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Table [1|summarizes the abbreviations and the symbols used in the paper. For notation simplicity, when Z is a finite set, we

identify it with Z/mZ where m is the cardinality of Zj, to justify the subtractions inside the kernel functions.

A  PRELIMINARIES ON ADMG

Given an ADMG G with the vertex set V and topological order <, we use the following terminologies (Bhattacharya et al.,
2020)).

District. For v € V, define dis(v) as the collection of v/ € V that is connected to v via a bi-directed path.

Parents. For a subset A C V, we define its parents as pa(A) := | J,e4 Pa(v) \ A where pa(v) denotes the parent of v in the
usual sense.

Markov pillow. For v € V, define G, to be the subgraph of G that is composed of only the vertices that precede v. Then,
the Markov pillow of v € V is mp(v) := dis(v) U pa(dis(v)) \ {v} in G<,. Throughout the paper, we use the fact that mp(v)
consists only of variables that are precedent to v.

B EXPERIMENT DETAILS

Here, we describe the implementation details of the experiment. The experiment was implemented using the hydra package
of Python (Yadan, 2019). All experiments were carried out on a 2.60 GHz Intel® Xeon® CPUs with 132 GB memory.

Our experiment code can be found at https://github.com/takeshi-teshima/
incorporating-causal-graphical-prior-knowledge-into-predictive-modeling-via-simple-data-augmentation.

B.1 DATA SET DETAILS

Following are the data acquisition procedures, the sample sizes, the variable definitions, and the preprocessing procedures used in our
experiment. In all the data sets, after preprocessing as described below, we independently normalized each variable as a final preprocessing
step.

Sachs data (Sachs et al.,2005). This data set consists of continuous measurements from the flow cytometry of proteins and phospholipids
in human immune system cells. The consensus graph is provided in Sachs et al. (2005) based on the conventionally accepted cellular
signaling networks (Figure[{a)). Among the eight data sets corresponding to different intervention conditions (Sachs et al.,[2003), we
use the one that is observational, i.e., without any interventions. The data set contains 853 observations of 11 variables, namely Raf,
Mek, Plcg, PIP2, PIP3, Erk, Akt, PKA, PKC, P38, and Jnk. Among these, for demonstration purposes, we considered PKA as the target
attribute. As preprocessing, we log-transformed Raf, Mek, and PKA.
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Table 1: Abbreviations and Symbols in the Paper.

ABBREVIATION / SYMBOL DESCRIPTION
CG/CGM Causal Graph / Causal Graphical Model
ADMG Acyclic Directed Mixed Graph
DAG/PAG Directed Acyclic Graph / Partial Ancestral Graph
MSE Mean Squared Error

Rs RZOs R>O’ Z’ Z209 N

Set of all real numbers, nonnegative real numbers, positive real numbers,
integers, nonnegative integers, and positive integers.

1[A] Indicator function, i.e., 1 if A holds true and O otherwise.

XUuy|Zz X and Y are conditionally independent given Z.

11 Disjoint union of sets.

diag((xy,...,xq)) Diagonal matrix with diagonal elements (xi, ..., x4) (d € N).

115 1llop » IIlleo» det Euclidean norm of a vector, the operator norm of a matrix,
the supremum norm of a function, and the determinant of a matrix.

L] lal :=max{ze€Z:z<a}foraeR.

0 Dirac’s delta function centered at z (e.g., Zorich, 2015} Section E.4.1).

Ak (K — 1)-dimensional probability simplex (Boyd et al., 2004, Example 2.5).

[N : M],[N] [N:M]:={N,N+1,...,M}and [N] :=[1 : N], where N,M e Nand N < M.

x5 x5 = (x*, ..., x*) where = (x',..., x") is an n-dimensional vector and
S = {S],...,S\S\} C[n]with sy <--- < NB

[0] = 0,R% := {0}, 2° = 0,[N]° := {0} Conventions used in the paper.

DeN Overall data dimensionality (with X and Y combined).

Z= X?ZIZ j Overall data space (without distinguishing X and Y).

X = Xjep)\( j*]fj, y=2 Input variable space and target variable space.

p Joint probability density of Z := (Z', ..., ZP) taking values in Z.

Rad,,, Rademacher complexity of a function class.

F cyX Hypothesis set.

f:?x(x?:lfj)eR
R(f) = E[{(f,Z)]

Loss function.
Risk functional for f € .

D=Ly, -
G =(DLE B, G = (DL€ B)

Dis(+), pa(-), mp(j)
P jimp(j)s P jmp(j)s Pmp(j)

Independently and identically distributed sample from p.

Underlying ADMG for which p satisfies the topological ADMG factorization
and its estimator.

District, parents, and Markov pillow of vertex j € [D].

Conditional density of Z/ given Z™\), the joint density of (Z/, Z"™")),

and the marginal density of Z™"),

—mp())

K':Z —-R
Z;
z}?aug :A: {Zi}ie[n]D’(Waug = {Wi}ielnlp
Remp’ Raug
Q(f)
A1€]0,1]
K’
7
6

Kernel function (we define K/ := 1 if mp(j) = 0).

Z; = (Zill" . "ZiDD) for < = (iy,...,ip) € [I’l]D

Augmented data set and the instance weights.

Ordinary empirical risk estimator and the proposed risk estimator.
Regularization term for f € .

Convex combination coefficient used in (1 — /l)IQemp( )+ Aﬁaug( )+ Q).
Component of the product kernel K/ for j € mp(j).

Pruning threshold of the small weights in Algorithm

GSS data (Shimizu et al., 2011).

This data set is concerning the status attainment theory in sociology. This data set is originally part of

the General Social Survey (GSSﬂ and we used a subset of the data that was previously used in the causal discovery literature (Shimizu
et al.,2011)). The reference graph is based on domain knowledge of the status attainment model (Duncan et al.,[1972; Figure[3[b)). The

acquired data set consists of 1380 observations of 6 variables, namely x;: father’s occupation level, x,: son’s income, x3: father’s education,

'https://gss.norc.org/
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X4: son’s occupation, xs: son’s education, and xg: the number of siblings. We consider x, as the target variable.

