
Information Theoretic Meta Learning with Gaussian Processes:
Supplementary Material

Michalis K. Titsias1 Francisco J. R. Ruiz1 Sotirios Nikoloutsopoulos2 Alexandre Galashov1

1DeepMind
2Athens Univ. of Econ. and Business, Greece

A FURTHER DETAILS ABOUT VIB IN
META LEARNING

A.1 BOUNDS ON THE MUTUAL INFORMATION

Here, we review the standard variational bounds on the mu-
tual information from Barber and Agakov [2003]. Recall the
definition of the mutual information,

I(x, y) =

∫
q(x, y) log

q(x, y)

q(x)q(y)
dxdy

=

∫
q(x, y) log

q(x|y)

q(x)
dxdy.

By introducing p(x|y) that approximates q(x|y) we get

I(x, y) =

∫
q(x, y) log

p(x|y)q(x|y)

p(x|y)q(x)
dxdy

=

∫
q(x, y) log

p(x|y)

q(x)
dxdy+

∫
q(y)KL[q(x|y)||p(x|y)]dy,

which shows that

I(x, y) ≥
∫
q(x, y) log

p(x|y)

q(x)
dxdy, (17)

since
∫
q(y)KL[q(x|y)||p(x|y)]dy is non negative.

An upper bound is obtained similarly. Suppose p(x) approx-
imates q(x); then

I(x, y) =

∫
q(x, y) log

p(x)q(x|y)

p(x)q(x)
dxdy

=

∫
q(x, y) log

q(x|y)

p(x)
dxdy − KL[q(x)||p(x)]dy,

which shows that

I(x, y) ≤
∫
q(x, y) log

q(x|y)

p(x)
dxdy. (18)

A.2 THE GENERAL VIB META LEARNING CASE

Consider the general case, where we work with the uncondi-
tional mutual information and we wish to approximate the
information bottleneck (IB): I(Z,Dv)− βI(Z,Dt). Recall
that the joint distribution is written as

qw(Dv, Dt, Z) = qw(Z|Dt)p(Dv, Dt), (19)

from which we can express any marginal or conditional. In
particular observe that

qw(Z,Dv) =

∫
qw(Z|Dt)p(Dv, Dt)dDt.

If we have a function f(Z,Dv) and we wish to approximate
the expectation,∫

qw(Z,Dv)f(Z,Dv)dZdDv (20)

=

∫
qw(Z|Dt)p(Dv, Dt)f(Z,Dv)dZdDvdDt,

then, given that we sample a task pair (Dv
i , D

t
i) ∼

p(Dv, Dt), we can obtain the following unbiased estimate
of this expectation,∫

qw(Z|Dt
i)f(Z,Dv

i)dZ. (21)

We are going to make use of Eqs. 20 and 21 in the derivation
below.

To compute the variational approximation to IB, we need to
lower bound I(Z,Dv) as

I(Z,Dv) =

∫
qw(Z,Dv) log

qw(Z,Dv)

qw(Z)p(Dv)

=

∫
qw(Z,Dv) log

qw(Dv|Z)

p(Dv)
dZdDv

≥
∫
qw(Z,Dv) log

pθ(D
v|Z)

p(Dv)
dZdDv (by Eq. 17)

=

∫
qw(Z,Dv) log pθ(D

v|Z)dZdDv +H(Dv),

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

where the entropyH(Dv) is just a constant.

Subsequently, we upper bound I(Z,Dt) as follows,

I(Z,Dt) =

∫
qw(Z,Dt) log

qw(Z,Dt)

qw(Z)p(Dt)
dZdDt

=

∫
qw(Z|Dt)p(Dt) log

qw(Z|Dt)

qw(Z)
dZdDt,

≤
∫
qw(Z|Dt)p(Dt) log

qw(Z|Dt)

pθ(Z)
dZdDt (by Eq. 18)

Then we obtain the overall loss, F(θ, w) ≤ LIB(w):

F(θ, w) =

∫
qw(Z,Dv) log pθ(D

v|Z)dZdDv

− β
∫
qw(Z|Dt)p(Dt) log

qw(Z|Dt)

pθ(Z)
dZdDt,

where we dropped the constant entropic termH(Dv). There-
fore, given a set of task pairs {Dt

i , D
v
i }bi=1, where each

(Dt
i , D

v
i) ∼ p̃(Dv, Dt), the objective function for learn-

ing (θ, w) becomes the empirical average, 1
b

∑b
i=1 Fi(θ, w),

where

Fi(w, θ) =

∫
qw(Zi|Dt

i) log pθ(D
v
i |Zi)dZi (22)

− β
∫
qw(Zi|Dt

i) log
qw(Zi|Dt

i)

pθ(Zi)
dZi,

where for the first term we made use of Eqs. 20 and 21 with
f(Dv, Z) = log pθ(D

v|Z).

