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Table S1: Closed-form solutions for Eq. in the main paper, for multinomial distributions with Dirichlet priors. Subscript
jk refers variable Y taking its k-th configuration, and variable set Z taking its j-th configuration. o, is the prior for the
Dirichlet distribution. We set aj;, = 1 in all experiments. N7, N7 corresponds to counts in the data where Y = k and

Z = jin D, and D, respectively. N7, N7 corresponds to counts in the data where Z = j. Tilde notation corresponds to
the OMB U.
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Figure S1: An example where a CMB does not necessarily correspond to an optimal adjustment set [Henckel et al., 2019].
CMBx (Y) = {{X, A, B}}, but the optimal adjustment set depends on the parameters.
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1 PROOFS

In this section, we provide a proof that every causal Markov boundary is backdoor set, which is defined below (Definition
[I.T). We make the following assumptions throughout the entire document:

e X causes Y
« all variables V are pre-treatment.

Definition 1.1 (Backdoor Set). Z is a backdoor set for X, Y if and only if Z m-separates X and Y in Gx.

We use the following definitions from [Shpitser and Pearl, [2006]:

Definition 1.2 (C-component). A C-component is as set of nodes S in G where every two nodes are connected by a bidirected
path.

Definition 1.3 (C-forest). A graph G where the set of all of its nodes is a C-component, and each node has at most one
child is a C-forest. The set of nodes R without children in the C-forest is called the root, and we say that G is an R-rooted
C-forest.

C-forests are useful for defining hedges:

Definition 1.4 (hedge). Let X,Y be sets of variables in G. Let F, F’ be R-rooted C-forests in G such that F” is a subgraph
of F', X only occurs in F', and R € An(Y)g,.. Then F, I form a hedge for P(Y|do(X)).

The existence of a hedge for P(Y|do(X)) in G is equivalent to the non-identifiability of P(Y|do(X)) (see Theorem 4 in
[Shpitser and Pearl, [2006]]).

Lemma 1.5. Let Z be a set that is not a subset of any backdoor set (i.e., there exists no set Q C (V \ Z) such that Q UZ
m-separate X and Y in Gx ). Then there exists in G a bi-directed path from X to'Y where every collider has a descendant
inZUY.

Proof. The proof is a special case of Theorem 4.2 (iv) = (4¢) in [Richardson et al.,[2002] with S <~ Z,L < 0.G < Gx.
The proof is for ancestral graphs, but it is straightforward to show that it holds for SMCMs, given that every SMCM G can
be transformed to a maximal ancestral graph M over the same nodes (by adding some edges) such that (a) G and M entail
the exact same m-separations and m-connections and (b) the exact same ancestral relationships hold in both graphs. The
theorem proves that if VQ C (V' \ Z),Z U Q do not m-separate X and Y in G 'x, then there exists a bidirected path between
X and Y in Gx where every variable is an ancestor of some variables in Z U { X, Y}, which means that there exists a path
in G a bi-directed path from X to Y where every collider has a descendant in Z U Y (since X — Y by assumption). [

Lemma 1.6. Let Z be a set for which P(Y |do(X), Z) is identifiable from P(Y |X,Z), then Z is a subset of a backdoor set.

Proof. First, notice that P(Y |do(X),Z) = Pzg(/’zz\('zi?%i ) = P(Y’g(ldzo)(x)). Therefore P(Y'|do(X), Z) is only identifiable if
P(Y,Z|do(X)) is identifiable. If Z is not a subset of a backdoor set, then there exists a bidirected path where every variable
has a descendant in Z UY in G by Lemma[I.5] Let F be the graph consisting of the bidirected path, and 7~ be the same
graph without X . Then F, F~ are {Y, Z} rooted C-forests, and {Y,Z} € An({Y,Z}), so F, F’ form a hedge for {Y,Z}.

Therefore, P(Y, Z|do(X)) is not identifiable, and P(Y |do(X), Z) is not identifiable. O

Theorem@ We assume that P, and G+ are faithful to each other. If Z is a causal Markov boundary for Y relative to X,
then W = Z \ X is a backdoor set.

Proof. Assume Z is a causal Markov boundary, but W is not a backdoor set. Since P(Y'|do(X), W) is identifiable, by
Lemma[l.6] W is a subset of a backdoor set WUQ, where Q C (V'\ W). Since by assumption W is not a backdoor set, Q is
not the empty set (i.e., W is a proper subset of a backdoor set). We will show that P(Y|do(X ), W, Q) # P(Y|do(X), W).
To show that, we only need to show that Q is not independent from W in G+ . Since W is not a backdoor set, there exists a
backdoor path from X to Y that is m—connecting given W, but blocked given W U Q. Thus, some @ € Q is a non-collider
on that path, therefore Q are not independent with Y given W. Hence, P(Y|do(X), W, Q) # P(Y|do(X), W) and
therefore Z does not satisfy Condition (2), and Z is not a causal Markov boundary (Contradiction). O