Boston Housing data (Harrison et al.,[1978). This data set is concerning the house prices in Boston, and the objective is to predict the
prices of the house from its attributes. We acquired the data from https://github.com/adityatiwaril3/Boston_Dataset. The
acquired data set consists of 506 observations of 13 variables, namely CRIM, ZN, INDUS, CHAS, NOX, RM, AGE, DIS, RAD, TAX,
PTRATIO, B, LSTAT, and MEDV. The objective is to predict the value of prices of the house, i.e., MEDV, using the given features.

Auto MPG data (Quinlan,|1993). This data set concerns the city-cycle fuel consumption in miles per gallon (MPG). We acquired
the data from https://archive.ics.uci.edu/ml/datasets/Auto+MPG. The acquired data set consists of 398 observations of 9
variables, namely mpg, cylinders, displacement, horsepower, weight, acceleration, model year, origin, and car name. Among these, we
discard origin and car name, and we consider mpg as the predicted variable.

White Wine data (Cortez et al., 2009). This data set is concerning the prediction of wine quality from its physicochemical attributes.
We acquired the data from https://archive.ics.uci.edu/ml/datasets/wine+quality. The acquired data set consists of 4898
observations of 12 variables, namely fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur
dioxide, density, pH, sulphates, alcohol, and quality. Among the variables, we consider the quality variable as the target.

Red Wine data (Cortez et al.,2009). This data set is concerning the prediction of wine quality from its physicochemical attributes.
We acquired the data from https://archive.ics.uci.edu/ml/datasets/wine+quality. The acquired data set consists of 1599
observations of 12 variables, namely fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur
dioxide, density, pH, sulphates, alcohol, and quality. Among these, we consider the quality variable as the target.

B.2 PREDICTOR MODEL DETAILS

For the implementation of the predictor model, we employed the xgboost library of Python (Chen et al.,|2016). See Chen et al. (2016) for
the optimization method and the other details.

B.3 PROPOSED METHOD IMPLEMENTATION DETAILS

For continuous variables, we compute the kernel bandwidths as follows. We first specify the bandwidth temperature y > 0 as a
hyper-parameter. Then we calculate the rule-of-thumb bandwidth h;.h”mb for each j € [D] using the training data {Z]}",. Finally, we set

hj = - h?"™. In the experiment, we fix y = 10~ throughout all runs.

For the rule-of-thumb kernel bandwidth, we employed Silverman’s rule-of-thumb (Silverman, 1986, pp.45—47, Equations (3.28) and
(3.30) therein) implemented in the statsmodels package of Python (Statsmodels|[2020), namely, hh™> = (;—‘)] > An'/5 where A =
min{d, IQR/1.349}, & is the square root of the unbiased estimator of the variance, and IQR is the interquantile range.

For the pruning threshold, we use = 1073 - n~'.

B.4 CAUSAL DISCOVERY METHOD CONFIGURATION

We perform DirectLINGAM (Shimizu et al.,[2011) on the data sets to simulate a situation where we have access to domain knowledge. As
the independence measure used in the DirectLiNGAM framework, we employ the pairwise likelihood ratio score (Hyvérinen et al.,[2013)
that is based on a nonparametric approximation to the mutual information.

B.S SUPPLEMENTARY EXPERIMENT RESULTS

Figure[T]shows the average improvement achieved by the proposed method relative to the baseline without a device. The improvement in
the small-data regime is consistently observed except in a few cases in the Auto MPG and the Boston Housing data. In the Boston Housing
data set, the performance loss may be due to the failure of the CG estimation since the performance loss is magnified as the training set
size is increased. In the Auto MPG data, the performance degradation for the smallest training set fraction may be due to the additional
complexity and bias introduced by the kernel approximation.

C DETAILS AND PROOF OF THE THEORETICAL ANALYSIS
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Figure 1: Average relative improvement in percentage. In all figures, the horizontal axis is the varied sizes of the original

training data before augmentation. The vertical axis is the relative MSE improvement in percentage, i.e., MSE%:ASEW x 100
% where MSEp,s. and MSE,,, are the MSE of the baseline and that of the proposed method, respectively (thdg lower the
better). The markers and the lines indicate the average over the 20 independent runs, and the shades are drawn for the width
of the standard errors both above and below the lines. In most of the cases, the proposed method shows a consistently
improved performance compared to the baseline based on the empirical risk minimization with the same hypothesis class,

particularly in the small-data regime.

C.1 NOTATION AND PROBLEM SETUP

Basic notation. Let R denote the set of real numbers, N that of positive integers, R.( that of positive real numbers, Z that of integers,
and Z that of non-negative integers. For (xi, ..., x) € R¥, diag((xy, ..., x;)) denotes the diagonal matrix whose diagonal elements are
(x1,...,x). For a vector, ||| denotes its Euclidean norm. For a matrix, det denotes its determinant, and ||-[|,, its operator norm. For a
function, ||||, denotes its supremum norm over a suitable set of inputs when the domain is clear from the context. For a finite set, | - |
denotes its cardinality.

Utility notation. Forn € N, define [n] := {1,2,...,n}. For n,m € N with n < m, define [n : m] := {n,n+1,...,m}. For an n-dimensional
vector © = (xi,...,x,) and S c [n], we let &5 = (x”____,m) denote its sub-vector with indices in S = {sy,..., s} with sy < -+ < 5.
Similarly, for j € [n], we let &/ := 2. For § c [n], we also define Z° := x5 Z*. To simplify the notation, we use the convention of
R := {0}, ° = 0, and [n]/"! = {0}.

Distribution and sample. Let D € N. In this theoretical analysis, we assume that Z/ is a measurable subset of R (j € [D]). We consider
a probability distribution over Z := xfz lZj, and let p denote its density function (assuming it exists). We are given D = {Z,;}7_,, an
independently and identically distributed sample from p. Let E denote the expectation with respect to p. Additionally, we are given
an ADMG G = ([D], &, B). Let mp(j) C [D] denote the Markov pillow of j € [D]. Throughout this section, we assume p satisfies the

topological ADMG factorization relation according to G (Bhattacharya et al.,[2020):

D

) iy (27, 2D
P = [ |z |= [ 2200
- Jimp(y - ’

j=1 =t P mo( (2"

Learning problem. Let # denote a hypothesis class, and let £ : ¥ x R” — R, be a loss function. To simplify the notation, we define
ty:=€(f,) and Ly := {{; : f € F}. For each f € ¥, we define the risk functional R(f) := E[{;(Z)]. The learning problem is to find a
hypothesis f € ¥ for which R is small, given the training data © and the graph G.