A.3 THE SUPERVISED META LEARNING VIB
CASE

For the supervised meta learning case the joint density can
be written as

qw(Dv, Dt, Z)

= qw(Z|Y t, Xt, Xv)p(Y t, Y v|Xt, Xv)p(Xv, Xt),

= qw(Z|Y t, X)p(Y t, Y v|X)p(X), (23)

where X = (Xt, Xv) and the encoding distribution
qw(Z|Y t, X) could depend on all inputs X but only on
the training outputs Y t. The derivation of the VIB objec-
tive is similar as the general case, with the difference that
now we approximate the conditional information bottleneck
I(Z, Y v|X)− βI(Z, Y t|X), where we condition on the in-
puts X . In other words, both I(Z, Y v|X) and I(Z, Y t|X)
are conditional mutual informations, i.e., they have the form

I(z, y|x) =

∫
q(x)

[∫
q(z, y|x) log

q(z, y|x)

q(z|x)q(y|x)
dzdy

]
dx

=

∫
q(z, y, x) log

q(z, y|x)

q(z|x)q(y|x)
dzdydx.

We can lower bound I(Z, Y v|X) as follows,∫
p(X)

[∫
qw(Z, Y v|X) log

qw(Z, Y v|X)

qw(Z|X)p(Y v|X)
dZdY v

]
dX

=

∫
p(X)

∫
qw(Z, Y v|X) log

qw(Y v|Z,X)

p(Y v|X)
dZdY vdX

≥
∫
p(X)

∫
qw(Z, Y v|X) log

pθ(Y
v|Z,X)

p(Y v|X)
dZY vdX

=

∫
qw(Z, Y v, X) log

pθ(Y
v|Z,X)

p(Y v|X)
dZdY vdX

=

∫
qw(Z, Y v, X) log pθ(Y

v|Z,X)dZdY vdX

−
∫
p(Y v, X) log p(Y v|X)dY vdX.

In the second line above, qw(Z|X) cancels, and in
the third line we have applied Eq. 17. Note that
−
∫
p(Y v, X) log p(Y v|X)dY vdX is just a constant that

does not depend on tunable parameters. Also

qw(Z, Y v, X)=

∫
qw(Z|Y t, X)p(Y t, Y v|X)p(X)dY t,

(24)
so that if we have a task sample (Y ti , Y

v
i , Xi) ∼

p(Y t, Y v|X)p(X), an unbiased estimate of the expectation∫
qw(Z, Y v, X) log pθ(Y

v|Z,X)dZdY vdX is given by∫
qw(Z|Y ti , Xi) log pθ(Y

v
i |Z,Xi)dZ. (25)

We upper bound I(Z, Y t|X) as follows,∫
p(X)

[∫
qw(Z, Y t|X) log

qw(Z, Y t|X)

qw(Z|X)p(Y t|X)
dZdY t

]
dX

=

∫
p(X)

[∫
qw(Z, Y t|X) log

qw(Z|Y t, X)

qw(Z|X)
dZdY t

]
dX,

≤
∫
p(X)

∫
qw(Z, Y t|X) log

qw(Z|Y t, X)

pθ(Z|X)
dZdY tdX,

=

∫
qw(Z|Y t, X)p(Y t, X) log

qw(Z|Y t, X)

pθ(Z|X)
dZdY tdX,

Then we obtain the overall objective,

F(θ, w) =

∫
qw(Z, Y v, X) log pθ(Y

v|Z,X)dZdY vdX

−β
∫
qw(Z|Y t, X)p(Y t, X) log

qw(Z|Y t, X)

pθ(Z|X)
dZdY tdX,

where p(Y t|X) cancels in the second line, we have used
Eq. 18 in the third line, and we have dropped the constant
term. Therefore, given a set of task pairs the objective be-
comes the empirical average, 1

b

∑b
i=1 Fi(θ, w), where

Fi(θ, w) =

∫
qw(Z|Y ti , Xi) log pθ(Y

v
i |Z,Xi)dZ (26)

− β
∫
qw(Z|Y ti , Xi) log

qw(Z|Y ti , Xi)

pθ(Z|Xi)
dZ,

where we made use of Eq. 25.

