recursively evaluating inputs under substitution, as with the extend combinator

c1, τ1, ρ1, w1 ;q′1(c0)[τ0] c2, τ2, ρ2, w2 ;q′2(c1)[τ0] dom(ρ1) ∩ dom(ρ2) = ∅

c1, τ1 ⊕ τ2, ρ1 ⊕ ρ2, w1 · w2 ;compose(q′2, q′1)(c0)[τ0]

Note that the operational semantics do not rely on evaluation under substitution of inference programs q, since conditional
evaluation is only every performed for target programs. However, the proofs in Section E do make use of the definition of
the prior under substitution, which is identical to the definition for primitive programs

c1, τ1, ρ1, w1 ;q(c0)[τ0]

Jp(c0)[τ0]Kp(τ1) = pq[τ0](τ1; c0) =
∏

α∈dom(τ1)\dom(τ0)

ρ1(α)

D EVALUATION IN CONTEXT

To perform variational inference, we need to update a variational objective L each time we evaluate a propose combinator.
For this purpose we we define an evaluation in the context of a user-defined objective function ` : (ρq, ρp, w, v)→ R. For
this purpose we introduce the notation

〈L, `, (c, τ, ρ, w)〉 ;〈L′, `, q(c′)〉.
In this notation, evaluation of the program q in the context of an objective L′ and an objective function ` returns the tuple
(c, τ, ρ, w) according to the operational semantics for traced evaluation, along with an updated objective L and the original
loss function `.

The base case for primitive programs is trivial, we simply perform a traced evaluation and leave the loss L = L′ invariant

c, τ, ρ, w ;f(c′)

〈L, `, (c, τ, ρ, w)〉 ;〈L, `, f(c′)〉

The semantics of evaluation in context for compose, extend, and resample are similarly trivial, in the sense that they only
serve thread their input L through the evaluation. We show inference rules for these combinators in Figure 1. The only
evaluation in which loss terms are ctomputed is that of the propose combinator, for which we define the semantics

L2 = `(ρ1, ρ2, w1, w2/u1) + L1

〈L1, `, (c1, τ1, ρ1, w1)〉 ;〈L0, `, q(c0)〉 c2, τ2, ρ2, w2 ;p(c0)[τ1]
c3, τ3, ρ3, w3 ;marginal(p)(c0)[τ2]

u1 =
∏

α∈dom(ρ1)\(dom(τ1)\dom(τ2))

ρ1(α)

〈L2, `, (c3, τ3, ρ3, w2 · w1/u1)〉 ;〈L0, `, propose(p, q)(c0)〉

.

〈L1, `, (c1, τ1, ρ1, w1)〉 ;〈L0, `, q1(c0)〉 〈L2, `, (c2, τ2, ρ2, w2)〉 ;〈L1, `, q2(c1)〉
dom(ρ1) ∩ dom(ρ2) = ∅

〈L2, `, (c2, τ2 ⊕ τ1, ρ2 ⊕ ρ1, w2 · w1)〉 ;〈L0, `, compose(q2, q1)(c0)〉

〈L1, `, (c1, τ1, ρ1, w1))〉 ;〈L0, `, p(c0)〉 〈L2, `, (c2, τ2, ρ2, w2))〉 ;〈L1, `, f(c1)〉
dom(ρ1) ∩ dom(ρ2) = ∅ dom(ρ2) = dom(τ2)

〈L2, `, (c2, τ1 ⊕ τ2, ρ1 ⊕ ρ2, w1 · w2)〉 ;〈L0, `, extend(p, f)(c0)〉

〈L1, `, (~c1, ~τ1, ~ρ1, ~w1)〉 ;〈L0, `, q(~c0)〉 ~a1 ∼ RESAMPLE(~w1)

~c2, ~τ2, ~ρ2 = REINDEX(~a1,~c1, ~τ1, ~ρ1) ~w2 = MEAN(~w1)

〈L1, `, (~c2, ~τ2, ~ρ2, ~w2)〉 ;〈L0, `, resample(q)(~c0)〉

Figure 1: Operational semantics for evaluating compose, extend, and resample combinators in the context of a loss function
` and accumulated loss L.

E PROPER WEIGHTING OF PROGRAMS

Lemma 1 (Strict proper weighting of the extend combinator). Evaluation of a target program p2 = extend(p1, f) is
strictly properly weighted for its unnormalized density Jp2Kγ when evaluation of p1 is strictly properly weighted for Jp1Kγ .

Proof. Recall from Section 3.4, that the program p2 denotes a composition

c1, τ1, ρ1, w1 ;p1(c0) cf , τf , ρf , wf ;f(c1) τ2 = τ1 ⊕ τf ρ2 = ρ1 ⊕ ρf
c1, τ2, ρ2, w1 ;p2(c0) Jp2Kγ(τ2; c0) = Jp1Kγ(τ1; c0) · JfKγ(τf ; c1)

(1)

Our induction hypothesis is that p1 is strictly properly weighted for its density Jp1Kγ := γ1. Since the primitive program
f may only include unobserved variables, wf = 1 and its evaluation is properly weighted relative to the prior density
JfKγ = JfKp := pf . Strict proper weighting with respect to Jp2Kγ = γ2 follows directly from definitions

Ep2(c0)
[
w1 h(τ2)

]
= Ep1(c0)

[
w1 Ef(c1)

[
h(τ1 ⊕ τf)

]]
,

=

∫
dτ1 γ1(τ1; c0)

∫
dτf pf (τf ; c1) h(τ1 ⊕ τf),

=

∫
dτ1dτf γ2(τ1 ⊕ τf ; c0) h(τ1 ⊕ τf)

=

∫
dτ2 γ2(τ2; c0) h(τ2).

Note in particular that Z1(c0) = Z2(c0), since the normalizing constant Zf (c1) = 1 for the program f.

Theorem 1 (Strict proper weighting of target programs). Evaluation of a target program p is (strictly) properly weighted for
the unnormalized density JpKγ that it denotes.

Proof. By induction on the grammar p ::= f | extend(p, f).

• Base case: p = f. This follows from Proposition 1.

• Inductive case: p2 = extend(p1, f). This follows from Lemma 1.

Lemma 2 (Strict proper weighting of the resample combinator). Evaluation of a program q2 = resample(q1) is strictly
properly weighted for its unnormalized density Jq2Kγ when evaluation of q1 is strictly properly weighted for Jq1Kγ .

Proof. In Section 3.4, we defined the operational semantics for the resample combinator as

~c1, ~τ1, ~ρ1, ~w1 ;q1(~c0) ~a1 ∼ RESAMPLE(~w1) ~c2, ~τ2, ~ρ2 = REINDEX(~a1,~c1, ~τ1, ~ρ1) ~w2 = MEAN(~w1)

~c2, ~τ2, ~ρ2, ~w2 ;resample(q1)(~c0)
.