Proposed method. For each j € [D], we fix a kernel function K/ : R™ — R, For notation simplicity, we define K/ := 1 for j such
that mp(j) = 0. We also fix h = (h',..., h?) € RE. Then, we define

H, := diag(h™"),  Kj(u):= K/(H ).

Fori = (iy,...,ip) and 2™ € Rl define

n
Z Kiil(zn1|v(j) _ Z}“P(j)) £0

i=1

J mp(j) _ gmp()
w{(z‘""(-")) _ Kji(z 7" ]1[

j i p(j)
Z:‘l:l K]/_l(zmp(ﬂ _ Z;_“ J )

where i = (i, ..., ip), 2™ € R™WI Then, we recursively define
N N . . . j-1
Wi = L Wiy, = Wiayy - Way,, (€ [D] 211 € [0)7),
where

~ —/ mp(j) _ 1 Jj—1
Wij"ilzj—] =W (Z ), Z’,;l:j;] = (Zip""Z‘ )

i\ ij-1

. 1
Here, we use the convention Z"™"

PN 0 to be consistent with the notation. Using this notation, for f € ¥, define the augmented empirical
risk estimator '

Rug(P) 1= ) Wily(Zy).

ie[n]?

Target of the theoretical analysis. We aim to provide a stochastic upper bound on R( ) = R(f*), where

f € arg min{Ryue(f)}, and f* € arg min{R(f)},
feF feF

assuming both exist.

Notation for stating the results. To state the main theorem, we use the following notation. For each j € [D] and f € ¥, define

ZI

D
CH R ff(z)(l_[ pkm)(zklzm”(“))dzf“---dz”.

i k=j+1
Also define
L= {Zf,j(zl,...,zj’l,-) cfeF. (2, ...,z e Z“:j’”},
K = {Ku(z" = () : 20 e 2™}

For simplicity, throughout the theoretical analysis, we assume that all quantities appearing in the proof satisfy sufficient measurability
conditions.

C.2 MAIN THEOREM

Here, we detail the assumptions, the statement, and a proof of Theoremm

C.2.1 Preliminaries

We use the following convenient multi-index notation (see, e.g., Stone, [1982).

Definition 1 (Multi-index notation). For d € N, we call a d-tuple a = (ay,...,a,) € Zio multi-index. For a multi-index «, let
la| := 2?:1 ajand a! = ﬂ;’:l a;!, and x* = x(l” -~~xZ" for x = (x1,...,x9) € R% Also, let 8% denote the partial differential operator
defined by

9ol

T
ox, ox,

@



Definition 2 (Convolution). Let d € N and Q C R? be a measurable subset. For continuous bounded functions f,g : Q — R, we define a
function (f [é] g):Q —>Rby

7 e@ = [ S - sy,
@l o
When Q = RY, we drop Q from the notation and denote f * g.

We define the following class of functions.

Definition 3 (Holder class; Stone, |1982; Tsybakov,[2009). Letd e N, 8> 1, L > 0, and let Q C R? be an open subset. The (B, L)-Holder
class Z(B, L, Q) is defined as the set of k = |B]-times continuously differentiable functions f : Q — R satisfying

18%F(x) = OF () < Llx = XIF*  for x,x € Qandlal =k,

where a = (ay,...,ay) € Z‘Zio is a multi-index, and |a) = max{z € Z : 7 < a} for a € R. When Q = R¢, we also drop R"fmm the notation
and denote (B3, L) when the dimension is clear from the context.

Remark 1. In the 1-dimensional case, a related analysis based on the notion of the Holder class is presented in Section 1.2.3 of Tsybakov
(2009).

For function classes, we quantify their complexities using the Rademacher complexity.

Definition 4 (Rademacher complexity). Let q denote a probability distribution on some measurable space X. For a function class ¥ C R¥,
define

m

1
Rad,, ,(¥) :=EE, |sup |— oif(X))
where m € N, {0} | are independent uniform {+1}-valued random variables, and {X;}7. L q.

C.2.2 Assumptions

For simplicity, throughout this theoretical analysis, we assume that all quantities appearing in the proof satisty sufficient measurability
conditions.

Assumption 1 (Boundedness assumptions). We assume that the following hold:

o The loss function is bounded, i.e., B¢ := Sup s sUpzerp [€(f, Z)| < oco.

e K:= {K-"}_]i] are uniformly bounded from above, i.e., B := Inalx{HK-/Hoo (je [D]} < oo.

For each j € [D], Z/ c R is a compact subset. Let B; := fzf dz/ < oo,

For all j € [D], pwyj is bounded away from zero over Z™Y, Define Enp(j) += I0F () zmeti) Prp ,-)(Z‘“"(j))‘

For each j € [D), K/ is continuous and strictly positive. We define

i ; o . . o _
¢Kf,H,- = sup |KIJ-I(Zmp(/) — () )| — sup 'K](Zmp(/) — () )| | det H/l 1
: 2MP()ezmP(j), 2P el Zmp(),
J

2mp()’ cRIM()I \Zme() 2mp()) rEH; 1 (RIMPIN ZmP())

and assume Pkim; < oo
Remark 2. Since Z™Y is compact and K’ is continuous, if we define
exi(H)) := |det Hj| inf  Kj(x-a)|= inf Ki(x - x),
w,wlezﬂ\\'(j) m,m’EH/_.l.Z‘"p(j)

this quantity is strictly positive under Assumption![]]

From here, we fix 8> 1 and L > 0.

