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Table S1: Closed-form solutions for Eq. 4 -8 in the main paper, for multinomial distributions with Dirichlet priors. Subscript
jk refers variable Y taking its k-th configuration, and variable set Z taking its j-th configuration. αjk is the prior for the
Dirichlet distribution. We set αjk = 1 in all experiments. No

jk, N
e
jk corresponds to counts in the data where Y = k and

Z = j in Do and De, respectively. No
j , N

e
j corresponds to counts in the data where Z = j. Tilde notation corresponds to

the OMB U.
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Figure S1: An example where a CMB does not necessarily correspond to an optimal adjustment set [Henckel et al., 2019].
CMBX(Y ) = {{X,A,B}}, but the optimal adjustment set depends on the parameters.
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1 PROOFS

In this section, we provide a proof that every causal Markov boundary is backdoor set, which is defined below (Definition
1.1). We make the following assumptions throughout the entire document:

• X causes Y

• all variables V are pre-treatment.

Definition 1.1 (Backdoor Set). Z is a backdoor set for X , Y if and only if Z m-separates X and Y in GX .

We use the following definitions from [Shpitser and Pearl, 2006]:

Definition 1.2 (C-component). A C-component is as set of nodes S in G where every two nodes are connected by a bidirected
path.

Definition 1.3 (C-forest). A graph G where the set of all of its nodes is a C-component, and each node has at most one
child is a C-forest. The set of nodes R without children in the C-forest is called the root, and we say that G is an R-rooted
C-forest.

C-forests are useful for defining hedges:

Definition 1.4 (hedge). Let X,Y be sets of variables in G. Let F, F ′ be R-rooted C-forests in G such that F ′ is a subgraph
of F , X only occurs in F , and R ∈ An(Y)GX . Then F, F ′ form a hedge for P (Y|do(X)).

The existence of a hedge for P (Y|do(X)) in G is equivalent to the non-identifiability of P (Y|do(X)) (see Theorem 4 in
[Shpitser and Pearl, 2006]).

Lemma 1.5. Let Z be a set that is not a subset of any backdoor set (i.e., there exists no set Q ⊆ (V \ Z) such that Q ∪ Z
m-separate X and Y in GX ). Then there exists in G a bi-directed path from X to Y where every collider has a descendant
in Z ∪ Y .

Proof. The proof is a special case of Theorem 4.2 (iv)⇒ (ii) in [Richardson et al., 2002] with S← Z,L← ∅,G ← GX .
The proof is for ancestral graphs, but it is straightforward to show that it holds for SMCMs, given that every SMCM G can
be transformed to a maximal ancestral graphM over the same nodes (by adding some edges) such that (a) G andM entail
the exact same m-separations and m-connections and (b) the exact same ancestral relationships hold in both graphs. The
theorem proves that if ∀Q ⊆ (V \Z),Z ∪Q do not m-separate X and Y in GX , then there exists a bidirected path between
X and Y in GX where every variable is an ancestor of some variables in Z ∪ {X,Y }, which means that there exists a path
in G a bi-directed path from X to Y where every collider has a descendant in Z ∪ Y (since X → Y by assumption).

Lemma 1.6. Let Z be a set for which P (Y |do(X),Z) is identifiable from P (Y |X,Z), then Z is a subset of a backdoor set.

Proof. First, notice that P (Y |do(X),Z) = P (Y,Z|do(X))
P (Z|do(X)) = P (Y,Z|do(X))

P (Z) . Therefore P (Y |do(X),Z) is only identifiable if
P (Y,Z|do(X)) is identifiable. If Z is not a subset of a backdoor set, then there exists a bidirected path where every variable
has a descendant in Z ∪ Y in G by Lemma 1.5. Let F be the graph consisting of the bidirected path, and F’ be the same
graph without X . Then F , F’ are {Y,Z} rooted C-forests, and {Y,Z} ∈ An({Y,Z}), so F , F’ form a hedge for {Y,Z}.
Therefore, P (Y,Z|do(X)) is not identifiable, and P (Y |do(X),Z) is not identifiable.

Theorem 3.3. We assume that Px and GX are faithful to each other. If Z is a causal Markov boundary for Y relative to X ,
then W = Z \X is a backdoor set.

