Causal and Interventional Markov Boundaries (Supplementary Material)

Sofia Triantafillou1Fattaneh Jabbari1Gregory F. Cooper1

¹Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Table S1: Closed-form solutions for Eq. 4 -8 in the main paper, for multinomial distributions with Dirichlet priors. Subscript jk refers variable Y taking its k-th configuration, and variable set Z taking its j-th configuration. α_{jk} is the prior for the Dirichlet distribution. We set $\alpha_{jk} = 1$ in all experiments. N_{jk}^o, N_{jk}^e corresponds to counts in the data where Y = k and Z = j in D_o and D_e , respectively. N_j^o, N_j^e corresponds to counts in the data where Z = j. Tilde notation corresponds to the OMB U.

Eq. number	Analytical Expression
Eq. 5	$P(D_e D_o, H^c_{\mathbf{Z}}) = \prod_{j=1}^q \frac{\Gamma(\alpha_j + N^o_j)}{\Gamma(\alpha_j + N^o_j + N^e_j)} \prod_{k=1}^r \frac{\Gamma(\alpha_{jk} + N^o_{jk} + N^e_{jk})}{\Gamma(\alpha_{jk} + N^o_{jk})}$
-	$P(D_e D_o, H_{\mathbf{Z}}^{\overline{e}}) = \prod_{j=1}^{q} \frac{\Gamma(\alpha_j)}{\Gamma(\alpha_j + N_j^e)} \prod_{k=1}^{r} \frac{\Gamma(\alpha_{jk} + N_{jk}^e)}{\Gamma(\alpha_{jk})}$
Eq. 7	$P(D_o H_{\mathbf{Z}}^c) = \prod_{j=1}^{\tilde{q}} \frac{\Gamma(\tilde{\alpha}_j)}{\Gamma(\tilde{\alpha}_j + \tilde{N}_j^o)} \prod_{k=1}^r \frac{\Gamma(\tilde{\alpha}_{jk} + \tilde{N}_{jk}^o)}{\Gamma(\tilde{\alpha}_{jk})}$
Eq. 7	$P(D_o H_{\mathbf{Z}}^{\overline{c}}) = \prod_{j=1}^{\tilde{q}} \frac{\Gamma(\tilde{\alpha}_j)}{\Gamma(\tilde{\alpha}_j + \tilde{N}_j^o)} \prod_{k=1}^{r} \frac{\Gamma(\tilde{\alpha}_{jk} + \tilde{N}_{jk}^o)}{\Gamma(\tilde{\alpha}_{jk})}$
Terms in Eq. 8	$P(Y = k x, Z = j, D_e, D_o, H_{\mathbf{Z}}^c) = \frac{N_{jk}^o + N_{jk}^e + \alpha_{jk}}{N_j^o + N_j^e + \alpha_j}$
Terms in Eq. 8	$P(Y = k x, Z = j, D_e, D_o, H_{\mathbf{Z}}^{\overline{c}}) = \frac{N_{jk}^e + \alpha_{jk}}{N_j^e + \alpha_j}$
$A \longrightarrow B$	

Figure S1: An example where a CMB does not necessarily correspond to an optimal adjustment set [Henckel et al., 2019]. $CMB_X(Y) = \{\{X, A, B\}\}$, but the optimal adjustment set depends on the parameters.

1 PROOFS

In this section, we provide a proof that every causal Markov boundary is backdoor set, which is defined below (Definition 1.1). We make the following assumptions throughout the entire document:

- X causes Y
- all variables V are pre-treatment.

Definition 1.1 (Backdoor Set). **Z** is a backdoor set for X, Y if and only if **Z** m-separates X and Y in \mathcal{G}_X .

We use the following definitions from [Shpitser and Pearl, 2006]:

Definition 1.2 (C-component). A C-component is as set of nodes S in \mathcal{G} where every two nodes are connected by a bidirected path.

Definition 1.3 (C-forest). A graph \mathcal{G} where the set of all of its nodes is a C-component, and each node has at most one child is a C-forest. The set of nodes \mathbf{R} without children in the C-forest is called the root, and we say that \mathcal{G} is an \mathbf{R} -rooted C-forest.