Lemma 1.7. Let Z C 'V be a backdoor set for X, Y, and let Q € (Z\ MB(Y')) that has an m-connecting path QmgyY
with Y given Z \ Q. Then there exists a variable W € (MB(Y') \ Z) such that: W U Z is a backdoor set and W .Y |Z in
%

Proof. Let  be a variable as described above. Then there exists a variable W € MB(Y') between @ and Y that is a
non-collider on 7, otherwise Q € Pa(Dis(Y)), and therefore € MB(Y'). In addition, W ¢ Z, otherwise QmgyY would
be blocked given Z \ Q). We will now show, by contradiction, that adding W to the conditioning set Z does not open any
backdoor paths from X to Y'; hence, Z U W is a backdoor set.

Assume that conditioning on W opens a path wxy between X and Y that is blocked given just Z. Then W must be a
descendant of one or more colliders on that path. Let C be the collider closest to X on mxy such that C' is blocked on 7xy
given Z, but open given Z U W . Then X7 xcC is open given Z, and W is a descendant of C. Let Cwrow W be the (possibly
empty) directed path from C' to W, and let Wy vY be the subpath of moy from W to Y. Since C' is blocked on 7 xy
given Z, no variable on mcy can be in Z. But then X7 xcCrew Wy Y is an open path from X and Y given Z in G.
Contradiction, since Z is a backdoor set. Thus, W does not open any backdoor paths, and Z U W is also a backdoor set.

Finally, W is not independent of Y given Z in G, since Wy yY is open given Z. O

Theorem [32} We assume that P, and G are faithful to each other. Every causal Markov boundary Z of an outcome
variable Y w.r.t a treatment variable X is a subset of the Markov boundary MB(Y").

Proof. We will show this by contradiction. Specifically, we will show that any set Z that includes variables Q not in the
Markov boundary of Y cannot satisfy one of the Conditions (2) or (3) of the causal Markov boundary.

Assume that Z is a causal Markov boundary for Y with respect to X. and let W = Z \ X. Let Q = W \ MB(Y") be the
non-empty subset of W that is not a part of the Markov boundary of Y.

If there exists no ) € Q that has an m-connecting path QmgyY to Y given W \ @, then Q LY |[(W \ Q) in G.
Conditioning on X cannot open any paths from X to Y'; therefore, Q L Y'|.X, (W \ Q) in G. Then by Rule 1 of the
do-calculus [Pearl, 2000], P(Y|do(X), W) = P(Y|do(X), W \ @), and Z does not satisfy Condition (3) of the causal
Markov boundary definition (Contradiction).

If there exists a Q € (W \ MB(Y')) that has an m-connecting path QmgyY with ¥ given Z \ @, then by Lemma
there exists a variable 1/ in MB(Y") \ Z such that Z U W is also a backdoor set, and W Y Y|X,Z in G. Then
P(Yl|do(X),Z,W) # P(Y|do(X),Z). Thus, Z does not satisfy Condition (2) of the Causal Markov boundary definition
(Contradiction).

Thus, Z cannot include any variables that are not in the Markov boundary of Y. O

Theorem[3.5| Let G be a SMCM over X, Y,V with V occurring before X andY. Let Z C 'V U X be the IMB of Y relative
to X. If Z is a causal Markov boundary, then MB(Y') = Z.

Proof. MBx(Y) C MB(Y') , so we need to show that MB(Y) C MBx(Y) when MBx(Y) € CMBx(Y) . Assume
that Z is both the MB x (Y) and a causal Markov boundary, but there exists a variable @ in Z that is not in MB(Y") . Then
@ is reachable from Y through a bidirected path in G but not in G- Since G and G+ only differ in edges that are into X,
this path must be going through an edge that is incoming into X. Thus, G includes a bidirected path Y < - -+ <> X, and
every variable on this path is in MB x (Y") =Z. But then Z \ X cannot be a backdoor set, and by Theorem Z cannot be a
causal Markov boundary. Contradiction. Thus, the Markov boundary of Y cannot include any more variables than Z. [

2 CONVERGENCE PROOF FOR OBSERVATIONAL MARKOYV BOUNDARY (OMB)

Definition 2.1 (Conditional Entropy). Let P be the full joint probability distribution over a set of variables V,let Y € V be
a variable, and let Z C 'V \ {Y'} be a set of variables. Then, the conditional entropy of Y given Z is defined as follows
[[Cover, |1999]:

H(Y|Z) == > Ply,2)-log P(y|2) (S

where y and z denote the values of Y and Z, respectively.



Lemma 2.2. Let X,Y € V be two variables and Z C V \ {X, Y} be a set of variables. Then, H(Y|Z) > H(Y|X,Z),
where the entropies are defined by Deﬁnition and the equality holds if and only if Y 1 X|Z.