A.4 CONNECTION WITH VARIATIONAL
INFERENCE

As mentioned in the main paper, the VIB for meta learning
(where we consider for simplicity the general case from
Appendix A.2) is similar to applying approximate variational
inference to a certain joint model over the validation set,

pθ(D
v|Z)pθ(Z),

where pθ(Dv|Z) is the decoder model, pθ(Z) a prior model
over the latent variables and where the corresponding
marginal likelihood is

p(Dv) =

∫
pθ(D

v|Z)pθ(Z)dZ.

We can lower bound the log marginal likelihood with a vari-
ational distribution qw(Z|Dt) that depends on the training
set Dt,

Fβ=1(w, θ) =

∫
qw(Z|Dt) log pθ(D

v|Z)dZ (27)

−
∫
qw(Z|Dt) log

qw(Z|Dt)

pθ(Z)
dZ,

which corresponds to the VIB objective with β = 1.

B TRANSDUCTIVE AND
NON-TRANSDUCTIVE META
LEARNING

Here, we discuss how the transductive and non-transductive
settings that appear in few-shot image classification [Bron-
skill et al., 2020, Finn et al., 2017, Nichol et al., 2018], due to
the use of batch-normalization, can be interpreted under our
VIB framework by defining suitable encodings. We shall use
MAML as an example, but the discussion is more generally
relevant.

The transductive case occurs when the concatenated support
and validation/test inputsX = (Xt, Xv) of a single task (we
ignore the task index i to keep the notation uncluttered) are
used to compute batch-norm statistics (possibly at different
stages) shared by all validation/test points, when predict-
ing those points. For MAML this implies a deterministic
parametric encoding, i.e., common to all individual valida-
tion inputs xvj ∈ Xv, obtained by a sequence of two steps:
(i) Obtain first the task-specific parameter ψ in the usual
way by the support loss, i.e., ψ = θ + ∆(θ,Dt). If batch-
normalization is used here, then the statistics are computed
only by Xt. (ii) Compute the validation loss by applying
batch-normalization on Xv or the union X = Xt ∪ Xv

(the union seems to be a better choice, but not used often in
practice for computational reasons; e.g., Finn et al. [2017],
Nichol et al. [2018] prefer to use onlyXv). In both cases, the
underlying encoder is parametric over the final effective task

parameter ψ̃ = BN(ψ,X), where BN denotes the final
batch-norm operation that outputs a parameter vector, that
predicts all validation points and it is a deterministic delta
measure.

In contrast, the non-transductive setting occurs when each
individual validation input xvj is concatenated with the sup-
port inputs Xt to form the sets xvj ∪ Xt, j = 1, . . . , nv.
Then, each set xvj ∪ Xt is used to compute point-specific
batch-norm statistics when predicting the corresponding vali-
dation output yvj . Under the VIB framework this corresponds
to a non-parametric encoding, which grows with the size
of the validation set. The first deterministic step of this en-
coder is the same (i) above from the transductive case but
the second step differs in the sense that now we get a vali-
dation point-specific task parameter ψ̃j = BN(ψ, xvj ∪Xt)
by computing the statistics using the set xvj ∪ Xt. For
MAML, this encoding becomes, Z ≡ {ψ̃j}n

v

j=1, and the
encoder distribution is a product of delta measures. i.e.,
p({ψ̃j}n

v

j=1|Y t, X) ≡
∏nv

j=1 δψ̃j ,BN(θ+∆(θ,Dt),xv
j∪Xt).

Finally, note that under the VIB perspective it does not make
much sense to meta train transductively and meta test non-
transductively and vice versa, since this changes the encod-
ing. That is, in meta testing we should do the same as in
meta training.