C-forests are useful for defining hedges:

Definition 1.4 (hedge). Let \mathbf{X}, \mathbf{Y} be sets of variables in \mathcal{G} . Let F, F' be \mathbf{R} -rooted C-forests in \mathcal{G} such that F' is a subgraph of F, \mathbf{X} only occurs in F, and $\mathbf{R} \in An(\mathbf{Y})_{\mathcal{G}_{\mathbf{Y}}}$. Then F, F' form a hedge for $P(\mathbf{Y}|do(\mathbf{X}))$.

The existence of a hedge for $P(\mathbf{Y}|do(\mathbf{X}))$ in \mathcal{G} is equivalent to the non-identifiability of $P(\mathbf{Y}|do(\mathbf{X}))$ (see Theorem 4 in [Shpitser and Pearl, 2006]).

Lemma 1.5. Let \mathbb{Z} be a set that is not a subset of any backdoor set (i.e., there exists no set $\mathbb{Q} \subseteq (\mathbb{V} \setminus \mathbb{Z})$ such that $\mathbb{Q} \cup \mathbb{Z}$ *m-separate* X and Y in $\mathcal{G}_{\underline{X}}$). Then there exists in \mathcal{G} a bi-directed path from X to Y where every collider has a descendant in $\mathbb{Z} \cup Y$.

Proof. The proof is a special case of Theorem 4.2 $(iv) \Rightarrow (ii)$ in [Richardson et al., 2002] with $\mathbf{S} \leftarrow \mathbf{Z}, \mathbf{L} \leftarrow \emptyset, \mathcal{G} \leftarrow \mathcal{G}_{\underline{X}}$. The proof is for ancestral graphs, but it is straightforward to show that it holds for SMCMs, given that every SMCM \mathcal{G} can be transformed to a maximal ancestral graph \mathcal{M} over the same nodes (by adding some edges) such that (a) \mathcal{G} and \mathcal{M} entail the exact same m-separations and m-connections and (b) the exact same ancestral relationships hold in both graphs. The theorem proves that if $\forall \mathbf{Q} \subseteq (V \setminus \mathbf{Z}), \mathbf{Z} \cup \mathbf{Q}$ do not m-separate X and Y in $\mathcal{G}_{\underline{X}}$, then there exists a bidirected path between X and Y in $\mathcal{G}_{\underline{X}}$ where every variable is an ancestor of some variables in $\mathbf{Z} \cup \{X, Y\}$, which means that there exists a path in \mathcal{G} a bi-directed path from X to Y where every collider has a descendant in $\mathbf{Z} \cup Y$ (since $X \to Y$ by assumption). \Box

Lemma 1.6. Let \mathbf{Z} be a set for which $P(Y|do(X), \mathbf{Z})$ is identifiable from $P(Y|X, \mathbf{Z})$, then \mathbf{Z} is a subset of a backdoor set.

Proof. First, notice that $P(Y|do(X), \mathbf{Z}) = \frac{P(Y, \mathbf{Z}|do(X))}{P(Z|do(X))} = \frac{P(Y, \mathbf{Z}|do(X))}{P(Z)}$. Therefore $P(Y|do(X), \mathbf{Z})$ is only identifiable if $P(Y, \mathbf{Z}|do(X))$ is identifiable. If \mathbf{Z} is not a subset of a backdoor set, then there exists a bidirected path where every variable has a descendant in $\mathbf{Z} \cup Y$ in \mathcal{G} by Lemma 1.5. Let \mathcal{F} be the graph consisting of the bidirected path, and \mathcal{F} ' be the same graph without X. Then \mathcal{F}, \mathcal{F} ' are $\{Y, \mathbf{Z}\}$ rooted C-forests, and $\{Y, \mathbf{Z}\} \in An(\{Y, \mathbf{Z}\})$, so \mathcal{F}, \mathcal{F} ' form a hedge for $\{Y, \mathbf{Z}\}$. Therefore, $P(Y, \mathbf{Z}|do(X))$ is not identifiable, and $P(Y|do(X), \mathbf{Z})$ is not identifiable.