Proof. Assume Z is a causal Markov boundary, but W is not a backdoor set. Since P (Y |do(X),W) is identifiable, by
Lemma 1.6 W is a subset of a backdoor set W∪Q, where Q ⊆ (V\W). Since by assumption W is not a backdoor set, Q is
not the empty set (i.e., W is a proper subset of a backdoor set). We will show that P (Y |do(X),W,Q) 6= P (Y |do(X),W).
To show that, we only need to show that Q is not independent from W in GX . Since W is not a backdoor set, there exists a
backdoor path from X to Y that is m−connecting given W, but blocked given W∪Q. Thus, some Q ∈ Q is a non-collider
on that path, therefore Q are not independent with Y given W. Hence, P (Y |do(X),W,Q) 6= P (Y |do(X),W) and
therefore Z does not satisfy Condition (2), and Z is not a causal Markov boundary (Contradiction).



Lemma 1.7. Let Z ⊆ V be a backdoor set for X,Y , and let Q ∈ (Z \MB(Y )) that has an m-connecting path QπQY Y
with Y given Z \Q. Then there exists a variable W ∈ (MB(Y ) \ Z) such that: W ∪ Z is a backdoor set and W 6⊥⊥Y |Z in
GX .

Proof. Let Q be a variable as described above. Then there exists a variable W ∈ MB(Y ) between Q and Y that is a
non-collider on π, otherwise Q ∈ Pa(Dis(Y )), and therefore Q ∈ MB(Y ). In addition, W 6∈ Z, otherwise QπQY Y would
be blocked given Z \Q. We will now show, by contradiction, that adding W to the conditioning set Z does not open any
backdoor paths from X to Y ; hence, Z ∪W is a backdoor set.

Assume that conditioning on W opens a path πXY between X and Y that is blocked given just Z. Then W must be a
descendant of one or more colliders on that path. Let C be the collider closest to X on πXY such that C is blocked on πXY

given Z, but open given Z∪W . Then XπXCC is open given Z, and W is a descendant of C. Let CπCWW be the (possibly
empty) directed path from C to W , and let WπWY Y be the subpath of πCY from W to Y . Since C is blocked on πXY

given Z, no variable on πCW can be in Z. But then XπXCCπCWWπWY Y is an open path from X and Y given Z in GX .
Contradiction, since Z is a backdoor set. Thus, W does not open any backdoor paths, and Z ∪W is also a backdoor set.

Finally, W is not independent of Y given Z in GX , since WπWY Y is open given Z.

Theorem 3.4. We assume that Px and GX are faithful to each other. Every causal Markov boundary Z of an outcome
variable Y w.r.t a treatment variable X is a subset of the Markov boundary MB(Y ).

Proof. We will show this by contradiction. Specifically, we will show that any set Z that includes variables Q not in the
Markov boundary of Y cannot satisfy one of the Conditions (2) or (3) of the causal Markov boundary.

Assume that Z is a causal Markov boundary for Y with respect to X . and let W = Z \X . Let Q = W \MB(Y ) be the
non-empty subset of W that is not a part of the Markov boundary of Y .

If there exists no Q ∈ Q that has an m-connecting path QπQY Y to Y given W \ Q, then Q⊥⊥Y |(W \ Q) in GX .
Conditioning on X cannot open any paths from X to Y ; therefore, Q⊥⊥Y |X, (W \ Q) in GX . Then by Rule 1 of the
do-calculus [Pearl, 2000], P (Y |do(X),W) = P (Y |do(X),W \Q), and Z does not satisfy Condition (3) of the causal
Markov boundary definition (Contradiction).

If there exists a Q ∈ (W \ MB(Y )) that has an m-connecting path QπQY Y with Y given Z \ Q, then by Lemma
1.7, there exists a variable W in MB(Y ) \ Z such that Z ∪ W is also a backdoor set, and W 6⊥⊥Y |X,Z in GX . Then
P (Y |do(X),Z,W ) 6= P (Y |do(X),Z). Thus, Z does not satisfy Condition (2) of the Causal Markov boundary definition
(Contradiction).

Thus, Z cannot include any variables that are not in the Markov boundary of Y .

Theorem 3.5. Let G be a SMCM over X , Y ,V with V occurring before X and Y . Let Z ⊆ V∪X be the IMB of Y relative
to X . If Z is a causal Markov boundary, then MB(Y ) = Z.

Proof. MBX(Y ) ⊆ MB(Y ) , so we need to show that MB(Y ) ⊆ MBX(Y ) when MBX(Y ) ∈ CMBX(Y ) . Assume
that Z is both the MBX(Y ) and a causal Markov boundary, but there exists a variable Q in Z that is not in MB(Y ) . Then
Q is reachable from Y through a bidirected path in G but not in GX . Since G and GX only differ in edges that are into X ,
this path must be going through an edge that is incoming into X. Thus, G includes a bidirected path Y ↔ · · · ↔ X , and
every variable on this path is in MBX(Y ) =Z. But then Z \X cannot be a backdoor set, and by Theorem 3.3 Z cannot be a
causal Markov boundary. Contradiction. Thus, the Markov boundary of Y cannot include any more variables than Z.