C FURTHER DETAILS ABOUT THE
GAUSSIAN PROCESS METHOD

For simplicity next we ignore the task index i to keep the
notation uncluttered, and write for example f ti as f t.

C.1 DERIVATION OF THE VIB BOUND

The VIB objective for a single task from Eq. 26 in the main
paper is computed as follows

nv∑
j=1

Eq(fv
j)[log p(yvj |fvj)]− β

∫
p(fv|f t, Xv, Xt)q(f t|Dt)

× log
p(fv|f t, Xv, Xt)q(f t|Dt)

p(fv|f t, Xv, Xt)p(f t|Xt)
df tdfv

=

nv∑
j=1

Eq(fv
j)[log p(yvj |fvj)]−β

∫
q(f t|Dt) log

q(f t|Dt)

p(f t|Xt)
df t

=

nv∑
j=1

Eq(fv
j)[log p(yvj |fvj)]−βKL

[
q(f t|Dt)||p(f t|Xt)

]
,

(28)

where q(fvj) =
∫
p(fvj |f t, xvj , Xt)q(f t|Dt)df t is a

marginal Gaussian over an individual validation function
value fvj , as also explained in the main paper. Specifically,
q(fvj) depends on the training set (Y t, Xt) and the single

validation input xvj , so intuitively from the training set and
the corresponding function values f t we extrapolate (through
the conditional GP p(fvj |f t, xvj , Xt)) to the input xvj in order
to predict its function value fvj .

Given the specific amortization of q(f t|Dt):

q(f t|Dt) =

(∏nt

j=1N (mt
j |stj)

)
N (f t|0,Kt)

N (mt|0,Kt + St)
(29)

= N (f t|Kt(Kt + St)−1mt,Kt −Kt(Kt + St)−1Kt),

the VIB objective, by using the middle part of Eq. 29, can
be written in the following form,

nv∑
j=1

Eq(fv
j)[log p(yvj |fvj)]−β

nt∑
j=1

Eq(ft
j)[logN (mt

j |f tj , stj)]

+ β logN (mt|0,Kt + St), (30)

which is convenient from computational and programming
point of view. Specifically, to compute this we need to per-
form a single Cholesky decomposition of Kt + St which
scales asO((nt)3), i.e., cubically w.r.t. the size of the support
set nt. This is fine for small support sets (which is the stan-
dard case in few-shot learning) but it can become too expen-
sive whennt becomes very large. However, given that the ker-
nel has the linear form kθ(x, x

′) = φ(x; θ)>φ(x′; θ) (ignor-
ing any kernel variance σ2

f for notational simplicity), where
φ(xi; θ) isM -dimensional and given thatM � nt, we can
also carry out the computations based on the Cholesky de-
composition of a matrix of sizeM ×M . This is because
Kt = ΦtΦt

>, where Φt is an nt×M matrix storing as rows
the features vectors on the support inputs Xt, and therefore
we can apply the standard matrix inversion and determi-
nant lemmas for the matrix ΦtΦt

>
+ St when computing

logN (mt|0,Kt + St). Such O(M3) computations also
gives us the quantities q(fvj) and q(f tj), as explained next.

C.2 DATA EFFICIENT GP META TESTING
PREDICTION WITH CONSTANT MEMORY

Once we have trained the GP meta learning system we can
consider meta testing where a new fresh task is provided
having a support setDt

∗ = (Y t∗ , X
t
∗) based on which we pre-

dict at any arbitrary validation/test input x∗. This requires to
compute quantities (such as the mean valueE[y∗]) associated
with the predictive density

q(y∗) =

∫
p(y∗|f∗)p(f∗|f t∗, x∗, Xt

∗)q(f
t
∗|Dt
∗)df∗df

t
∗

=

∫
p(y∗|f∗)q(f∗)df∗,

where q(f∗) is an univariate Gaussian given by

q(f∗)=N (f∗|kt∗(Kt+St)−1mt, k∗−kt∗(Kt+St)−1kt∗
>
),

kt∗ = φ>∗ Φt, Kt = ΦtΦt
>
, k∗ = φ>∗ φ∗, φ∗ = φ(x∗; θ).