Theorem 3.3. We assume that P_x and $\mathcal{G}_{\overline{X}}$ are faithful to each other. If \mathbb{Z} is a causal Markov boundary for Y relative to X, then $\mathbb{W} = \mathbb{Z} \setminus X$ is a backdoor set.

Proof. Assume Z is a causal Markov boundary, but W is not a backdoor set. Since P(Y|do(X), W) is identifiable, by Lemma 1.6 W is a subset of a backdoor set $W \cup Q$, where $Q \subseteq (V \setminus W)$. Since by assumption W is not a backdoor set, Q is not the empty set (i.e., W is a proper subset of a backdoor set). We will show that $P(Y|do(X), W, Q) \neq P(Y|do(X), W)$. To show that, we only need to show that Q is not independent from W in $\mathcal{G}_{\overline{X}}$. Since W is not a backdoor set, there exists a backdoor path from X to Y that is m-connecting given W, but blocked given $W \cup Q$. Thus, some $Q \in Q$ is a non-collider on that path, therefore Q are not independent with Y given W. Hence, $P(Y|do(X), W, Q) \neq P(Y|do(X), W)$ and therefore Z does not satisfy Condition (2), and Z is not a causal Markov boundary (Contradiction).

Lemma 1.7. Let $\mathbb{Z} \subseteq \mathbb{V}$ be a backdoor set for X, Y, and let $Q \in (\mathbb{Z} \setminus MB(Y))$ that has an m-connecting path $Q\pi_{QY}Y$ with Y given $\mathbb{Z} \setminus Q$. Then there exists a variable $W \in (MB(Y) \setminus \mathbb{Z})$ such that: $W \cup \mathbb{Z}$ is a backdoor set and $W \not\perp Y | \mathbb{Z}$ in $\mathcal{G}_{\overline{X}}$.

Proof. Let Q be a variable as described above. Then there exists a variable $W \in MB(Y)$ between Q and Y that is a non-collider on π , otherwise $Q \in Pa(Dis(Y))$, and therefore $Q \in MB(Y)$. In addition, $W \notin \mathbb{Z}$, otherwise $Q\pi_{QY}Y$ would be blocked given $\mathbb{Z} \setminus Q$. We will now show, by contradiction, that adding W to the conditioning set \mathbb{Z} does not open any backdoor paths from X to Y; hence, $\mathbb{Z} \cup W$ is a backdoor set.

Assume that conditioning on W opens a path π_{XY} between X and Y that is blocked given just Z. Then W must be a descendant of one or more colliders on that path. Let C be the collider closest to X on π_{XY} such that C is blocked on π_{XY} given Z, but open given $\mathbb{Z} \cup W$. Then $X\pi_{XC}C$ is open given Z, and W is a descendant of C. Let $C\pi_{CW}W$ be the (possibly empty) directed path from C to W, and let $W\pi_{WY}Y$ be the subpath of π_{CY} from W to Y. Since C is blocked on π_{XY} given Z, no variable on π_{CW} can be in Z. But then $X\pi_{XC}C\pi_{CW}W\pi_{WY}Y$ is an open path from X and Y given Z in $\mathcal{G}_{\overline{X}}$. Contradiction, since Z is a backdoor set. Thus, W does not open any backdoor paths, and $\mathbb{Z} \cup W$ is also a backdoor set.

Finally, W is not independent of Y given Z in $\mathcal{G}_{\overline{X}}$, since $W\pi_{WY}Y$ is open given Z.

Theorem 3.4. We assume that P_x and $\mathcal{G}_{\overline{X}}$ are faithful to each other. Every causal Markov boundary \mathbb{Z} of an outcome variable Y w.r.t a treatment variable X is a subset of the Markov boundary MB(Y).

Proof. We will show this by contradiction. Specifically, we will show that any set Z that includes variables Q not in the Markov boundary of Y cannot satisfy one of the Conditions (2) or (3) of the causal Markov boundary.