Whereas other combinators act on samples individually, the resample combinator accepts and returns a collection of samples.
Bold notation signifies tensorized objects. For notational simplicity, we assume in this proof that all objects contain a
single dimension, e.g. ~τ = [τ1, . . . , τL], which is also the dimension along which resampling is performed, but this is not a
requirement in the underlying implementation.

Let Jq2(c0)Kγ = Jq1(c0)Kγ = γ(· ; c0) denote the unnormalized density of the program. Our goal is to demonstrate that
outgoing samples are individually strictly properly weighted for the unnormalized density γ(· ; c0),

Eq2(c0)
[
wl2 h(τ

l
2)
]
=

∫
dτ ′ γ(τ ′; c0) h(τ

′),

under the inductive hypothesis that incoming samples are strictly properly weighted,

Eq1(c0)
[
wl1 h(τ

l
1)
]
=

∫
dτ ′ γ(τ ′; c0) h(τ

′).

The resample combinator randomly selects ancestor indices ~a1 ∼ RESAMPLE(~w1). Informally, this procedure selects al1 = k
with probability proportional to wk1 . More formally, this procedure must satisfy

ERESAMPLE(~w1)

[
I[al = k]

]
=

wk1∑
l w

l
1

.

The outgoing return value, trace, and weight, are then reindexed according to ~a1, whereas the outgoing weights are set to the
average of the incoming weights

cl2 = c
al1
1 , τ l2 = τ

al1
1 , ρl2 = ρ

al1
1 , wl2 =

1

L

L∑
l′=1

wl
′

1 .

Strict proper weighting now follows directly from definitions

Eq2(c0)

[
wl2 h(τ

l
2)
]
= Eq2(c0)

[(1
L

∑
l′

wl
′

1

)
h(τ

al1
1)

]

= Eq1(c0)

[(1
L

∑
l′

wl
′

1

)
ERESAMPLE(~w1)

[
h(τ

al1
1)
]]

= Eq1(c0)

[(1
L

∑
l′

wl
′

1

)
ERESAMPLE(~w1)

[∑
k

I[al1 = k] h(τk1)

]]

= Eq1(c0)

[(1
L

∑
l′

wl
′

1

) ∑
k

ERESAMPLE(~w1)

[
I[al1 = k]

]
h(τk1)

]

= Eq1(c0)

[(1
L
�

�
��

∑
l′

wl
′

1

) ∑
k

wk1

����∑
l′′ w

l′′

1

h(τk1)

]

= Eq1(c0)

[
1

L

∑
k

wk1 h(τ
k
1)

]
=

1

L

∑
k

Eq1(c0)

[
wk1 h(τ

k
1)
]
.

Lemma 3 (Strict proper weighting of the compose combinator). Evaluation of the program q3 = compose(q1, q2) is
strictly properly weighted for its unnormalized density Jcompose(q1, q2)Kγ when evaluation of q1 and q2 is strictly properly
weighted for the unnormalized densities Jq1Kγ and Jq2Kγ .

Proof. In Section 3.4, we defined the operational semantics for the compose combinator as

c1, τ1, ρ1, w1 ;q1(c0) c2, τ2, ρ2, w2 ;q2(c1) dom(ρ1) ∩ dom(ρ2) = ∅ τ3 = τ2 ⊕ τ1 ρ3 = ρ2 ⊕ ρ1 w3 = w2 · w1

c2, τ3, ρ3, w3 ;compose(q2, q1)(c0)
,

and its denotation as the product of conditional densities

c1, τ1, ρ1, w1 ;q1(c0) c2, τ2, ρ2, w2 ;q2(c1) dom(ρ1) ∩ dom(ρ2) = ∅

Jcompose(q2, q1)(c0)K(τ1 ⊕ τ2) = Jq2(c1)K(τ2) Jq1(c0)K(τ1)
.

Let Jq3Kγ = γ3 denote the unnormalized density of the composition. We will show that, for any measurable function h(τ3),

Eq3(c0) [w3 h(τ3)] = Z3(c0)

∫
dτ3 γ3(τ3; c0) h(τ3).

We can express the expectation with respect to the program q3 as a nested expectation with respect to q1 and q2

Eq3(c0) [w3 h(τ3)] = Eq1(c0)
[
w1 Eq2(c1) [w2 h(τ2 ⊕ τ1)]

]
,

Let Jq1Kγ = γ1, Jq2Kγ = γ2 of the inputs and their composition. By the induction hypothesis, we can express rewrite both
expectations as integrals with respect to γ1 and γ2. Strict proper weighting follows from definitions

Eq3(c0) [w3 h(τ3)] =

∫
dτ1 γ1(τ1; c0)

∫
dτ2 γ2(τ2; c1)h(τ1 ⊕ τ2; c0)

=

∫
dτ1

∫
dτ2 γ1(τ1; c0) γ2(τ2; c1) h(τ1 ⊕ τ2; c0)

=

∫
dτ3 γ3(τ3; c0) h(τ3; c0).

Lemma 4 (Strict proper weighting of the propose combinator). Evaluation of a program propose(p, q) is strictly prop-
erly weighted for the unnormalized density Jpropose(p, q)Kγ when evaluation of q is strictly properly weighted for the
unnormalized density JqKγ .

Proof. Recall from Section 3.4 that that the operational semantics for propose are

c1, τ1, ρ1, w1 ;q(c0) c2, τ2, ρ2, w2 ;p(c0)[τ1] c3, τ3, ρ3, w3 ;marginal(p)(c0)[τ2]

u1 =
∏

α∈dom(ρ1)\(dom(τ1)\dom(τ2))

ρ1(α)

c3, τ3, ρ3, w2 · w1/u1 ;propose(p, q)(c0)

Our aim is to demonstrate that evaluation of propose(p, q) is strictly properly weighted for

Jpropose(p, q)(c0)Kγ = Jmarginal(p)(c0)Kγ = γp(·; c0).

This is to say that, for any measurable h(τ3)

Eq(c0)
[
w2w1

u1
h(τ3)

]
=

∫
dτ3 γp(·; c0) h(τ3).

We start by expressing the expectation with respect to q2(c0) as an expectation with respect to q1(c0) and p(c0)[τ1], and
use the inductive hypothesis to express the first expectation as an integral with respect to Jq(c0)Kγ = γq(·; c0),

Eq2(c0)
[
w2w1

u1
h(τ3)

]
= Eq1(c0)

[
w1 Ep(c0)[τ1]

[
w2

u1
h(τ3)

]]
=

∫
dτ1 γq(τ1; c0) Ep(c0)[τ1]

[
w2

u1
h(τ3)

]
.