Assumption 2 (Smoothness assumptions). We assume that the following hold for all j € [D]:



® Dup(j) has an extension Py € Z(B, L) such that I, = thnv( Mz | P (™2™ < oo,

e For all 2z € Z5, pim(Z,) has an  extension  Pjwwy(Z7,°) € S(B,L) such that Iju) =
fZ-f (fR\mu(j)\\Zmp(j) |lv7j,mp(j)(zj, zmp(j))ldzmp(/)) dz/ < co.

e K'isoforderk =8, i.e.,

f K/(uydu = 1, f K'@u®du=0 (1<la|<k),
RImp()I RImp()I

where a € Z';g‘(j)‘ is a multi-index, and K’ satisfies thvmu)\ |K7(u)| - el du < oo

Remark 3 (Existence of the smooth extensions). The smooth extensions in Assumption 2] exist, for example, if we consider a smooth
density function Puyjy on R™YN and regard its restriction to Z™ with appropriate scaling as puyj)-

C.2.3 Statement and Proof

We prove the following theorem. Theoremis obtained by changing ¢ to % in the following theorem, substituting ”H ,-Hop = MaX jemp(j) b /|
and defining the appropriate constants.

Theorem 1 (Excess risk bound). Assume that Assumptions[I|and[2|hold. Let n € N. For j € [D], define

D

1 BK ) . B D (pl(f,H,- v BK v
Cu:=B Y — B+ ——|o@.Lk)|H| ., c,:=B N oy + =Ty | »
H ¢ ; m) ( J €xi (H,) ” J ”op ) 4 ]Z:; ) Jmp(j) X (H]) mp(j)
1 B D D
= - 7K o— . J J __ ) Jj
C := max { 0 oy } . Rrx:= ) |detH)|Rad,, (L) ®%G), Rx:= ) |detH;|Rad, (K.

J=1 Jj=1

Then, for any 6 € (0, 1), we have with probability at least 1 — 2D6,

) log(2/6
R(f) = R(f*) < 2(Cu + C)) + 4Ck(Ry k + BeRx) + 2DB; Bk Cx W

Proof overview. Our proof derives ideas from the literature on local empirical processes and kernel-type estimators, namely Einmahl
et al. (2000), Einmahl et al. (2005), and Dony et al. (2006). Two elementary calculations are essential in the proof. The first one handles a
difference between two products: let N € N, (ay,...,ay) € RV, and (by,...,by) € R, then,

N N N
(nai)_(l_[bi]zzal"'ajl(aj_bj)bj+l"'bN~ (D

=1 =1 =
The second one bounds a difference between two ratios from above: for A, B, C, D € R with B,D # 0,

‘ACACCC

<

B Dl /B B B D

ym-a+

1 C
B ﬁ"|B—D|- 2

Proof of Theorem[I] First, note

R(f) = R(f*) = R(f) = Rusg(F) + Rung(f) = R(f") < R(f) = Ruug(f) + Ruue(f") = R(f*) <2 sup IR(f) = Ruue ().

—————
*)

For ease of notation, define p;(z/|z™) = 3| 6Zj(zj)W{ (2"™) and temporarily denote py := pijmpu- With this notation, Ry,g(f) =

fz £(2) [12, pj(z/|z"*)dz. Then, applying the argument of Eq. (T), we have

D D
f gf(z) l_[ p_i(z-f|z"“’(-f))dz _ f ff(z) l_[ ﬁ_,v(zj|z"‘p(-j))dz
Zz j=1 z Jj=1
D D j-1
t(2) (120 | (92 12"0) = pi(2 |2 | ] pilh1z"0) [az
LooX(I] ety etz ]

=1 \k=j+1 k=

(*) = sup
feF

= sup
feF

D
SZ sup

=1 S

1
j-1

D
| ff(z)( [ pk<z"|z"‘”<k>)) (P2 —ﬁj(zjlz‘""”)))[
Z

ﬁk(zklzmv(k))] dz
k=j+1

k=1

)



Now, for f € ¥ and j € [D], we define f;,']:.f" c2l e (2,

c=smfS- z[f

l/ 1=1
<1-|sup max
feF w1:j-1€nl™

< max sup sup

1.], 1€ln}~ lje7-‘ 2ZMP() e Zmp()

IA

sup sup
7 J zm()ezme()
%Ly

n
’L AT N
@I N = Y G

f 1.] j l(z])pj(zjlzmp(j) )dz’ Z f“ - I(Z])A] (Z]11D(j)) ]
"Wz ,

z/). Then, for each j € [D], applying Lemma we obtain

1:j-1°

A A1
] Wi lirjo =" Wi

ij=1

21:j-1
=1

n
f P @0 - Y e (20
Zi

ij=1

mp(j) i\ mp(j)
f/[fj(z’)p (2712 D)dz’ - Z SZDw] ),

ij=1

Zmp( 5}

where we used that { o
-

rj(fa zmu(j)) = f f(zj)pj,nw(j)(zj’ anp(j))dzj’
Zi

g./(zmv(./)) = pmp(j)(znm(',))!

Then, for each £/ ; € L; and 2" ¢ Zm0),

} - C Z™0) that follows from {Z { "”’(1)}
dp:jo1€lni! i

)

c Z"™9, Define

,cj( 7, zmv(j)) . ;1\P(j)),

1 N j j mp(j
- Z} FEZHK ™ -2

[N J (omP())
;Z}:KH(Z »_17

B (20 - mp(j)
") i)

J(¢ mp(j) He mp(j)
) = r (ff,j,z ) ~ 7 (ffvj,z )
gl(zmr0) 2 (zmr)
r-"(f}.,j, zmv(_i)) B Ef-.i(g},j’ zmv(_i)) E?-"(f}.,j, va(./')) B ?j(f}',j’ zmv(_i))
gl(zm0) Egi(zme0)) Egi(zmr0)) 2 (zm)
p1 P

By applying the argument of Eq. (Z)), we can bound each ratio difference term as

E,ﬁj(z"lv(j))

< . DY R ) ol (™Y _ BT (P

pr= gl(zmW) Ir (gf’l’ z ) —EF (gf’l’ z ) gl (2™ EgI (M) lg'(z ) - Eg(= )
< ; . |Ef‘j(£” zmv(j)) _ ;,j([/ zmv(j))| + ifj(z"m(j)) . ”EAj(znm(j)) _ Aj(zmp(j))|

P2 s Egi(z™0) 1 £ EgJ(2mrW))gi (M) 8 & ’

Applying Lemmam to the coefficients, Lemma|Z| to the deterministic difference terms bounding p;, Lemma|z| to the stochastic difference
terms bounding p, along with the union bound, for any ¢ € (0, 1), we have with probability at least 1 — 2D¢,

R() - R(f)<2Z(

Eﬂl

+

By reorganizing the terms, we obtain the assertion.