Assume that Z is a causal Markov boundary for Y with respect to X. and let $\mathbf{W} = \mathbf{Z} \setminus X$. Let $\mathbf{Q} = \mathbf{W} \setminus MB(Y)$ be the non-empty subset of W that is not a part of the Markov boundary of Y.

If there exists no $Q \in \mathbf{Q}$ that has an m-connecting path $Q\pi_{QY}Y$ to Y given $\mathbf{W} \setminus Q$, then $\mathbf{Q} \perp Y | (\mathbf{W} \setminus \mathbf{Q})$ in $\mathcal{G}_{\overline{X}}$. Conditioning on X cannot open any paths from X to Y; therefore, $\mathbf{Q} \perp Y | X$, $(\mathbf{W} \setminus \mathbf{Q})$ in $\mathcal{G}_{\overline{X}}$. Then by Rule 1 of the do-calculus [Pearl, 2000], $P(Y|do(X), \mathbf{W}) = P(Y|do(X), \mathbf{W} \setminus Q)$, and \mathbf{Z} does not satisfy Condition (3) of the causal Markov boundary definition (Contradiction).

If there exists a $Q \in (\mathbf{W} \setminus MB(Y))$ that has an m-connecting path $Q\pi_{QY}Y$ with Y given $\mathbf{Z} \setminus Q$, then by Lemma 1.7, there exists a variable W in $MB(Y) \setminus \mathbf{Z}$ such that $\mathbf{Z} \cup W$ is also a backdoor set, and $W \not\perp Y | X, \mathbf{Z}$ in $\mathcal{G}_{\overline{X}}$. Then $P(Y|do(X), \mathbf{Z}, W) \neq P(Y|do(X), \mathbf{Z})$. Thus, \mathbf{Z} does not satisfy Condition (2) of the Causal Markov boundary definition (Contradiction).

Thus, \mathbf{Z} cannot include any variables that are not in the Markov boundary of Y.

Theorem 3.5. Let \mathcal{G} be a SMCM over X, Y, V with V occurring before X and Y. Let $\mathbf{Z} \subseteq \mathbf{V} \cup X$ be the IMB of Y relative to X. If \mathbf{Z} is a causal Markov boundary, then $MB(Y) = \mathbf{Z}$.

Proof. $MB_X(Y) \subseteq MB(Y)$, so we need to show that $MB(Y) \subseteq MB_X(Y)$ when $MB_X(Y) \in CMB_X(Y)$. Assume that **Z** is both the $MB_X(Y)$ and a causal Markov boundary, but there exists a variable Q in **Z** that is not in MB(Y). Then Q is reachable from Y through a bidirected path in \mathcal{G} but not in $\mathcal{G}_{\overline{X}}$. Since \mathcal{G} and $\mathcal{G}_{\overline{X}}$ only differ in edges that are into X, this path must be going through an edge that is incoming into X. Thus, \mathcal{G} includes a bidirected path $Y \leftrightarrow \cdots \leftrightarrow X$, and every variable on this path is in $MB_X(Y) = \mathbb{Z}$. But then $\mathbb{Z} \setminus X$ cannot be a backdoor set, and by Theorem 3.3 \mathbb{Z} cannot be a causal Markov boundary. Contradiction. Thus, the Markov boundary of Y cannot include any more variables than \mathbb{Z} .

2 CONVERGENCE PROOF FOR OBSERVATIONAL MARKOV BOUNDARY (OMB)

Definition 2.1 (Conditional Entropy). Let P be the full joint probability distribution over a set of variables \mathbf{V} , let $Y \in \mathbf{V}$ be a variable, and let $\mathbf{Z} \subseteq \mathbf{V} \setminus \{Y\}$ be a set of variables. Then, the conditional entropy of Y given \mathbf{Z} is defined as follows [Cover, 1999]:

$$H(Y|\mathbf{Z}) = -\sum_{y} \sum_{z} P(y,z) \cdot \log P(y|z)$$
(S1)

where y and z denote the values of Y and \mathbf{Z} , respectively.