Proof. Applying the chain rule of entropy, the conditional mutual information can be computed as follows [Cover},|1999]:
I(X;Y|Z)=H(Y|Z)— HY|X,Z). (S2)

Given that the mutual information is nonnegative (i.e., [(X;Y|Z) > 0) and I(X;Y|Z) = 0 if and only if Y L X|Z
(see [[Cover, |1999], page 29), it follows that:

H(Y|Z) - H(Y|X,Z) >0

HY|Z)> HY|X,Z), (5%

where the equality holds if and only if Y I X|Z. O

For brevity, let V.= {V U X}, where X is a treatment variable, and let Y be an outcome variable in the remainder of this
section.

Lemma 2.3. All Markov blankets of Y have the same entropy.

Proof. By definition, Z' is the Markov blanket of Y if and only if P(Y|Z', W) = P(Y'|Z’) for any W C V \ Z/, which

indicates that Y 1L W|Z'. Also, according to Lemma2.2l H(Y|Z') = H(Y|Z', W) forany W C V \ Z’. Let Z also be a
Markov blanket of Y. By multiple applications of Lemma 2.2} we obtain:

H(Y|Z')=H(Y|Z',V\Z') = H(Y|V) = H{Y|Z,V\Z) = H(Y|Z) (S4)

O

Lemma 2.4. Let Z' be a Markov blanket of Y and let Z be a set of variables that is not a Markov blanket of Y. Then,
H(Y|Z') < H(Y|Z), where the entropies are defined by Definition2.1]

Proof. Assume there is exists a set W C V' \ Z such that P(Y'|Z, W) # P(Y'|Z). According to Lemma 2.2] we have:
HY|Z,W) < H(Y|Z). (S5)
Also, given that V is a superset of (Z U W), we have:
H(Y|V)< HY|Z,W). (S6)

Therefore,
H(Y|V)< H(Y|Z). (87

Also, since Z' is a Markov blanket of Y, by Lemma2.3| we have:

H(Y|Z')=H(Y|V). (S8)

Combining Equations and (S8)), we obtain:
H(Y|Z') < H(Y|Z). (S9)
O

Lemma 2.5. Given dataset D, that contains samples from a strictly positive distribution P, which is a perfect map for a
SMCM G, the BD score [Heckerman et al.l|1995] for log P(D,|Z) is defined as follows in the large sample limit:

(r—1
lim log P(Dy|Z) = Tim —N-H(Y|Z) - LU= 100 N 4 const., (S10)
N—00 N—00 2



Proof. The BD score for P(D,|Z) is calculated as follows [[Heckerman et al., [1995]:

q
P(D,|Z)
| 1;[ O‘J+N)

where ¢ denotes instantiations of variables in Z and r denotes values of variable Y. The term N, is the number of cases in
data in which variable Y = k and its parent Z = j; also, N; = >, x—1 Njx. The term «jy is a ﬁnlte positive real number
that is called Dirichlet prior parameter and may be 1nterpreted as representing “pseudo-counts”, where o;; = Y k=1 k- BD
can be re-written in log form as follows:

7 Doy + Njx)

S11
T(am) G1h

k=1

q

log P(D,|Z) = z [log (o) —logT'(a; + Nj) + Z logI'(ai + Njg) — logF(ozjk)]] : (512)
j=1 k=1

We can re-arrange the terms in Eq. (ST2)) to gather the constant terms as follows:

+y

Jj=1

log P(D,|Z) = [—log I'(a; + N;) + Zlogf‘(ajk + Nji)

k=1

log I'(«v;) Zlogl" (yk ]
(S13)

+ const.

<. <.
I MQ I MQ
[ [y

[—log F(Oéj + Nj) + Zlogl"(ajk + Njk)
k=1

Using the Stirling’s approximation of lim,_,o, log'(n) = (n — 4)log(n) — n + const., we can re-write Eq. (S13) as
follows:

q

1
Jim log P(D,|Z) = lim Z[—(ajJrNj—2)1og(aj+Nj)+(aj+Nj)
j=1

. 1
+ Z ((Oz]'k + N — 5) log(ajr + Nji) — (aji + Njk)> +const.

k=1

q

= ym 2

1
—Qy IOg(Oéj + N]) — Nj IOg(Oéj + NJ) + 5 IOg(Oéj + N]) + a; + Nj
Jj=1

- 1
+ Z (ozjk log(aji + Njk) + N log(ajr + Njx) — 3 log(aji + Njx) — g — Njk> +const.

k=1

q

3

—ajlog(a; + Nj) + Zajklog(ajk + Nji)
k=1

a
= lim l Njlog(cj + Nj) +Z ik log (o + N.
k=1

j=1
q
+const.