We use Jp(c0)K = γ̃p(· ; c0) to refer to the density that p denotes, which possibly extends the density γp(· ; c0) using one or
more primitive programs. We then use Equation 3 to replace w2/u1 with the relevant extended-space densities, and simplify
the resulting expressions∫

dτ1 γ1(·; c0) Ep(c0)[τ1]
[
w2

u1
h(τ3)

]
=

∫
dτ1 γq(τ1; c0) Ep(c0)[τ1]

[
γ̃p(τ2; c0)pq[τ2](τ1; c0)

γq(τ1; c0)pp[τ1](τ2; c0)
h(τ3)

]
=

∫
dτ1

�����γq(τ1; c0)

�����γq(τ1; c0)
Ep(c0)[τ1]

[
γ̃p(τ2; c0) pq[τ2](τ1; c0)

pp[τ1](τ2; c0)
h(τ3)

]
=

∫
dτ1

∫
dτ2 pp[τ1](τ2; c0)

γ̃p(τ2; c0) pq[τ2](τ1; c0)

pp[τ1](τ2; c0)
h(τ3)

=

∫
dτ1

∫
dτ2 �

�����
pp[τ1](τ2; c0)

������
pp[τ1](τ2; c0)

γ̃p(τ2; c0) pq[τ2](τ1; c0) h(τ3)

=

∫
dτ2 γ̃p(τ2; c0) h(τ3)

��������∫
dτ1pq[τ2](τ1; c0),

=

∫
dτ3 γp(τ3; c0) h(τ3).

In the final equality, we rely on the fact that γp(τ3; c0) is the marginal of γ̃p(τ2; c0) with respect to the set of auxiliary
variables dom(τ2) \ dom(τ3).

Theorem 2 (Strict proper weighting of compound inference programs). Compound inference programs q are strictly
properly weighted for their unnormalized densities γq .

Proof. By induction on the grammar for q.

• Base case: q = p. Theorem 1 above provides a proof.

• Inductive case: q2 = resample(q1). This follows from Lemma 2.

• Inductive case: q3 = compose(q1, q2). This follows from Lemma 3.

• Inductive case: q2 = propose(p, q1). This follows from Lemma 4.

F GRADIENT COMPUTATIONS

F.1 STOCHASTIC VARIATIONAL INFERENCE (SVI).

Let q2 = propose(p, q1) be a program in which the initial inference program q1, target program p, and inference program
q2 denote the densities

Jq1(c0)Kγ = γq(· ; c0, φ) Jp(c0)Kγ = γ̃p(· ; c0, θ), Jq2(c0)Kγ = γp(· ; c0, θ), ,

with parameters θ and φ respectively. Notice that the target program p and the inference program q2 denote the same
density Jp(c0)Kγ = Jq2(c0)Kγ and hence, as a result of Theorem 1, the evaluation of q2 is strictly properly weighted for γp.
Applying definition 1 we can now write

Zp(c0; θ)Eπp(·; c0)[h(τ)] = Eq2(c0)[w2h(τ2)], c2, τ2, ρ2, w2 ;q2(c0),

for any measurable function h. Given evaluations c1, τ1, ρ1, w1 ∼ q1(c0) and c′2, τ
′
2, ρ
′
2, w

′
2 ∼ p[τ1](c0) we can similarly

compute a stochastic lower bound (Burda et al., 2016),

L = Eq2(c0) [logw2] ≤ log
(
Eq2(c0) [w2]

)
= log

(
Zp(c0, θ)Eπ(·;c0) [1]

)
= logZp(c0, θ),

using the constant function h(τ) = 1. The gradient of this bound

∇θEq2(c0) [logw2] = Eq1(c0)
[
∇θ logw1 +∇θEp(c0)[τ1]

[
log

γ̃p(τ̃2; c0, θ)pq[τ̃2](τ1; c0, φ)

γq(τ1; c0, φ)pp[τ1](τ̃2; c0, θ)

]]
= Eq1(c0)

[
∇θEp(c0)[τ1]

[
log

γ̃p(τ̃2; c0, θ)pq[τ̃2](τ1; c0, φ)

pp[τ1](τ̃2; c0, θ)

]]

is a biased estimate of∇θ logZp, where we use Equation 3 to replace w2 with the incoming importance weight w1 and the
relevant extended-space densities.

If the target program does not introduce additional random variables, i.e. dom(τ̃2) \ dom(τ1) = ∅, the traces produced by
the conditioned evaluation c̃2, τ̃2, ρ̃2, w̃2 ∼ p[τ1](c0) do not depend on θ, as all variables are generated from the inference
program, and the prior term pp[τ1](τ̃2; c0) = 1. As a result we can move the gradient operator inside the inner expectation,

Eq1(c0)
[
∇θEp(c0)[τ1]

[
log γ̃p(τ̃2; c0, θ)pq[τ̃2](τ1; c0)

]]
= Eq1(c0)

[
Ep(c0)[τ1]

[
∇θ log γ̃p(τ̃2; c0, θ)pq[τ̃2](τ1; c0)

]]
= Eq2(c0)

[
∇θ log γ̃p(τ̃2; c0, θ)pq[τ̃2](τ1; c0)

]
.

If, additionally, all random variables in the inference program are reused in the target program, i.e. dom(τ1) \ dom(τ̃2) = ∅,
the prior term pq[τ̃2](τ1; c0) = 1. Hence, in the case where the set of random variables in the proposal and target program is
the same, i.e. dom(τ̃2) = dom(τ1), we recover the standard variational inference gradient w.r.t. the model parameters θ,

Eq2(c0) [∇θ log γp(τ̃2; c0, θ)] .

The gradient with respect to the proposal parameters ∇φL can be approximated using likelihood-ratio estimators (Wingate,
Weber, 2013; Ranganath et al., 2014), reparameterized samples (Kingma, Welling, 2013; Rezende et al., 2014), or a
combination of the two (Ritchie et al., 2016). Here we only consider the fully reparameterized case, which allows us to
move the gradient operator inside the expectation

∇φEq2(c0) [logw2] = Eq2(c0) [∇φ logw2]

= Eq2(c0)
[
∂ logw2

∂τ̃2

∂τ̃2
∂φ

+
∂ logw2

∂φ

]
= Eq2(c0)

[
∂ logw2

∂τ̃2

∂τ̃2
∂φ

+
∂

∂φ
log

pq[τ̃2](τ1; c0, φ)

γq(τ1; c0, φ)

]

In the case where the set of random variables in the proposal and target program is the same, i.e. dom(τ̃2) = dom(τ1)
and q1 = f is a primitive program, we can write w1 = γf (τ1; c0, φ)/pf (τ1; c0, φ), and we recover the standard variational
inference gradient w.r.t φ,