Lemma 2.2. Let $X, Y \in \mathbf{V}$ be two variables and $\mathbf{Z} \subseteq \mathbf{V} \setminus \{X, Y\}$ be a set of variables. Then, $H(Y|\mathbf{Z}) \ge H(Y|X, \mathbf{Z})$, where the entropies are defined by Definition 2.1, and the equality holds if and only if $Y \perp X | \mathbf{Z}$.

Proof. Applying the chain rule of entropy, the conditional mutual information can be computed as follows [Cover, 1999]:

$$I(X;Y|\mathbf{Z}) = H(Y|\mathbf{Z}) - H(Y|X,\mathbf{Z}).$$
(S2)

Given that the mutual information is nonnegative (i.e., $I(X; Y | \mathbf{Z}) \ge 0$) and $I(X; Y | \mathbf{Z}) = 0$ if and only if $Y \perp X | \mathbf{Z}$ (see [Cover, 1999], page 29), it follows that:

$$H(Y|\mathbf{Z}) - H(Y|X, \mathbf{Z}) \ge 0$$

$$H(Y|\mathbf{Z}) \ge H(Y|X, \mathbf{Z}),$$
(S3)

where the equality holds if and only if $Y \perp X | \mathbf{Z}$.

For brevity, let $\mathbf{V} = {\mathbf{V} \cup X}$, where X is a treatment variable, and let Y be an outcome variable in the remainder of this section.

Lemma 2.3. All Markov blankets of Y have the same entropy.

Proof. By definition, \mathbf{Z}' is the Markov blanket of Y if and only if $P(Y|\mathbf{Z}', \mathbf{W}) = P(Y|\mathbf{Z}')$ for any $\mathbf{W} \subseteq \mathbf{V} \setminus \mathbf{Z}'$, which indicates that $Y \perp \mathbf{W}|\mathbf{Z}'$. Also, according to Lemma 2.2, $H(Y|\mathbf{Z}') = H(Y|\mathbf{Z}', \mathbf{W})$ for any $\mathbf{W} \subseteq \mathbf{V} \setminus \mathbf{Z}'$. Let \mathbf{Z} also be a Markov blanket of Y. By multiple applications of Lemma 2.2, we obtain:

$$H(Y|\mathbf{Z}') = H(Y|\mathbf{Z}', \mathbf{V} \setminus \mathbf{Z}') = H(Y|\mathbf{V}) = H(Y|\mathbf{Z}, \mathbf{V} \setminus \mathbf{Z}') = H(Y|\mathbf{Z})$$
(S4)

Lemma 2.4. Let \mathbf{Z}' be a Markov blanket of Y and let \mathbf{Z} be a set of variables that is not a Markov blanket of Y. Then, $H(Y|\mathbf{Z}') < H(Y|\mathbf{Z})$, where the entropies are defined by Definition 2.1.

Proof. Assume there is exists a set $\mathbf{W} \subseteq \mathbf{V} \setminus \mathbf{Z}$ such that $P(Y|\mathbf{Z}, \mathbf{W}) \neq P(Y|\mathbf{Z})$. According to Lemma 2.2 we have:

$$H(Y|\mathbf{Z}, W) < H(Y|\mathbf{Z}).$$
(S5)

Also, given that V is a superset of $(\mathbf{Z} \cup \mathbf{W})$, we have:

$$H(Y|\mathbf{V}) \le H(Y|\mathbf{Z}, \mathbf{W}). \tag{S6}$$

Therefore,

$$H(Y|\mathbf{V}) < H(Y|\mathbf{Z}). \tag{S7}$$

Also, since \mathbf{Z}' is a Markov blanket of Y, by Lemma 2.3 we have:

$$H(Y|\mathbf{Z}') = H(Y|\mathbf{V}).$$
(S8)