Here, Φt is an nt∗ ×M matrix storing as rows the features
vectors on the support inputs Xt

∗. Note that if we wish to
evaluate q(y∗) at certain value of y∗, and given that the
likelihood p(y∗|f∗) is not the standard Gaussian, we can use
1-D Gaussian quadrature or Monte Carlo by sampling from
q(f∗).

An interesting property of the above predictive density is
that when the support set Dt

∗ can grow incrementally, e.g.,
individual data points or mini-batches are added sequentially,
the predictive density can be implemented with constant
memory without requiring to explicit memorize the points
in the support. The reason is that the feature parameters θ
remain constant at meta test time and the kernel function is
linear, so we can apply standard tricks to update the sufficient
statistics as in Bayesian linear regression.

More precisely, what we need to show is that we can sequen-
tially update the mean and variance of q(f∗) with constant
memory. The distribution q(f∗) can be written as

q(f∗) = N
(
f∗

∣∣∣φ>∗ Φt
>

(ΦtΦt
>

+ St)−1mt, (31)

φ>∗

(
I − Φt

>
(ΦtΦt

>
+ St)−1Φt

)
φ∗

)
= N

(
f∗

∣∣∣φ>∗ (Φt
>

[St]−1Φt + I)−1Φt
>

[St]−1mt,

φ>∗ (Φt
>

[St]−1Φt + I)−1φ∗

)
,

where we applied the matrix inversion lemma backwards
to write I − Φt

>
(ΦtΦt

>
+ St)−1Φt = (Φt

>
[St]−1Φt +

I)−1 and also used that Φt
>

(ΦtΦt
>

+ St)−1 =

Φt
>

(ΦtΦt
>

[St]−1 + I)−1[St]−1 = (Φt
>

[St]−1Φt +

I)−1Φt
>

[St]−1 (based on the identity (AB + I)−1A =
A(BA + I)−1). Now observe that the M -dimensional
vector bt = Φt

>
[St]−1mt =

∑nt

j=1 φ(xtj ; θ)
mt

j

stj
can

grow incrementally without memorizing the feature vec-
tors φ(xtj ; θ) based on the recursion bt ← bt +φ(xtj ; θ)

mt
j

stj

(with the initialization bt = 0) as individual data points
(similarly for mini-batches) are added in the support set:
Dt ← Dt ∪ (xtj , y

t
j). Similarly, theM ×M matrix At =

Φt
>

[St]−1Φt =
∑nt

j=1
1
stj
φ(xtj ; θ)φ(xtj ; θ)

> can also be
computed recursively with constant O(M2) memory.

Finally, note that the above constant memory during meta
testing can only be implemented when the feature vector θ
is fixed.

C.3 MULTI-CLASS CLASSIFICATION

For multi-class classification meta learning problems we
need to introduce as many latent functions as classes. For
instance, when the number of classes for each task is N we

will needN latent functions fn(x)which all are independent
draws from the same GP. The marginal GP prior on the
training and validation function values for a certain task
factorizes as

N∏
n=1

p(fvn |f tn, Xv, Xt)p(f tn|Xt).

We assume a factorized encoding distribution of the form

N∏
n=1

p(fvn |f tn, Xv, Xt)q(f tn|Dt),

where each

q(f tn|Dt)

= N (f tn|Kt(Kt + St)−1mt
n,K

t −Kt(Kt + St)−1Kt).

Here, mt
n = Y tn ◦ m̃t, and Y tn is a vector obtaining the

value 1 for each data point xtj that belongs to class n and
−1 otherwise. Note that the encoding distributions share
the covariance matrix and they only have different mean
vectors. The representation of mt

n makes the full encoding
distribution permutation invariant to the values of the class
labels. Since also we are using shared (i.e., independent
of class labels) amortized functions m̃w(x) and sw(x), the
terms (St, m̃t) are common to all N factors. This allows to
compute the VIB objective very efficiently (in way that is
fully scalable w.r.t. the number of classes N) by requiring
only a single Cholesky decomposition of the matrixKt+St.
Specifically, by working similarly to Appendix C.1 we obtain
the VIB objective per single task,

nv∑
j=1

Eq({fv
n,j}Nn=1)[log p(yvj |{fvn,j}Nn=1)]