Eq2(c0)
[
∂

∂τ̃2
log

(
γ̃p(τ̃2; c0, θ)

pf (τ1; c0, φ)

)
∂τ̃2
∂φ
− ∂

∂φ
log pf (τ1; c0, φ)

]
= Eq2(c0)

[
∂

∂τ̃2
log

(
γ̃p(τ̃2; c0, θ)

pf (τ1; c0, φ)

)
∂τ̃2
∂φ
− ∂

∂φ
log pf (τ1; c0, φ)

]
= −∇φKL(pf ||πp),

effectively minimizing a reverse KL-divergence. Noticing that the second term is zero in expectation, due to the reinforce
trick, we can derive the lower variance gradient

Eq2(c0)
[
∂

∂τ̃2
log

γp(τ̃2; c0, θ)

pf (τ1; c0, φ)

∂τ̃2
∂φ
− ∂

∂φ
log pf (τ1; c0, φ)

]
= Eq2(c0)

[
∂

∂τ̃2
log

γp(τ̃2; c0, θ)

pf (τ1; c0, φ)

∂τ̃2
∂φ

]
,

which can be approximated using reparameterized weights obtained by evaluating q2.

F.2 REWEIGHTED WAKE-SLEEP (RWS) STYLE INFERENCE.

To implement variational methods inspired by reweighted wake-sleep (Hinton et al., 1995; Bornschein, Bengio, 2015; Le
et al., 2019), we compute a self-normalized estimate of the gradient

∇θ logZp(c0, θ) =
1

Zp(c0, θ)
∇θ
∫
dτ γp(τ ; c0, θ)

=
1

Zp(c0, θ)

∫
dτ γp(τ ; c0, θ)∇θ log γp(τ ; c0, θ)

=

∫
dτ πp(τ ; c0, θ)∇θ log γp(τ ; c0, θ)

= Eπp(· ;c0,θ) [∇θ log γp(τ ; c0, θ)] .

Notice that here we compute the gradient w.r.t. the non-extended density γp, which does not include auxiliary variables
and hence density terms which would integrate to one. In practice this allows us to compute lower variance approximation.
Using definition 1 and traces obtained from the evaluation of our inference program cl2, τ

l
2, ρ

l
2, w

l
2 ;q2(c0) we can derive a

costistent self-normalized estimator

Eπp(· ;c0,θ) [∇θ log γp(τ ; c0, θ)] = Z−1p (c0, θ)Eq2 [w2∇θ log γp(τ2; c0, θ)] '
∑
l

wl2∑
l′ w

l′
2

∇θ log γp(τ l2; c0, θ).

We can similarly approximate the gradient of the forward KL divergence with a self-normalized estimator,

−∇φKL(πp||πq) = Eπp(· ;c0,θ) [∇φ log πq(τ ; c0, φ)]
= Eπp(· ;c0,θ) [∇φ log γq(τ ; c0, φ)]−∇φZq(c0, φ)
= Eπp(· ;c0,θ) [∇φ log γq(τ ; c0, φ)]− Eπq(· ;c0,θ) [∇φ log γq(τ ; c0, φ)]
= Z−1p (c0, θ)Eq2 [w2∇φ log γq(τ1; c0, φ)]− Z−1q (c0, φ)Eq1 [w1∇φ log γq(τ1; c0, φ)]

'
∑
l

(
wl2∑
l′ w

l′
2

− wl1∑
l′ w

l′
1

)
∇φ log γq(τ l1; c0, φ).

In the special case where the proposal q1 = f is a primitive program without observations (i.e. wl1 = 1) we have that

Eπq(· ;c0,θ) [∇φ log γq(τ ; c0, φ)] = Eπq(· ;c0,θ) [∇φ log πq(τ ; c0, φ)] = 0,

by application of the reinforce trick. In this case we drop the second term, which is introducing additional bias, through
self-normalization, and variance to the estimator, and recover the standard RWS estimator∑

l

wl2∑
l′ w

l′
2

∇φ log γq(τ l1; c0, φ).

G IMPLEMENTATION DETAILS FOR EXPERIMENTS

G.1 ANNEALED VARIATIONAL INFERENCE

In the annealing task we implement Annealed Variational Inference (Zimmermann et al., 2021) and learn to sample from a
multimodal Gaussian distribution γK , composed of eight equidistantly spaced modes with covariance matrix of I · 0.5 on a
circle of radius 10. We define our initial inference program and annealing path to be:

Jq0(cK = Normal(µ = 0, σ = 5) Jqk(c)Kγ = q1(c)
1−βkγ(c)βk

K , βk =
k − 1

K − 1
, for k = 1 . . .K

Implementations of these programs can be found in Figure 2. Additionally, each forward- and reverse- kernel program qk(c)

is defined by a neural network:

def target(s, x):

zs, xs = s.sample(Categorical(K), "zs"), []

for k in K:

count = sum(zs==k)

dist = Normal(µ(k), σ(k))
xs.append(s.sample(dist , str(k), count))

return s, shuffle(cat(xs))

def q_0(s):

c = s.sample(Normal(µ(k), σ(k)), "q_0")

return s, c

η = ... # initialize neural network for kernel k
def q_k(s, c):

c′ = s.sample(Normal(ηµ(k), ησ(k)), "q_k")

return s, c′

def gamma_k(s, log_gamma , q_0 , beta =1.0):

sample from the initial proposal

x = s.sample(q_0 , "x")

add a heuristic factor

s.factor(beta * (log_gamma(x) - q0.log_prob(x)))

return x

Figure 2: models defined for Annealed Variational Inference

x = Linear 50. ReLU(c) µk = Linear 2(x) + c covk = DiagEmbed . Softplus 2(x)

Learned intermediate densities of βk are embedded by a logit function and is extracted by sigmoid function.

A combinators implementation of nested variational inference is defined:

def step(q, intermediate , do_resample):

(fwd , rev), p = intermediate

q′ = resample(q) if do_resample else q

return propose(extend(p, rev), compose(q′, fwd))

path , kernels = ...

ixs = list(range(len(path)))

do_resamples = map(λ i → i == ixs[-1], ixs)

nvir = reduce(step , zip(kernels , path [1:], do_resamples [1:], path [0]))

We implement nested variational inference (NVI), nested variational inference with resampling (NVIR), as well as nested
variational inference with learned intermediate densities (NVI*), and nested variational inference with resampling and
learned intermediate densities (NVI*). When implementing any NVI algorithm with resampling, we additionally implement
nested variational inference with resampling (NVIR*) by applying the resample combinator after all but the final proposal
combinator.