Combining Equations (S7) and (S8), we obtain:

$$H(Y|\mathbf{Z}') < H(Y|\mathbf{Z}). \tag{S9}$$

Lemma 2.5. Given dataset D_o that contains samples from a strictly positive distribution P, which is a perfect map for a SMCM G, the BD score [Heckerman et al., 1995] for $\log P(D_o | \mathbf{Z})$ is defined as follows in the large sample limit:

$$\lim_{N \to \infty} \log P(D_o | \mathbf{Z}) = \lim_{N \to \infty} -N \cdot H(Y | \mathbf{Z}) - \frac{q \cdot (r-1)}{2} \log N + const.,$$
(S10)

Proof. The BD score for $P(D_o | \mathbf{Z})$ is calculated as follows [Heckerman et al., 1995]:

$$P(D_o|\mathbf{Z}) = \prod_{j=1}^{q} \frac{\Gamma(\alpha_j)}{\Gamma(\alpha_j + N_j)} \cdot \prod_{k=1}^{r} \frac{\Gamma(\alpha_{jk} + N_{jk})}{\Gamma(\alpha_{jk})},$$
(S11)

where q denotes instantiations of variables in Z and r denotes values of variable Y. The term N_{jk} is the number of cases in data in which variable Y = k and its parent $\mathbf{Z} = j$; also, $N_j = \sum_{k=1}^r N_{jk}$. The term α_{jk} is a finite positive real number that is called Dirichlet prior parameter and may be interpreted as representing "pseudo-counts", where $\alpha_j = \sum_{k=1}^r \alpha_{jk}$. BD can be re-written in log form as follows:

$$\log P(D_o | \mathbf{Z}) = \sum_{j=1}^{q} \left[\log \Gamma(\alpha_j) - \log \Gamma(\alpha_j + N_j) + \sum_{k=1}^{r} \left[\log \Gamma(\alpha_{jk} + N_{jk}) - \log \Gamma(\alpha_{jk}) \right] \right].$$
(S12)

We can re-arrange the terms in Eq. (S12) to gather the constant terms as follows:

$$\log P(D_o | \mathbf{Z}) = \sum_{j=1}^{q} \left[-\log \Gamma(\alpha_j + N_j) + \sum_{k=1}^{r} \log \Gamma(\alpha_{jk} + N_{jk}) \right] + \sum_{j=1}^{q} \left[\log \Gamma(\alpha_j) - \sum_{k=1}^{r} \log \Gamma(\alpha_{jk}) \right]$$

$$= \sum_{j=1}^{q} \left[-\log \Gamma(\alpha_j + N_j) + \sum_{k=1}^{r} \log \Gamma(\alpha_{jk} + N_{jk}) \right] + const.$$
 (S13)

Using the Stirling's approximation of $\lim_{n\to\infty} \log \Gamma(n) = (n - \frac{1}{2})\log(n) - n + const.$, we can re-write Eq. (S13) as follows:

$$\begin{split} \lim_{N \to \infty} \log P(D_o | \mathbf{Z}) &= \lim_{N \to \infty} \sum_{j=1}^{q} \left[-(\alpha_j + N_j - \frac{1}{2}) \log(\alpha_j + N_j) + (\alpha_j + N_j) \right. \\ &+ \sum_{k=1}^{r} \left((\alpha_{jk} + N_{jk} - \frac{1}{2}) \log(\alpha_{jk} + N_{jk}) - (\alpha_{jk} + N_{jk}) \right) \right] + \text{const.} \\ &= \lim_{N \to \infty} \sum_{j=1}^{q} \left[-\alpha_j \log(\alpha_j + N_j) - N_j \log(\alpha_j + N_j) + \frac{1}{2} \log(\alpha_j + N_j) + \alpha_j + N_j \right. \\ &+ \sum_{k=1}^{r} \left(\alpha_{jk} \log(\alpha_{jk} + N_{jk}) + N_{jk} \log(\alpha_{jk} + N_{jk}) - \frac{1}{2} \log(\alpha_{jk} + N_{jk}) - \alpha_{jk} - N_{jk} \right) \right] + \text{const.} \\ &= \lim_{N \to \infty} \sum_{j=1}^{q} \left[-N_j \log(\alpha_j + N_j) + \sum_{k=1}^{r} N_{jk} \log(\alpha_{jk} + N_{jk}) \right] + \sum_{j=1}^{q} \left[-\alpha_j \log(\alpha_j + N_j) + \sum_{k=1}^{r} \alpha_{jk} \log(\alpha_{jk} + N_{jk}) \right] \\ &+ \frac{1}{2} \sum_{j=1}^{q} \left[\log(\alpha_j + N_j) - \sum_{k=1}^{r} \log(\alpha_{jk} + N_{jk}) + \alpha_j + N_j - \sum_{k=1}^{r} (\alpha_{jk} + N_{jk}) \right] + \text{const.} \\ &= \lim_{N \to \infty} \sum_{j=1}^{q} \left[-N_j \log(\alpha_j + N_j) + \sum_{k=1}^{r} N_{jk} \log(\alpha_{jk} + N_{jk}) \right] \\ &+ \frac{1}{2} \sum_{j=1}^{q} \left[\log(\alpha_j + N_j) - \sum_{k=1}^{r} \log(\alpha_{jk} + N_{jk}) + \alpha_j + N_j - \sum_{k=1}^{r} (\alpha_{jk} + N_{jk}) \right] + \sum_{j=1}^{q} \left[-\alpha_j \log(\alpha_j + N_j) + \sum_{k=1}^{r} \alpha_{jk} \log(\alpha_{jk} + N_{jk}) \right] \\ &+ \frac{1}{2} \sum_{j=1}^{q} \left[\log(\alpha_j + N_j) - \sum_{k=1}^{r} \log(\alpha_{jk} + N_{jk}) \right] + \text{const.} \end{aligned}$$
(S14)

In the last step of Eq. (S14), we used the facts that $\sum_{k=1}^{r} N_{jk} = N_j$ and $\sum_{k=1}^{r} \alpha_{jk} = \alpha_j$, and we applied these identities again to that equation to obtain the following:

$$\lim_{N \to \infty} \log P(D_o | \mathbf{Z}) = \lim_{N \to \infty} \sum_{j=1}^q \sum_{k=1}^r \left[N_{jk} \log(\frac{\alpha_{jk} + N_{jk}}{\alpha_j + N_j}) + \alpha_{jk} \log(\frac{\alpha_{jk} + N_{jk}}{\alpha_j + N_j}) \right] + \frac{1}{2} \sum_{j=1}^q \left[\log(\alpha_j + N_j) - \sum_{k=1}^r \log(\alpha_{jk} + N_{jk}) \right] + const.$$
(S15)

Given that

$$\lim_{N \to \infty} \frac{\alpha_{jk} + N_{jk}}{\alpha_j + N_j} = \frac{N_{jk}}{N_j}$$

and

$$\lim_{N \to \infty} \sum_{j=1}^{q} \sum_{k=1}^{r} \alpha_{jk} \log(\frac{\alpha_{jk} + N_{jk}}{\alpha_j + N_j}) = const.,$$

in the limit, Eq. (S15) becomes:

$$\lim_{N \to \infty} \log P(D_o | \mathbf{Z}) = \lim_{N \to \infty} \sum_{j=1}^{q} \sum_{k=1}^{r} N_{jk} \log \frac{N_{jk}}{N_j} + \frac{1}{2} \sum_{j=1}^{q} \left[\log(\alpha_j + N_j) - \sum_{k=1}^{r} \log(\alpha_{jk} + N_{jk}) \right] + const., \quad (S16)$$

or equivalently:

$$\lim_{N \to \infty} \log P(D_o | \mathbf{Z}) = \lim_{N \to \infty} N \cdot \sum_{j=1}^{q} \sum_{k=1}^{r} \frac{N_{jk}}{N} \log \frac{N_{jk}}{N_j} + \frac{1}{2} \sum_{j=1}^{q} \left[\log(\alpha_j + N_j) - \sum_{k=1}^{r} \log(\alpha_{jk} + N_{jk}) \right] + const.$$

$$= \lim_{N \to \infty} -N \cdot H(Y | \mathbf{Z}) + \frac{1}{2} \sum_{j=1}^{q} \left[\log(\alpha_j + N_j) - \sum_{k=1}^{r} \log(\alpha_{jk} + N_{jk}) \right] + const.$$
(S17)