B[Bj(l)(ﬁ, L, K/) ||H1”ip + Bf¢l(.f,Hjij,mv(j))

1 BB , 5 y
Enp(j) . GKJ'[(I'E) (d)(,B, L&Y ”Hj”OP + Pk I"'p(j))
|det H| o\ BBk [log(2/6)
exi(H)) 2Rad,, (LT ® WH) * |det H j| 2n
|detH,| BB Bx  [log(2/6)
) 2Rad, (K )
) e (N T N T 2



C.2.4 Lemmas

Here, we prove the lemmas used in the proof of Theorem ]

Lemma 1 (Bounded coefficients). Assume Assumptionmholds. Let j € [D]. Then,

1 1 EF (L} 2" )| BBy
sup —_— | < —, sup sup — - < s
2MP() e Zmp()) g](zmp(ﬁ) Emp(j) [/f -EL; 2 e Zmp() Egj(zmp(j)) €xi (Hj)
5]
1 ‘ |det HL| Pty . 2" BBy
— —| < s sup sup —— - < — .
2mdezmi) | B (2MP0) exi(H;) 8/ (zm0) exi(Hj)

’ J zme(Dezmp(i)
e LF

Proof. By Assumption[I] we have

1 1 1
sup - —| = - T < .
2mp() e Zmp()) gj(zmp(j)) lnfz\vw(j)gzvvw(j) IJnm(j)(zmp J)) Emp(j)
Also,
1 < 1
sup — — | < - — ,
2mp() e ZmP() ng(z"‘p(J)) lnfzmn(j) eZzmr() |ng(z‘“"(/))|

1

inf () ezme() fZ"‘v(ﬂ KIJ-I (z™P() — Zmp() ’)gj(zmv(j) ’)dzmp(j)z '
1

inf e c zmat) fzmv( » K{l( 2" — Zm()) i (2 ) Z P

< - , — = ,
|det H,|~' e (H,) fzmw) gi(z™0)dzm0) € (H))

where we used the positivity of the integrand. Now,

4 mp(j) AE# (¢ mp(j)
EF(C) 2" )| |det H,| EF/(£), , 2™)
sup sup TEaiameon | = SUP sup " -
0 epl z2mezm0) Eg/(zmW) ¢ epi 2mDezm0) idetHj|Egj(zmp(J))
1iS%F 1iStT
, : e . | k!
SR [ I (AL N

inf _weiyezmen |det Hj| [Eg7(zm0))) T ei(H))'

Similarly, we have inf e 7w [det Hy| - [87(2™9)| > €, (H)). Therefore,

f-!([/f - 2" |det H; ;\,}({J/f - PO
P o TRy | TSR T detHL| 2 (20
o epl zmwiezmG) | 8 ¢ epi zmDezm) | et j|g (zmP())
fi~——F 1T
SUP, ) SUD ez [detHL| - [PI(E, , 20|
p[ﬁje[# Pome(ezme(i) | _/| ( £ ) B(BK
inf s zmon |det Hy| - [g7(zm0)| exi(H))

Lemma 2 (Deterministic terms). Assume that Assumpzionsmand |Z| hold. Let j € [D]. Then,

sup  sup IPI(E) ") — B 2" < BeB 0B, LK) [H[[ + Bem, s
0 e L; 2 e Zme()
)

j ¢ omp(j AJ (o mp(j) j B ¥
sup [g/(z"") — B/ (2" )| < 0B, LK) [ B[, + dxim; Ty

2P eZmp()



Proof. By applying Lemmald]under Assumption[2]

sup |gj(zmv(j)) _ Egj(zmv(j))|

2P eZmp()

= sup
Z2mP(DeZmp()

P i P g iV i’
pmp(j)(zmp(j)) _ f ; K.II{(ZmD(I) — ) )pmp(j)(zmv(j) )dzmv(])
ZmeG

= sup
2ZmP()eZmp()

v P i h A Y i’
pmp(j)(zmn(/)) _ f . Kil{(zmn(/) _ zmn(j) )pmp(j)(zmv(/) )dz"‘p(f)
e

< sup
2ZmP()eZmp(j)

< OB, LK) ||HjHﬁp + ¢K1,H,1va<_/)-

Buno(2"™) = (K * Braiy) (2" ))| + sup
2 eZmp()

f Klj{(znm(j) _ zmv(j)’)lv)mv(j)(zmv(j)’)dzmp(j)’
RIMPI\ Zme()

Similarly, for each t’}. ;€ .E; and 2™V ¢ Zm0),
|rj(g}yj7 va(j)) _ Efj(f}vj, zmv(j))|

. . . . . ; . o . o, o .
- f v f_,/,,-(zj)P_j,mp(j)(Zj, z""’(j))dz/ _ f v .,ﬁ/'(zj) (f . K‘,’{(z'"p(’) — e )p_j,mp(j)(zja 2P0 )dzmv(/) )dzj
zi Zi Zme

= f . f}',j(zj)i’j,nm(j)(zj, 2™Ndzl — f . K}',j(zj) (f . Kl{l(zlltp(j) _ Zmp(j)l)ﬁjmm(j)(zj, zmv(j)’)dzmv(j)’) dz’
zi zi Zme(

IA

f &) (Bimip (&), 2") = (K % P (2, )(="D)) dz’
z’

+

f ,f,j(zj) (f K_I{I(zmv(j) _ zmv(i)’)ﬁj’nm(j)(zj’ zmp(j)/)dzmp(j)/)dzj
zi RImp(HIN Zmp())

B, f Bimon (2 2") = (K * By (2, D" A2/ + Begr i, Loy
z

IA

< B(B; sup |Bjmup(2’, 2™) = (Kjy * Piweip(2)s NE"D)| + Bedim Loy
zleZ/)

‘ ‘ 5 . . i . : y
<BBjsup  sup | Biaein(2, 2™) = (Kjp * B (2, D) + Bepr i, Ljmsy-
zleZI zm()ezme()