We evaluate our model by training each model for 20,000 iterations with a sampling budget of 288 samples, distributed
across K intermediate densities. Metrics of log Ẑ and effective sample size average over 100 batches of 1,000 samples and
results are calculated using the mean of 10 training runs using unique, fixed seeds. In the evaluation of NVIR* we do not
resample at test time.

G.2 AMORTIZED POPULATION GIBBS SAMPLERS

Many inference task requires learning a deep generative model. For this purpose, we we evaluate combinators in an
unsupervised tracking task. In this task, the data is a corpus of simulated videos that each contain multiple moving objects.
Out goal is to learn both the target program (i.e. the generative model) and the inference program using the APG sampler.

Consider a sequence of video frames x1:T , which contains T time steps and D different objects. We assume that the kth
object in the tth frame xt can be represented by some object feature zwhat

d and a time-dependent position variable zwhere
d,t .

The deep generative model takes the form

zwhat
d ∼ Normal(0, I), zwhere

d,1 ∼ Normal(0, I), zwhere
d,t ∼ Normal(zwhere

d,t−1 , σ
2
0I),

xt ∼ Bernoulli
(
σ
(∑

d

ST
(
gθ(z

what
d), zwhere

d,t

)))
, d = 1, 2, ..., D, t = 1, 2, .., T.

where σ0 = 0.1 and zwhat
d ∈ R10, zwhere

d,t ∈ R2. To perform inference for this model, APG sampler learns neural proposals
to iterate conditional updates to blocks of variables, which consists of one block of object features and T blocks of each
time-dependent object position as

{zwhat
1:D }, {zwhere

1:D, 1}, {zwhere
1:D, 2}, · · · , {zwhere

1:D,T }

We train the model on 10000 video instances, each containing 10 timesteps and 3 different objects. We train with batch size
5, sample size 20, Adam optimizer with β1 = 0.9, β2 = 0.99 and lr=2e− 4.

Architecture for Generative Model. We learn a deep generative model of the form

pθ(x1:T | zwhat
1:D , zwhere

1:T) =

T∏
t=1

Bernoulli
(
xt

∣∣∣ σ(∑
d

ST
(
gθ(z

what
d), zwhere

d,t

)))
Given each object feature zwhat

d , the APG sampler reconstruct a 28× 28 object image using a MLP decoder, the architecture
of which is

Decoder gθ(·)

Input zwhat
d ∈ R10

FC 200. ReLU. FC 400. ReLU. FC 784. Sigmoid.

Then we put each reconstructed image gθ(zwhat
d) onto a 96× 96 canvas using a spatial transformer ST which takes position

variable zwhere
d,t as input. To ensure a pixel-wise Bernoulli likelihood, we clip on the composition as

For each pixel pi ∈
(∑

d

ST
(
gθ(z

what
d), zwhere

d,t

))
, σ(pi) =


pi = 0 if pi < 0

pi = pi if 0 ≤ pi ≤ 1

pi = 1 if pi > 1

Architecture for Gibbs Neural Proposals. The APG sampler in the bouncing object employs neural proposals of the form

qφ(z
where
1:D, t | xt) =

D∏
d=1

Normal
(
zwhere
d,t

∣∣∣ µ̃where
d,t , σ̃where 2

d,t I
)
, for t = 1, 2, . . . , T,

qφ(z
where
1:D, t | xt, zwhat

1:D) =

D∏
d=1

Normal
(
zwhere
d,t

∣∣∣ µ̃where
d,t , σ̃where 2

d,t I
)
, for t = 1, 2, . . . , T,

qφ(z
what
1:D | x1:T , zwhere

1:T) =

D∏
d=1

Normal
(
zwhat
d

∣∣∣ µ̃what
d , σ̃what 2

d I
)
.

We train the proposals with instances containing D = 3 objects and T = 10 time steps and test them with instances
containing up to D = 5 objects and T = 100 time steps. We use the tilde symbol ˜ to denote the parameters of the
conditional neural proposals (i.e. approximate Gibbs proposals).

The APG sampler uses these proposals to iterate over the T + 1 blocks

{zwhat
1:D }, {zwhere

1:D, 1}, {zwhere
1:D, 2}, . . . , {zwhere

1:D,T }.

For the position features, the proposal qφ(zwhere
1:D, t | xt) and proposal qφ(zwhere

1:D, t | xt, zwhat
1:D) share the same network, but

contain different pre-steps where we compute the input of that network. The initial proposal qφ(zwhere
1:D, t | xt) will convolve

the frame xt with the mean image of the object dataset; The conditional proposal qφ(zwhere
1:D, t | xt, zwhat

1:D) will convolve the
frame xt with each reconstructed object image gθ(zwhat

d). We perform convolution sequentially by looping over all objects
d = 1, 2, ..., D. Here is pseudocode of both pre-steps:

We employ a MLP encoder f L
φ(·) that takes the convolved features as input and predict the variational parameters for

positions {zwhere
d,t }Dd=1 at step t, i.e. vector-valued mean µ̃where

d,t and logarithm of the diagonal covariance log σ̃where 2
d,t as

µ̃where
d,t , log σ̃where 2

d,t ←− f L
φ(x

conv
d,t), d = 1, 2, . . . , D.

Algorithm 1 Convolution Processing for qφ(zwhere
1:D, t | xt)

1: Input frame xt ∈ R9216, mean image of object dataset mm ∈ R784

2: for d = 1 to D do
3: xconv

d,t ←− Conv2d(xt) with kernel mm, stride = 1, no padding.
4: end for
5: Output Convolved features {xconv

d,t ∈ R4761}Dd=1

Algorithm 2 Convolution Processing for qφ(zwhere
1:D, t | xt, zwhat

1:D)

1: Input frame xt ∈ R9216, reconstructed object objects {gθ(zwhat
d) ∈ R784}Dd=1

2: for d = 1 to D do
3: xconv

d,t ←− Conv2d(xt) with kernel gθ(zwhat
d), stride = 1, no padding.

4: end for
5: Output Convolved features {xconv

d,t ∈ R4761}Dd=1

Encoder f L
φ(·)

Input xconv
d,t ∈ R4761

FC 200. ReLU. FC 2× 100. ReLU. FC 2× 2.

The architecture of the MLP encoder f L
φ(·) is

For the object features, the APG sampler performs conditional updates in the sense that we crop each frame xt into a 28× 28
subframe according to zwhere

d,t using the spatial transformer ST as

xcrop
d,t ←− ST

(
xt, z

where
d,t

)
, d = 1, 2, . . . , D, t = 1, 2, . . . , T.

we employ a MLP encoder T G
φ (·) that takes the cropped subframes as input, and predicts frame-wise neural sufficient

statistics, which we will sum up over all the time steps.