2 CONVERGENCE PROOF FOR OBSERVATIONAL MARKOV BOUNDARY (OMB)

Definition 2.1 (Conditional Entropy). Let P be the full joint probability distribution over a set of variables V, let Y ∈ V be
a variable, and let Z ⊆ V \ {Y } be a set of variables. Then, the conditional entropy of Y given Z is defined as follows
[Cover, 1999]:

H(Y |Z) = −
∑
y

∑
z

P (y, z) · logP (y|z) (S1)

where y and z denote the values of Y and Z, respectively.



Lemma 2.2. Let X,Y ∈ V be two variables and Z ⊆ V \ {X,Y } be a set of variables. Then, H(Y |Z) ≥ H(Y |X,Z),
where the entropies are defined by Definition 2.1, and the equality holds if and only if Y ⊥⊥X|Z.

Proof. Applying the chain rule of entropy, the conditional mutual information can be computed as follows [Cover, 1999]:

I(X;Y |Z) = H(Y |Z)−H(Y |X,Z) . (S2)

Given that the mutual information is nonnegative (i.e., I(X;Y |Z) ≥ 0) and I(X;Y |Z) = 0 if and only if Y ⊥⊥X|Z
(see [Cover, 1999], page 29), it follows that:

H(Y |Z)−H(Y |X,Z) ≥ 0

H(Y |Z) ≥ H(Y |X,Z) ,
(S3)

where the equality holds if and only if Y ⊥⊥X|Z.

For brevity, let V = {V ∪X}, where X is a treatment variable, and let Y be an outcome variable in the remainder of this
section.

Lemma 2.3. All Markov blankets of Y have the same entropy.

Proof. By definition, Z′ is the Markov blanket of Y if and only if P (Y |Z′,W) = P (Y |Z′) for any W ⊆ V \ Z′, which
indicates that Y ⊥⊥W|Z′. Also, according to Lemma 2.2, H(Y |Z′) = H(Y |Z′,W) for any W ⊆ V \ Z′. Let Z also be a
Markov blanket of Y . By multiple applications of Lemma 2.2, we obtain:

H(Y |Z′) = H(Y |Z′,V \ Z′) = H(Y |V) = H(Y |Z,V \ Z′) = H(Y |Z) (S4)

Lemma 2.4. Let Z′ be a Markov blanket of Y and let Z be a set of variables that is not a Markov blanket of Y . Then,
H(Y |Z′) < H(Y |Z), where the entropies are defined by Definition 2.1.

Proof. Assume there is exists a set W ⊆ V \ Z such that P (Y |Z,W) 6= P (Y |Z). According to Lemma 2.2 we have:

H(Y |Z,W ) < H(Y |Z). (S5)

Also, given that V is a superset of (Z ∪W), we have:

H(Y |V) ≤ H(Y |Z,W). (S6)

Therefore,
H(Y |V) < H(Y |Z). (S7)

Also, since Z′ is a Markov blanket of Y , by Lemma 2.3 we have:

H(Y |Z′) = H(Y |V). (S8)

Combining Equations (S7) and (S8), we obtain:

H(Y |Z′) < H(Y |Z). (S9)

Lemma 2.5. Given dataset Do that contains samples from a strictly positive distribution P , which is a perfect map for a
SMCM G, the BD score [Heckerman et al., 1995] for logP (Do|Z) is defined as follows in the large sample limit:

lim
N→∞

logP (Do|Z) = lim
N→∞

−N ·H(Y |Z)− q · (r − 1)

2
logN + const., (S10)



Proof. The BD score for P (Do|Z) is calculated as follows [Heckerman et al., 1995]:

P (Do|Z) =

q∏
j=1

Γ(αj)

Γ(αj +Nj)
·

r∏
k=1

Γ(αjk +Njk)

Γ(αjk)
, (S11)

where q denotes instantiations of variables in Z and r denotes values of variable Y . The term Njk is the number of cases in
data in which variable Y = k and its parent Z = j; also, Nj =

∑r
k=1Njk. The term αjk is a finite positive real number

that is called Dirichlet prior parameter and may be interpreted as representing “pseudo-counts”, where αj =
∑r

k=1 αjk. BD
can be re-written in log form as follows:

logP (Do|Z) =

q∑
j=1

[
log Γ(αj)− log Γ(αj +Nj) +

r∑
k=1

[log Γ(αjk +Njk)− log Γ(αjk)]

]
. (S12)