1
+22[10g%+N ZIOgO‘ﬂML k>+aj+Nj—;(ajk+Njk)
J =

a . )
= A}gnoo l—Nj log(a; + Nj) + ZNjk log (o + Nji) [+ Z —ajlog(a; + Nj) + Zaik log(vjx + Njg)
j=1 k=1 J=1 Pt
) T 14
+ 9 21 [108’(0‘]‘ +Nj) — ; log(ajx + Nj) | +const. (S14)
Jj= —

In the last step of Eq. (S14), we used the facts that Y, _, Nz = N; and >, _, aji, = o, and we applied these identities
again to that equation to obtain the following:

lim log P(D,|Z) =
N—o00

. ‘ o + Njg A ik +
33 et ) st

1< .
—&—5 Zl [log (o + Nj) kzl log(aji + Nji) | +const.
§= —

(S15)



Given that
o N N

N—o0 aj4—AG AG

and
. ajk4*
]\;gnoo Z Z o log( e N ) = const.,
j=1k=1

in the limit, Eq. (ST5) becomes:

1< -
hm log P(D,|Z) = hm Z Z Nk log f + 5 Z [log a; + Nj) Zlog(ajk + Nji)|+const.,  (S16)

i k=1 N; j=1 k=1

or equivalently:

q q r
. . Ny, N 1
]\}gnoo log P(D,|Z) = A}gnoo Z T NJ + = 2 [log a; + Nj) Zlog(ajk + Nji) | +const.
j=1k=1 k=1
. (S17)
. 1
= A}gnoo —N-H(Y|Z)+ 3 Z:l [log a; + Nj) kz:llog(ajk + Nji) | +const.
j= =

To simplify the second term in Eq. (S17), we divide the arguments in the log terms by N and equivalently add log IV terms
as follows:

R -
A}gnoo 3 Z log(a; + N;) — Zlog(ajk + Njk)]
Jj=1 k=1
q

o L aj + N;j - aji + Njk
= 1\}51100 3 g log(T) +log N ;bg(T) +log N
1 1 r 1 4 aj—l—Nj " ajk+Njk
= A}gm 3 Z <logN - ZlogN) + 3 Z [log(N) - Zlog(T)
j=1 k=1 j=1 k=1
-1
= —% log N + const.
(S18)
Combining Equations (ST7) and (ST8§), we obtain:
. T / Q'O1_1)
lim log P(D,|Z) = lim —N-H(Y|Z') — ————=1log N + const. (S19)
N—oc0 N—o0 2
O

Theorem Given dataset D,, that contains samples from a strictly positive distribution P, which is a perfect map for a
SMCM G, the BD score [[Heckerman et al.| [1995|] will assign the highest score to the OMB of Y in the large sample limit.

Proof. Let Z' be the OMB of Y and Z C V be an arbitrary set. We want to show that:

P(D,|Z) 1 iff Zisan OMB of YV’
lim =22 _ , $20
NS5 P(D,|Z") 0 otherwise (520
Applying Lemma 2.5| we have:
. P(Do|Z) _ .. / -9 -(r—-1)
]\;gl})ologm—]vlljgo]v[H(Y‘Z)—H(Y|Z)]+f10g]v (SZI)

where g and ¢’ are the number of possible parent instantiations of Y with Z and Z’ as the set of parents. There are three
possible cases:



Case 1: Z is a Markov blanket of Y and its OMB.

Since both Z’ and Z are Markov blankets of Y, H(Y|Z) = H(Y|Z') by Lemma [2.3] Thus, the first term in Eq. (S21)
becomes 0. Also, given that Z’ and Z are OMBs, they have the same number of parameters ¢’ = ¢, by which the second
term in Eq. (S21) becomes 0 in the limit as N — oo, or equivalently Eq. (S20) approaches to 1.

Case 2: Z is a Markov blanket of Y but not its OMB.
According to Lemma[2.3|H(Y'|Z) = H(Y|Z'); therefore, the first term in Eq. (S21)) becomes 0 and we obtain:
P(D,|Z)

: o @ =q) (=1
N P(D,Z) Nk 2 log V. (522)

Given that Z’ is the OMB with minimum number of variables, and therefore, minimum number of parameters ¢’ < ¢. Thus,

the term (¢’ — q) becomes a negative constant. Also, the term (T;U is a positive constant. Consequently, Eq. I) goes to

—oo0 in the limit as N — oo, which implies that Eq. (S20) approaches to 0.

Case 3: Z is not a Markov blanket of Y.

The first term in Eq. (S21) is of O(/V) and dominates the second term, which is O(log N). According to Lemma
H(Y|Z') < H(Y|Z); thus, the term H(Y'|Z") — H(Y'|Z) becomes a negative number. As a result, Eq. (S21) becomes —oo,
which equivalently implies that Eq. (S20) becomes 0. O
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