Then we employ another network f G
φ(·) that takes the sums as input, and predict the variational parameters for object features

{zwhat
d }Dd=1, i.e. the vector-valued means {µ̃what

d }Dd=1 and the logarithms of the diagonal covariances {log σ̃what 2
d }Dd=1. The

architecture of this network is

Encoder f G
φ(·)

Input xcrop
d,t ∈ R784

FC 400. ReLU. FC 200. ReLU. −→ Neural Sufficient Statistics T G
φ (x

crop
d,t) ∈ R200

Intermediate Input
∑T
t=1 T

G
φ (x

crop
d,t) −→ FC 2× 10.

REFERENCES

Baydin, Atılım Güneş, Le, Tuan Anh, Heinrich, Lukas, Gram-Hansen, Bradley, Schroeder de Witt, Christian, Bhimji, Wahid,
Cranmer, Kyle, Wood, Frank. Pyprob/Ppx. pyprob. 2018.

Baydin, Atılım Güneş, Shao, Lei, Bhimji, Wahid, Heinrich, Lukas, Meadows, Lawrence F., Liu, Jialin, Munk, Andreas,
Naderiparizi, Saeid, Gram-Hansen, Bradley, Louppe, Gilles, Ma, Mingfei, Zhao, Xiaohui, Torr, Philip, Lee, Victor,
Cranmer, Kyle, Prabhat, Wood, Frank. “Etalumis: Bringing Probabilistic Programming to Scientific Simulators at Scale.”
Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis (SC19),
November 17–22, 2019. 2019.

Bingham, Eli, Chen, Jonathan P., Jankowiak, Martin, Obermeyer, Fritz, Pradhan, Neeraj, Karaletsos, Theofanis, Singh, Rohit,
Szerlip, Paul, Horsfall, Paul, Goodman, Noah D. “Pyro: Deep Universal Probabilistic Programming” (Oct. 2018). arXiv:
1810.09538 [cs, stat].

Borgström, Johannes, Gordon, Andrew D., Greenberg, Michael, Margetson, James, Van Gael, Jurgen. “Measure Transformer
Semantics for Bayesian Machine Learning.” Programming Languages and Systems. Ed. by G. Barthe. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 77–96.

Bornschein, Jörg, Bengio, Yoshua. “Reweighted Wake-Sleep.” International Conference on Learning Representations
(2015). arXiv: 1406.2751.

Burda, Yuri, Grosse, Roger, Salakhutdinov, Ruslan. “Importance Weighted Autoencoders.” International Conference on
Representations. 2016. arXiv: 1509.00519.

Carpenter, Bob, Gelman, Andrew, Hoffman, Matthew D., Lee, Daniel, Goodrich, Ben, Betancourt, Michael, Brubaker,
Marcus, Guo, Jiqiang, Li, Peter, Riddell, Allen. “Stan : A Probabilistic Programming Language.” English. Journal of
Statistical Software 76.1 (Jan. 2017). DOI: 10.18637/jss.v076.i01.

Caterini, Anthony L., Doucet, Arnaud, Sejdinovic, Dino. “Hamiltonian Variational Auto-Encoder” (May 2018). arXiv:
1805.11328 [cs, stat].

Chopin, N. “A Sequential Particle Filter Method for Static Models.” Biometrika 89.3 (Aug. 2002), pp. 539–552. DOI:
10.1093/biomet/89.3.539.

Clerc, Florence, Danos, Vincent, Dahlqvist, Fredrik. “Pointless Learning (long version).” International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS). 679127. 2017, pp. 1–19.

Cusumano-Towner, Marco F., Saad, Feras A., Lew, Alexander K., Mansinghka, Vikash K. “Gen: A General-Purpose
Probabilistic Programming System with Programmable Inference.” Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation. PLDI 2019. New York, NY, USA: Association for Computing
Machinery, June 2019, pp. 221–236. DOI: 10.1145/3314221.3314642.

Dahlqvist, Fredrik, Silva, Alexandra, Danos, Vincent, Garnier, Ilias. “Borel Kernels and their Approximation, Categorically.”
Electronic Notes in Theoretical Computer Science 341 (2018), pp. 91–119. DOI: 10.1016/j.entcs.2018.11.006. arXiv:
1803.02651.

De Raedt, Luc, Kimmig, Angelika, Toivonen, Hannu. “ProbLog: A Probabilistic Prolog and Its Application in Link
Discovery.” IJCAI International Joint Conference on Artificial Intelligence (2007), pp. 2468–2473.

Fong, Brendan. “Causal Theories: A Categorical Perspective on Bayesian Networks.” Master of Science in Mathematics and
the Foundations of Computer Science. University of Oxford, 2013. arXiv: 1301.6201.

Ge, Hong, Xu, Kai, Ghahramani, Zoubin. “Turing: A Language for Flexible Probabilistic Inference.” Proceedings of the
Twenty-First International Conference on Artificial Intelligence and Statistics (AISTATS). Ed. by A. Storkey, F. Perez-Cruz.
Vol. 84. 2018, pp. 1682–1690.

Goodman, Noah, Mansinghka, Vikash, Roy, Daniel M, Bonawitz, Keith, Tenenbaum, Joshua B. “Church: A Language for
Generative Models.” Proc. 24th Conf. Uncertainty in Artificial Intelligence (UAI). 2008, pp. 220–229.

Goodman, Noah D, Stuhlmüller, Andreas. The Design and Implementation of Probabilistic Programming Languages. 2014.

Heunen, Chris, Kammar, Ohad, Staton, Sam, Yang, Hongseok. “A convenient category for higher-order probability theory.”
Proceedings - Symposium on Logic in Computer Science. 2017. DOI: 10.1109/LICS.2017.8005137. arXiv: 1701.02547.

https://arxiv.org/abs/1810.09538
https://arxiv.org/abs/1406.2751
https://arxiv.org/abs/1509.00519
https://doi.org/10.18637/jss.v076.i01
https://arxiv.org/abs/1805.11328
https://doi.org/10.1093/biomet/89.3.539
https://doi.org/10.1145/3314221.3314642
https://doi.org/10.1016/j.entcs.2018.11.006
https://arxiv.org/abs/1803.02651
https://arxiv.org/abs/1301.6201
https://doi.org/10.1109/LICS.2017.8005137
https://arxiv.org/abs/1701.02547

Hinton, G. E., Dayan, P., Frey, B. J., Neal, R. M. “The "Wake-Sleep" Algorithm for Unsupervised Neural Networks.” en.
Science 268.5214 (May 1995), pp. 1158–1161. DOI: 10.1126/science.7761831.

Hoffman, Matthew D. “Learning deep latent Gaussian models with Markov chain Monte Carlo.” International conference
on machine learning. PMLR. 2017, pp. 1510–1519.