We can re-arrange the terms in Eq. (S12) to gather the constant terms as follows:
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(S13)

Using the Stirling’s approximation of limn→∞ log Γ(n) = (n − 1
2 ) log(n) − n + const., we can re-write Eq. (S13) as

follows:

lim
N→∞
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N→∞
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[
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2
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2
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1

2
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r∑
k=1

(
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2
log(αjk +Njk)− αjk −Njk

)]
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= lim
N→∞

q∑
j=1

[
−Nj log(αj +Nj) +

r∑
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Njk log(αjk +Njk)

]
+

q∑
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k=1
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]

+
1

2
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r∑
k=1

log(αjk +Njk) + αj +Nj −
r∑

k=1

(αjk +Njk)

]
+const.

= lim
N→∞

q∑
j=1

[
−Nj log(αj +Nj) +

r∑
k=1

Njk log(αjk +Njk)

]
+

q∑
j=1
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−αj log(αj +Nj) +
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1
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]
+const. (S14)

In the last step of Eq. (S14), we used the facts that
∑r

k=1Njk = Nj and
∑r

k=1 αjk = αj , and we applied these identities
again to that equation to obtain the following:

lim
N→∞

logP (Do|Z) =

lim
N→∞

q∑
j=1

r∑
k=1

[
Njk log(
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αj +Nj
) + αjk log(
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)
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1
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(S15)



Given that
lim

N→∞

αjk +Njk

αj +Nj
=
Njk

Nj

and

lim
N→∞
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αjk log(
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in the limit, Eq. (S15) becomes:
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N→∞
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N→∞
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Njk log
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or equivalently:

lim
N→∞

logP (Do|Z) = lim
N→∞

N ·
q∑
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Njk

N
log

Njk
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2
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−N ·H(Y |Z) +
1

2
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log(αjk +Njk)

]
+const.

(S17)

To simplify the second term in Eq. (S17), we divide the arguments in the log terms by N and equivalently add logN terms
as follows:

lim
N→∞
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(S18)

Combining Equations (S17) and (S18), we obtain:

lim
N→∞

logP (Do|Z) = lim
N→∞

−N ·H(Y |Z′)− q · (r − 1)

2
logN + const. (S19)

Theorem 4.2. Given dataset Do that contains samples from a strictly positive distribution P , which is a perfect map for a
SMCM G, the BD score [Heckerman et al., 1995] will assign the highest score to the OMB of Y in the large sample limit.

Proof. Let Z′ be the OMB of Y and Z ⊆ V be an arbitrary set. We want to show that:

lim
N→∞

P (Do|Z)

P (Do|Z′)
=

{
1 iff Z is an OMB of Y
0 otherwise

, (S20)

Applying Lemma 2.5 we have:

lim
N→∞

log
P (Do|Z)

P (Do|Z′)
= lim

N→∞
N · [H(Y |Z′)−H(Y |Z)] +

(q′ − q) · (r − 1)

2
logN. (S21)

where q and q′ are the number of possible parent instantiations of Y with Z and Z′ as the set of parents. There are three
possible cases:



Case 1: Z is a Markov blanket of Y and its OMB.

Since both Z′ and Z are Markov blankets of Y , H(Y |Z) = H(Y |Z′) by Lemma 2.3. Thus, the first term in Eq. (S21)
becomes 0. Also, given that Z′ and Z are OMBs, they have the same number of parameters q′ = q, by which the second
term in Eq. (S21) becomes 0 in the limit as N →∞, or equivalently Eq. (S20) approaches to 1.

Case 2: Z is a Markov blanket of Y but not its OMB.

According to Lemma 2.3 H(Y |Z) = H(Y |Z′); therefore, the first term in Eq. (S21) becomes 0 and we obtain:

lim
N→∞

P (Do|Z)

P (Do|Z′)
= lim

N→∞

(q′ − q) · (r − 1)

2
logN. (S22)

Given that Z′ is the OMB with minimum number of variables, and therefore, minimum number of parameters q′ < q. Thus,
the term (q′ − q) becomes a negative constant. Also, the term (r−1)

2 is a positive constant. Consequently, Eq. (S22) goes to
−∞ in the limit as N →∞, which implies that Eq. (S20) approaches to 0.

Case 3: Z is not a Markov blanket of Y .

The first term in Eq. (S21) is of O(N) and dominates the second term, which is O(logN). According to Lemma 2.4,
H(Y |Z′) < H(Y |Z); thus, the term H(Y |Z′)−H(Y |Z) becomes a negative number. As a result, Eq. (S21) becomes −∞,
which equivalently implies that Eq. (S20) becomes 0.
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