Applying LemmaEunder Assumption |2} for each z/ € Z/, we obtain

v i mp(j j v j mp(j i B
SUp [P jna (27, 2"™) = (K # Pmacp(2, D" < 08, LK) ||| -

zmv(/)Ezmu(/)

Therefore, we have the assertion. m]

Lemma 3 (Probabilistic terms). Assume that Assumption[I|holds. Let j € [D]. For any 6 € (0, 1), with probability at least 1 — 5, we have

) . ) . : : BB log(2/6
wp sup B, 20) - Pl 20 < 2Rad, (L) 0) + ok 10820,
0 e 1;]} 2 eZmp() |detHj| n

Similarly, for any 6 € (0, 1), with probability at least 1 — 6, we have

i j j j i B log(2/6
sup [Eg/(2"™)) — g/(z"™0)| < 2Rad,,,p(7(1{[) + K og(2/ )
zﬂlll(j)ezmp(j) |det H]| —2]1

Proof. Note
1< , , 1< , ,
sup  sup [BRI(L), 2") = #(L), 2™) = sup sup —Zf}-,j(Z,-’)k(Z}"”(’))—E[—Zf}.yj(zl!)k(z;"”(”)}
£, jerh Z ez ¢, s kercy | S =

and

. . . . 1 © : 1 < ;
sup IEg"(z"“’(-’)) _ g,/(zmp(/))| = sup |[— Z k(Z:."p('/)) _E [_ Z k(Z;nv(_l))} .
n
i=1

2 e Zmp() ke'Kl/-.I i=1

Now, applying Fact[3]to these expressions, we obtain the assertions of the lemma. O



C.2.5 Facts

Here, we state some facts used in the proof of Theorem T} The following is Taylor’s formula with the integral form of the remainder,
stated using the multi-index notation.

Fact 1 (Taylor’s theorem; Zorich, 2015, Section 8.4.4). Let Q C R" be an open subset. Let n € N, and let f : Q — R be k-times
continuously differentiable. Then, for any x,u € Q such that x + tu € Q for all t € [0, 1], the following equality holds:

1% 1
fx+u) - f(x) = E #qu L%'u" f (1 = )18 (x + tu)ds.
. . 0

1<]al<k la|=k

The following elementary inequality is easily proved by using the strict convexity and the strict monotonicity of the logarithm function.
Fact 2 (Weighted AM-GM inequality). Letn € N, x;,...,x, >0, and wy,...,w, > 0. Define w := wy + - - - +w,, and assume w > 0. Then,

wixy + -+ wyx, Z( wi

1
Wn \ W
" X ---xn”) .

The following standard Rademacher complexity bound is essentially due to McDiarmid’s inequality, which is applied twice with the union
bound (Mohri et al.,[2018, Theorem 3.3).

Fact 3 (Rademacher complexity bound; Theorem 3.3 in Mobhri et al.,2018). Let B > 0 and m € N. Let G be a family of functions mapping
from Z to [0, B, and let z be a Z-valued random variable. Then, for any § > 0, with probability at least 1 — § over the draw of an

independent and identically distributed sample {z;}7" | M 2 the following holds:

< 2Rad,, ,(G) + B‘/ M.
2m

1 m
— > 8(z) - Elg(2)]
m

i=1

sup
8€G

C.2.6 Basic Lemmas

Here, we prove the basic lemmas used in the proof of Theorem [I]

Lemma 4 (Convolution error bound for Holder class). Letd € N, 8> 1, and L > 0. Assume that the kernel function K : R* — R is of
order k = | B] and satisfies

f [K@)| - ||l du < co.
R4

Let H = diag(hy, ..., hg) with hy, ..., hy > 0, and define Ky(u) := —+=K(H"'u). Then, for any f € X(8, L), the following holds:

| detH]|

sup |f(@) - (Ky * f) (@) < DB, L, K) [HIE, .

xeRd

where OB, L, K) is defined as

) ' 1 g lla|l*
®(B, L, K) .:L(f0 (1 -1 "dz)z T fRd K@) - |lulfdu

la|=k

and a € Z4 runs over multi-indices.

Proof. First, we fix x € R. We apply the change of variables formula and obtain

1f(x) = (Ku * /)] =

f(x) - f K(M)f(x - Hu)du . (*)
RA



We apply Fact[T]to obtain

1<lal<k ok &

= f K(u)[z '—'( Hu)® f (1 =17 (x - tHu)dt]du
Rd | ‘ )

= f K(u)[z —( —Hu)® f (1 = 013 (x — Hu) — a“f(x))dt]du
R =k

<[ |K(u>|(2' [ 1o o - 6"f(x)ldt]du,
R

o=k

3 1
(*) = f(x)—f K(u)(f(x)+ § A (x)( Hu)® + E —( —Hu )“f (1 = 197 (x + t(—Hu))ds
Rd a! 0

Jo

(%)

where @ = (ay, ..., a,) is a multi-index and |Hu|* := |hyuy[*! - - - |hyuy|™. Now, by the Holder-condition of d*f, we have |0°f(x — tHu) —

8°f(x)| < L||tHul/™. Also, by applying Fact we have

RN T (1 “_ el ||k
|Hu|“=|h1u1|"1-~~|hdud|adS(EZajlh,-u,-l) s(mnau-uhun) = = Wl
=1

By applying these inequalities and imputing |a| = k, we obtain

lleell* e k-1 -
(**)SL IK(u )|[Z T (| HLu| fo(l—z) L|[/HulfP* dt |du

o=k

k
-1 f (-0eta) Y [ K- i
. R

laf=k

Finally, applying [[Hu|| < |[H]|, |lul|, we have the assertion.

Lemma 5 (Bounded weights). Forall j € [D],

Dl D Wiy W €0, 1),

Proof. By direct computation, we have for any 2™ € Z™0),

1 . .
ety if mp(j) =0

ey i j mp(j)y _ :

wa(znm(,)) _lzooo if Kj, (2™ — 2" = 0, Vi,

= s =)

i=1 o Kl{{(z\vxp(j)7Z;'|D(j))

€ {0,1}.

otherwise,

For j = 1, since mp(1) = 0, we can directly show the assertion as

For j > 2,

n n
E Wijlagjy " Z E W,/ arjo " Wi (Z Wijliy. ;- 1]

ii=l =l =l Q=1 =1

By recursively applying the above argument for a finite number of times, we obtain the assertion for all j € [D].