Holtzen, Steven, Van den Broeck, Guy, Millstein, Todd. “Scaling Exact Inference for Discrete Probabilistic Programs.”
Proceedings of the ACM on Programming Languages 4.OOPSLA (Nov. 2020), 140:1–140:31. DOI: 10.1145/3428208.

Huang, Chin-Wei, Tan, Shawn, Lacoste, Alexandre, Courville, Aaron C. “Improving Explorability in Variational Inference
with Annealed Variational Objectives.” Advances in Neural Information Processing Systems 31. Ed. by S. Bengio, H.
Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett. Curran Associates, Inc., 2018, pp. 9701–9711.

Kingma, Diederik P., Welling, Max. “Auto-Encoding Variational Bayes.” International Conference on Learning Representa-
tions (2013).

Le, Tuan Anh, Igl, Maximilian, Rainforth, Tom, Jin, Tom, Wood, Frank. “Auto-Encoding Sequential Monte Carlo.”
International Conference on Learning Representations. 2018. arXiv: 1705.10306.

Le, Tuan Anh, Kosiorek, Adam R., Siddharth, N., Teh, Yee Whye, Wood, Frank. “Revisiting Reweighted Wake-Sleep for
Models with Stochastic Control Flow.” Uncertainty in Artificial Intelligence. 2019.

Lew, Alexander K., Cusumano-Towner, Marco F., Sherman, Benjamin, Carbin, Michael, Mansinghka, Vikash K. “Trace
Types and Denotational Semantics for Sound Programmable Inference in Probabilistic Languages.” ACM Principles of
Programming Languages. Vol. 4. January. 2020, pp. 1–31. DOI: 10.1145/3371087.

Li, Yingzhen, Turner, Richard E, Liu, Qiang. “Approximate inference with amortised mcmc.” arXiv preprint
arXiv:1702.08343 (2017).

Liu, Jun S. Monte Carlo strategies in scientific computing. Springer Science & Business Media, 2008.

Maddison, Chris J, Lawson, John, Tucker, George, Heess, Nicolas, Norouzi, Mohammad, Mnih, Andriy, Doucet, Arnaud,
Teh, Yee. “Filtering Variational Objectives.” Advances in Neural Information Processing Systems 30. Ed. by I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett. Curran Associates, Inc., 2017, pp. 6573–6583.

Mansinghka, Vikash, Selsam, Daniel, Perov, Yura. “Venture: A Higher-Order Probabilistic Programming Platform with
Programmable Inference.” arXiv (Mar. 2014), pp. 78–78.

Masrani, Vaden, Le, Tuan Anh, Wood, Frank. “The Thermodynamic Variational Objective.” Advances in Neural Information
Processing Systems. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox, R. Garnett. Vol. 32.
Curran Associates, Inc., 2019.

Minka, T, Winn, J, Guiver, J, Knowles, D. Infer.NET 2.4, Microsoft Research Cambridge. 2010.

Murray, Lawrence M. “Bayesian State-Space Modelling on High-Performance Hardware Using LibBi” (June 2013). arXiv:
1306.3277 [stat].

Murray, Lawrence M., Schön, Thomas B. “Automated Learning with a Probabilistic Programming Language: Birch.” Annual
Reviews in Control 46 (Jan. 2018), pp. 29–43. DOI: 10.1016/j.arcontrol.2018.10.013.

Naesseth, Christian, Linderman, Scott, Ranganath, Rajesh, Blei, David. “Variational Sequential Monte Carlo.” en. Interna-
tional Conference on Artificial Intelligence and Statistics. PMLR, Mar. 2018, pp. 968–977.

Naesseth, Christian, Lindsten, Fredrik, Schon, Thomas. “Nested Sequential Monte Carlo Methods.” International Conference
on Machine Learning. 2015, pp. 1292–1301.

https://doi.org/10.1126/science.7761831
https://doi.org/10.1145/3428208
https://arxiv.org/abs/1705.10306
https://doi.org/10.1145/3371087
https://arxiv.org/abs/1306.3277
https://doi.org/10.1016/j.arcontrol.2018.10.013

Naesseth, Christian A., Lindsten, Fredrik, Schön, Thomas B. “Elements of Sequential Monte Carlo.” arXiv:1903.04797 [cs,
stat] (Mar. 2019). (Visited on 12/16/2019).

Narayanan, Praveen, Carette, Jacques, Romano, Wren, Shan, Chung-chieh, Zinkov, Robert. “Probabilistic Inference
by Program Transformation in Hakaru (System Description).” International Symposium on Functional and Logic
Programming. Springer, 2016, pp. 62–79.

Obermeyer, Fritz, Bingham, Eli, Jankowiak, Martin, Phan, Du, Chen, Jonathan P. “Functional Tensors for Probabilistic
Programming.” arXiv preprint arXiv:1910.10775 (2019).

Paige, Brooks, Wood, Frank. “A Compilation Target for Probabilistic Programming Languages.” International Conference
on Machine Learning (ICML) 32 (Mar. 2014).

Pfeffer, Avi. Figaro: An Object-Oriented Probabilistic Programming Language. Tech. rep. 9781577354260. 2009, pp. 1–9.

Pfeffer, Avi, Lynn, Spencer K. “Scruff: A Deep Probabilistic Cognitive Architecture for Predictive Processing.” Biologically
Inspired Cognitive Architectures Meeting. Springer, 2018, pp. 245–259.

Plummer, Martyn. “JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs Sampling.” Proceedings of
the 3rd International Workshop on Distributed Statistical Computing. Vol. 124. Vienna, Austria., 2003.

Rainforth, Tom, Kosiorek, Adam, Le, Tuan Anh, Maddison, Chris, Igl, Maximilian, Wood, Frank, Teh, Yee Whye. “Tighter
Variational Bounds Are Not Necessarily Better.” en. International Conference on Machine Learning. July 2018, pp. 4277–
4285.

Ranganath, Rajesh, Gerrish, Sean, Blei, David. “Black Box Variational Inference.” en. Artificial Intelligence and Statistics.
Apr. 2014, pp. 814–822.

Rezende, Danilo Jimenez, Mohamed, Shakir, Wierstra, Daan. “Stochastic Backpropagation and Approximate Inference in
Deep Generative Models.” Proceedings of the 31st International Conference on Machine Learning. Ed. by E. P. Xing,
T. Jebara. Vol. 32. Proceedings of Machine Learning Research 2. Bejing, China: PMLR, June 2014, pp. 1278–1286.

Ritchie, Daniel, Horsfall, Paul, Goodman, Noah D. “Deep Amortized Inference for Probabilistic Programs.” en (Oct. 2016).
arXiv: 1610.05735 [cs, stat].

Salimans, Tim, Kingma, Diederik, Welling, Max. “Markov chain monte carlo and variational inference: Bridging the gap.”
International Conference on Machine Learning. 2015, pp. 1218–1226.