− β
N∑
n=1

nt∑
j=1

Eq(ft
n,j)[logN (mt

n,j |f tn,j , stj)]

+ β

N∑
n=1

logN (mt
n|0,Kt + St),

where q({fvn,j}Nn=1) =
∏N
n=1 q(f

v
n,j) and each univariate

Gaussian q(fvn,j) is given by the same expression as provided
in Appendix C.2. The last two terms of the bound (i.e., the
ones multiplied by the hyperparameter β) are clearly analyt-
ically computed, while the first term involves an expectation
of a log softmax since the likelihood is

p(yvj = n|{fvn′,j}Nn′=1) =
ef

v
n,j∑N

n′=1 e
fv
n′,j

.

To evaluate this expectation we apply first the reparametriza-
tion trick to move all tunable parameters of q({fvn,j}Nn=1)
inside the log-likelihood (so that we get a new expectation

under a product of N univariate standard normals) and then
we apply Monte Carlo by drawing 200 samples.

Finally, note that to compute the predictive density we need
to evaluate,

q(y∗) = Eq({fn,∗}Nn=1)

[
p(y∗|{fn,∗}Nn=1)

]
,

which again is done by applying Monte Carlo by drawing
200 samples from q({fn,∗}Nn=1). To decide the classifica-
tion label based on the maximum class predictive probability
(in order to compute, e.g., accuracy scores), we take advan-
tage of the fact that all N univariate predictive Gaussians
q(fn,∗) have the same variance but different means, thus the
predicted class can be equivalently obtained by taking the
argmax of the means of these N distributions.

C.4 SPECIFIC GP IMPLEMENTATION AND
AMORTIZATION FOR FEW-SHOT
CLASSIFICATION

For all few-shot multi-class classification experiments in
order to implement the GP-VIB method we need to spec-
ify the feature vector φ(x; θ) and the amortized variational
functions m̃w(x) and sw(x). The feature vector is specified
to have exactly the same neural architecture used in previous
works for all datasets. Note that when computing the GP
kernel function, the feature vector φ(x; θ) is also augmented
with the value 1 to automatically account for a bias term.

Regarding the two amortized variational functions needed
to obtain the encoder, we consider a shared (with the GP
functions) representation by adding two heads to the same
feature vector φ(x; θ): the first head corresponds to a lin-
ear output function m̃w(x) and the second applies at the
end the softplus activation sw(x) = log(1 + exp(a(x)))
(since sw(x) represents variance) where the pre-activation
a(x) is obtained by a linear function of the feature vector.
For numerical stability we also apply a final clipping by
bounding these functions so that m̃w(x) ∈ [−20, 20] and
sw(x) ∈ [0.001, 20]. The bounds −20 and 20 are almost
never realized during optimization, so they are not so cru-
cial, in contrast the lower bound 0.001 on sw(x) is rather
crucial regarding numerical stability since it ensures that the
minimum eigenvalue of the matrixKt + St (i.e., the matrix
we need to decompose using Cholesky) is bounded below
by 0.001.

For the simplified encoder where (m̃w(xtj), sw(xtj)) :=

(m̃, σ2) we simply learn two independent scalar parameters
(m̃, σ2), where σ2 = log(1 + exp(a)) and a is the actual
parameter optimised. For (m̃, σ2) we use the same bounds
mentioned above.

References

David Barber and Felix Agakov. The IM algorithm: A varia-
tional approach to informationmaximization. In Advances
in Neural Information Processing Systems, 2003.

John Bronskill, Jonathan Gordon, James Requeima, Sebas-
tian Nowozin, and Richard E. Turner. TaskNorm: Rethink-
ing batch normalization for meta-learning. arXiv preprint
arXiv:2003.03284, 2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep net-
works. In International Conference on Machine Learning,
2017.

Alex Nichol, Joshua Achiam, and John Schulman. On
first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018.

	Further details about VIB in meta learning
	Bounds on the mutual information
	The general VIB meta learning case
	The supervised meta learning VIB case
	Connection with variational inference

	Transductive and non-transductive meta learning
	Further details about the Gaussian process method
	Derivation of the VIB bound
	Data efficient GP meta testing prediction with constant memory
	Multi-class classification
	Specific GP implementation and amortization for few-shot classification