C.3 SUPPLEMENTARY THEORY: COMPARISON OF COMPLEXITY MEASURES

Here, we formally demonstrate the complexity reduction effect explained in Section ] More concretely, as an example in which the effect
can be demonstrated, we take the example represented by Assumption [3| where the Lipschitz continuity of the functions are assumed and
compare the upper bounds on the complexity terms appearing in the generalization error bound of the usual empirical risk minimization
(ERM) and those in TheoremE] (namely Ry k and Rg).

The complexity reduction effect in this example is demonstrated by the different dependencies of the upper bounds on the sample size,
both derived based on the metric-entropy method; the one corresponding to ERM yields a bound of order O(n~!/*P)) whereas the one for
the proposed method yields O(n~'/3). Although the comparison between the two upper bounds only provides circumstantial evidence, we
believe that the reduced exponent demonstrates the complexity reduction effect as they are derived based on the same proof technique.

First, recall that the proposed method enjoys Theorem [T which states, for any 6 € (0, 1), we have with probability at least 1 — 2Dé,

R log(2/0
R() = R(f*) < 2(Cy + C,) + ACk(Ry x + B(Rg) +2DB;Bx Cx | %ﬂ/).
———————————

Complexity terms

On the other hand, the usual empirical risk minimization algorithm enjoys the following theoretical guarantee. Recall f?emp( f) =

T 2 (S 2.

Proposition 1. For any 6 € (0, 1), with probability at least 1 — 6, we have that the solution to the usual empirical risk minimization

Fomp € arg min{Reny (1)}
feF

satisfies

3 log(2/6
R(f;‘,mp) - R(f*) < 4Radn’p(£{}_) +ZB[ \/@
—_— n

Complexity term

Proof. The assertion is immediate from Fact[3]and the following inequality:

R(f’;mp) - R(f*) = R(ﬁ:mp) - Iéemp(ﬁ:mp) + Iéemp(ﬁ:mp) - R(f*)
< R(ﬁmp) - Iéemp(ﬁemp) + jéemp(f*) - R(f*) <2 iug |R(f) - jéemp(f)|~

From here, we compare the dependency of the complexity terms Rad, ,(L#) and Ry x + B;Rk on n. In addition to AssumptionsE]andE],
assume the following:

Assumption 3 (Complexity assumptions). We assume the following:

o The functions in Ly are L;-Lipschitz continuous.
o The functions K’ are Ly j-Lipschitz continuous.

o The functions pk‘mp(k)(zk |-) are L, x-Lipschitz continuous for all P
For simplicity, we also assume H = diag((h, ..., h)).
Under this assumption, we have the following:
Proposition 2 (Comparison of the complexity measures). Given Assumptions[l] 2] and[3] we have the following:

Radn’p(Lqr) < O(I’liﬁ) , Rq:’K + BgRK < O(ﬂ71/3) .



Implications. Proposition 2] shows that the complexity terms appearing in Theorem T has a better dependency on the sample size
compared to those in Proposition|[I] demonstrating the complexity reduction effect in this example. Note here that we do not claim that the
proposed method yields a rate-optimal predictor, but instead, we provide Theorem|[T]and this supplementary analysis to obtain insights
regarding how the proposed method may facilitate the learning.

Proof of Proposition[Z] By the Lipschitz continuity of the functions in L7 and the boundedness of Z, we can apply Fact|§|to obtain

L D
log N (L) < C (7')

for a constant C > 0. By applying Fact[d] and minimizing the right-hand side for 7, we have the first assertion.

On the other hand, by Lemmal 6]
108 N1 (L2 ® Ki) < 108 Ny 1oy (L) + 108 Nty 1) ().
where t, #, are such that Bg?, + Bt = t. Now, applying Lemma@

lOg N(;l,”.“w)(l:;») < IOg Sl.lpl N(H,]»H'Hoo)((]:z) + IOg N(r]_2,||<H)(Bj_l(Rz))
€I~

By combining Lemma[7]land Lemmal[9] and applying Fact[3] we have

L . . 2R
log sup N(t1 1,“,Hm)(ﬁ) < C—2, log N(tm',u)(B"'(Rz)) <(- l)log(l + —Z),
ezi-! ’ 1 ’ 5%

where ty,1, 12 are such that | = i+ L2t1,27 and L, = L, + By Zk Lp,k-

On the other hand, by Lemma@ we have

_ ) 2Lk n Rz
1og Nigy 1) (Kig) < Imp())] log(l * KtHj )
2

where LK,H,j = h—|mp(j)\—l LK’]‘.

Therefore, we have

o L 2R 2Ly R
log N (Ly ® Kip) < ct—2 +(- l)log(l + t—Z) + [mp(j)| log(l + L’Z)
1,1 1,2

12}
By applying Fact[] letting

11 = ! o= ! h = !
1,1—3BK7 1,2_3BKL2, 2_335’

and minimizing the upper bound for ¢, we have
|det H,| Rad,,, (£ ® %) < O(n™'?).
Therefore, we have

D
Rk = Z |detHj|Rad,,,p (,L{f ®(K}j1) < 0(,1—1/3),

=1

D
Rk = Z |detHj|Rad,,,p(7(}f[) < O(n—l/z)’

=1

and obtain the second assertion. O



C.3.1 Lemmas and Facts

Lemma 6 (Metric entropy of products). Let ¥, G be two classes of bounded measurable functions satisfying ||fll < M#(f € F) and
lIglle < Mg(g € G). Then, we have for any t|,t, > 0,

log N i) (F ® G) < 1og Ny 11y (F) + 10g Nigy 1) (G)

where t = Mgll + Mgty

Proof. Let {f;}; ({g;},) be the ¢;- (resp. t,-)covering of ¥ (resp. G). Then, for any f € ¥ and g € G, we have for some i, j that

lf®g-fiogill <If®g—fi®glls +I/i®8—fi®gllo
< S = filloMg + Mrllg — glle
< Mgl‘] + Myst,.