Salvatier, John, Wiecki, Thomas V, Fonnesbeck, Christopher. “Probabilistic programming in Python using PyMC3.” PeerJ
Computer Science 2 (2016), e55.

Schulman, John, Heess, Nicolas, Weber, Theophane, Abbeel, Pieter. “Gradient Estimation Using Stochastic Computation
Graphs.” Advances in Neural Information Processing Systems 28. Ed. by C. Cortes, N. D. Lawrence, D. D. Lee, M.
Sugiyama, R. Garnett. Curran Associates, Inc., 2015, pp. 3528–3536.

Ścibior, Adam, Kammar, Ohad, Ghahramani, Zoubin. “Functional Programming for Modular Bayesian Inference.” Proc.
ACM Program. Lang. 2.ICFP (July 2018), 83:1–83:29. DOI: 10.1145/3236778.

Ścibior, Adam, Kammar, Ohad, Vákár, Matthijs, Staton, Sam, Yang, Hongseok, Cai, Yufei, Ostermann, Klaus, Moss,
Sean K., Heunen, Chris, Ghahramani, Zoubin. “Denotational Validation of Higher-Order Bayesian Inference.” Proc. ACM
Program. Lang. 2.POPL (Dec. 2017), 60:1–60:29. DOI: 10.1145/3158148.

Shan, Chung-chieh, Ramsey, Norman. “Exact Bayesian inference by symbolic disintegration.” Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages. 2017, pp. 130–144.

https://arxiv.org/abs/1610.05735
https://doi.org/10.1145/3236778
https://doi.org/10.1145/3158148

Siddharth, N., Paige, Brooks, van de Meent, Jan-Willem, Desmaison, Alban, Goodman, Noah D., Kohli, Pushmeet, Wood,
Frank, Torr, Philip. “Learning Disentangled Representations with Semi-Supervised Deep Generative Models.” Advances
in Neural Information Processing Systems 30. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S.
Vishwanathan, R. Garnett. 2017, pp. 5927–5937.

Spiegelhalter, David J, Thomas, Andrew, Best, Nicky G, Gilks, Wally R. BUGS: Bayesian Inference Using Gibbs Sampling,
Version 0.50. MRC Biostatistics Unit, Cambridge. 1995.

Tolpin, David. Infergo: Go Programs That Learn. en. http://infergo.org/. 2018.

Tolpin, David, van de Meent, Jan-Willem, Yang, Hongseok, Wood, Frank. “Design and Implementation of Probabilistic
Programming Language Anglican.” Proceedings of the 28th Symposium on the Implementation and Application of
Functional Programming Languages. IFL 2016. Leuven, Belgium: ACM, 2016, 6:1–6:12. DOI: 10/ghxhzn.

Toronto, Neil, McCarthy, Jay, Van Horn, David. “Running Probabilistic Programs Backwards.” European Symposium on
Programming Languages and Systems. Vol. 3. 1. 2015, pp. 53–79. arXiv: 1412.4053. URL: http://arxiv.org/abs/1412.
4053.

Tran, Dustin, Hoffman, Matthew D, Moore, Dave, Suter, Christopher, Vasudevan, Srinivas, Radul, Alexey, Johnson, Matthew,
Saurous, Rif A. “Simple, distributed, and accelerated probabilistic programming.” Proceedings of the 32nd International
Conference on Neural Information Processing Systems. 2018, pp. 7609–7620.

Tran, Dustin, Kucukelbir, Alp, Dieng, Adji B., Rudolph, Maja, Liang, Dawen, Blei, David M. “Edward: A Library for
Probabilistic Modeling, Inference, and Criticism” (Oct. 2016). arXiv: 1610.09787 [cs, stat].

Tucker, George, Lawson, Dieterich, Gu, Shixiang, Maddison, Chris J. “Doubly Reparameterized Gradient Estimators for
Monte Carlo Objectives” (Oct. 2019). arXiv: 1810.04152 [cs, stat].

van de Meent, Jan-Willem, Paige, Brooks, Tolpin, David, Wood, Frank. “An Interface for Black Box Learning in Probabilistic
Programs.” POPL Workshop on Probabilistic Programming Semantics. 2016.

– “Black-Box Policy Search with Probabilistic Programs.” 2016, 1195–1204.

van de Meent, Jan-Willem, Paige, Brooks, Yang, Hongseok, Wood, Frank. “An Introduction to Probabilistic Programming”
(Sept. 2018). arXiv: 1809.10756 [cs, stat].

Wang, Tongzhou, Wu, Yi, Moore, Dave, Russell, Stuart J. “Meta-learning MCMC proposals.” Advances in Neural Informa-
tion Processing Systems. 2018, pp. 4146–4156.

Wingate, David, Weber, Theo. “Automated Variational Inference in Probabilistic Programming” (2013), pp. 1–7. arXiv:
1301.1299.

Wood, Frank, van de Meent, Jan-Willem, Mansinghka, Vikash. “A New Approach to Probabilistic Programming Inference.”
Artificial Intelligence and Statistics. 2014, pp. 1024–1032.

Wu, Hao, Zimmermann, Heiko, Sennesh, Eli, Le, Tuan Anh, van de Meent, Jan-Willem. “Amortized Population Gibbs
Samplers with Neural Sufficient Statistics.” International Conference on Machine Learning. PMLR. 2020, pp. 10421–
10431.

Zimmermann, Heiko, Wu, Hao, Esmaeili, Babak, Stites, Sam, van de Meent, Jan-Willem. “Nested Variational Inference.”
3rd Symposium on Advances in Approximate Bayesian Inference (2021).

Zinkov, Robert, Shan, Chung-chieh. “Composing Inference Algorithms as Program Transformations.” Uncertainty in
Artificial Intelligence (2017). arXiv: 1603.01882.

https://doi.org/10/ghxhzn
https://arxiv.org/abs/1412.4053
http://arxiv.org/abs/1412.4053
http://arxiv.org/abs/1412.4053
https://arxiv.org/abs/1610.09787
https://arxiv.org/abs/1810.04152
https://arxiv.org/abs/1809.10756
https://arxiv.org/abs/1301.1299
https://arxiv.org/abs/1603.01882

	Related Work
	Importance Sampling and MCMC in Variational Inference
	Probabilistic Programming
	Inference Programming
	Sampling and Measure Semantics

	Denotational Semantics of Target and Inference Programs
	Evaluation under Substitution
	Evaluation in Context
	Proper weighting of programs
	Gradient computations
	Stochastic Variational Inference (SVI).
	Reweighted Wake-sleep (RWS) Style Inference.

	Implementation Details for Experiments
	Annealed Variational Inference
	Amortized Population Gibbs Samplers