This implies the assertion. O
Lemma 7 (Lipschitz continuity of marginalized function class). Assume that pympw(2*|") is L, x-Lipschitz continuous for all z*. Then,

the elements of.fgr are Lipschitz continuous with the constant Ly + By Y Ly .

Proof. Since the functions in L# are L;-Lipschitz continuous, the elements of [Zg, are also Lipschitz continuous:

1710 = £r 0 = l f ) | ] Py (212 2" 0)dz - f O | ] Prmsco (10, 2™ )z
k k
< flff((x, 2) = (v, ) 1—[ Primo (2110, 2))d =
k

+ Z f'ff((x’ Z))'pj+1\1|1p(j+])(zj+l I(X, Z)) o (Pklmu(k)(szx’ Z)) - pk\mp(k)(zl(y’ Z))) e le"u’(D)(le(y9 Z))dZ

k>j+1

< Lillw =)l 1+ B ) 1 Lyl =yl - 1
k
<L+ B Y Lyl =il
k

O

Lemma 8 (Lipschitz continuity of curried function class). Let j € [2 : D] and Rz = sup,. |lz||. Also let BI"Y(R) denote the radius-R
ball in the (j — 1)-dimensional Euclidean space, and define ¥, := {{;;(z,") : {; € .Z;f}for z € Z/71. Assume 'ij consist of L,-Lipschitz
continuous functions. Then, we have

10g Nt (Ly) < 10g sup N (F2) + log Nojp (87 (R2))

z€ZJ-!

where t,u,v > 0 are such that t = u + Lyv.

Proof. Let {z,}, ¢ Z'~! be a v-covering of Z’/~!. For each z,, consider the set 7, = {{/;(z,,) : s € L_;}. Let {t”}'];}k c F.bea
u-covering of F,. Then, for any {;; € L_;c and z € Z/7!, there exists z, such that ||z, — z|| < v. Moreover, since we have €/ j(z,,-) € Fp,
there exists f’;I; such that [|£/;(z,, ) — 5’;:15(2,1, Il < u. For such a pair (z,, 5’;’];), we have

1671 ) = €4 Gy Mo < 1171 = 1o Mo + 171G ) = 45 Moo < Loy +

Therefore, the set ,{z,}, x{[;:];. }x induces a (L,v+u)-covering of L;'__. Noting that the cardinality of | J,{z,}, is bounded by Nan(B 1 (R2)
and that of {5‘;:_];},( by sup,. -1 N (F2), we have the assertion. O

Lemma 9 (Metric entropy of functions curried by a specific input). Assume that the elements oj'[:g( are Ly-Lipschitz continuous. Then,
there exists a constant C > 0 such that for sufficiently small u > 0,

L
sup N (F2) < C=.
zeZi-1 u



Proof. Since the elements of ij are L,-Lipschitz continuous, so are the elements of 7, with Lipschitz constant L,. Indeed, for any
x,y € Z/and z € Z/7!, we have
z z
- = Lollx =yl
(x) (y)H b=l

Therefore, by applying Lemmal6] we have the assertion. O

[€5.i(z, x) = L7 (2, V) < Ly

Lemma 10 (Shifted kernel complexity). Assume that K/ : R™U — R is Lg ;-Lipschitz continuous. Let Ly p j = = Lg ; “H “ op’ Then,

|detH [
we have the following:

j 2Lgn iR
1og N 1) (Kip) < Imp( log(] n M)

1)

Proof. Recalling K}, (1) = am K/ H; '), for any K} (z) — ), K}y (z2 — -) € K,, we have

\detH |
Kz ) - K], w < —— Ly j|H;
IKg(z1 =) — Ky (z2 =l Id HI kIH @1 = )l
1
< ——— Ly |[H! -
detH| 3 [ et = 2l
Therefore, we have
log N(t2¢“’||oo)((]<‘l{l) <log N(zz/LK,H,,»,H»u) (Z"w(j))-

Applying Fact[5] we obtain the assertion. O

Fact 4 (One-step discretization bound). Let F be a class of measurable functions. There exist constants ¢ and B such that for any
t € (0, B], the following relation between the Rademacher complexity and the metric entropy holds:

10g Noy
Radyy(F) < 1 + ¢ ) 22Nt
m

Fact 5 (Euclidean ball metric entropy bound; Wainwright, 2019, Example 5.8, p.126). Let R > 0 and d € N. Let B(R) denote the radius-R
ball in the d-dimensional Euclidean space. Then, we have the following metric entropy bound:

2R
log Nisjn(B(R)) < dlog (1 + ?) )

Fact 6 (Lipschitz functions metric entropy bound; Wainwright, 2019, Example 5.10, p.129). Let L,R > 0 and d € N. Let Lip(R, L) denote
the set of L-Lipschitz functions on [0, R]Y. Then, we have the following metric entropy bound for sufficiently small § > 0:

. LR\¢
10g Nig oy (Lip(R, L)) < c(y) ,

where C > 0 is a constant.

D COMPUTATIONAL COMPLEXITY OF ALGORITHM

Here, we remark why the worst-case computational complexity of Algorithm isO (nD ) The main computation cost of Algorithm

comes from the computation of the weights W;;, ;. There are n/~! nodes at depth j (Fig. , each with n weighted edges connected to
depth j + 1. The set of weights corresponding to each node, {W;,j;.,_, }i,en1, is computed by constructing a matrix of shape n x n’~! each
of whose element is the kernel value for two vectors of dimensionality [mp(j)|(< j — 1). In the case of Gaussian kernels, each kernel
value requires O (j — 1) operations to compute. Subsequently, the kernel matrix is normalized by the column sum, which requires O (n)
summations and n/ divisions. The same computation takes place for each of the . i1 € [n]7~" nodes at depth j, therefore, the edge weights

between depth j and depth j + 1 can be computed by O (nj ) operations. The edge weights are multiplied to obtain the node weights, which
requires O (n” ) multiplications since the number of multiplications that take place is equal to the number of edges in Fig. Overall,
Algorithm |1|requires O (nD ) operations for the edge weight computation and O (nD ) for the node weight computation, amounting to

o (nD ) operations in total, in the worst case that no edge is pruned by the threshold 6.
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