To simplify the second term in Eq. (S17), we divide the arguments in the log terms by N and equivalently add $\log N$ terms as follows:

$$\lim_{N \to \infty} \frac{1}{2} \sum_{j=1}^{q} \left[\log(\alpha_j + N_j) - \sum_{k=1}^{r} \log(\alpha_{jk} + N_{jk}) \right] \\
= \lim_{N \to \infty} \frac{1}{2} \sum_{j=1}^{q} \left[\log(\frac{\alpha_j + N_j}{N}) + \log N - \sum_{k=1}^{r} \log(\frac{\alpha_{jk} + N_{jk}}{N}) + \log N \right] \\
= \lim_{N \to \infty} \frac{1}{2} \sum_{j=1}^{q} \left(\log N - \sum_{k=1}^{r} \log N \right) + \frac{1}{2} \sum_{j=1}^{q} \left[\log(\frac{\alpha_j + N_j}{N}) - \sum_{k=1}^{r} \log(\frac{\alpha_{jk} + N_{jk}}{N}) \right] \\
= -\frac{q(r-1)}{2} \log N + const.$$
(S18)

Combining Equations (S17) and (S18), we obtain:

$$\lim_{N \to \infty} \log P(D_o | \mathbf{Z}) = \lim_{N \to \infty} -N \cdot H(Y | \mathbf{Z}') - \frac{q \cdot (r-1)}{2} \log N + const.$$
(S19)

Theorem 4.2. Given dataset D_o that contains samples from a strictly positive distribution P, which is a perfect map for a SMCM G, the BD score [Heckerman et al., 1995] will assign the highest score to the OMB of Y in the large sample limit.

Proof. Let \mathbf{Z}' be the OMB of Y and $\mathbf{Z} \subseteq \mathbf{V}$ be an arbitrary set. We want to show that:

$$\lim_{N \to \infty} \frac{P(D_o | \mathbf{Z})}{P(D_o | \mathbf{Z}')} = \begin{cases} 1 & \text{iff } \mathbf{Z} \text{ is an OMB of } Y \\ 0 & \text{otherwise} \end{cases}$$
(S20)

Applying Lemma 2.5 we have:

$$\lim_{N \to \infty} \log \frac{P(D_o | \mathbf{Z})}{P(D_o | \mathbf{Z}')} = \lim_{N \to \infty} N \cdot \left[H(Y | \mathbf{Z}') - H(Y | \mathbf{Z}) \right] + \frac{(q' - q) \cdot (r - 1)}{2} \log N.$$
(S21)

where q and q' are the number of possible parent instantiations of Y with Z and Z' as the set of parents. There are three possible cases:

Case 1: Z is a Markov blanket of Y and its OMB.

Since both \mathbf{Z}' and \mathbf{Z} are Markov blankets of Y, $H(Y|\mathbf{Z}) = H(Y|\mathbf{Z}')$ by Lemma 2.3. Thus, the first term in Eq. (S21) becomes 0. Also, given that \mathbf{Z}' and \mathbf{Z} are OMBs, they have the same number of parameters q' = q, by which the second term in Eq. (S21) becomes 0 in the limit as $N \to \infty$, or equivalently Eq. (S20) approaches to 1.

Case 2: Z is a Markov blanket of Y but not its OMB.

According to Lemma 2.3 $H(Y|\mathbf{Z}) = H(Y|\mathbf{Z}')$; therefore, the first term in Eq. (S21) becomes 0 and we obtain:

$$\lim_{N \to \infty} \frac{P(D_o | \mathbf{Z})}{P(D_o | \mathbf{Z}')} = \lim_{N \to \infty} \frac{(q' - q) \cdot (r - 1)}{2} \log N.$$
(S22)

Given that \mathbf{Z}' is the OMB with minimum number of variables, and therefore, minimum number of parameters q' < q. Thus, the term (q' - q) becomes a negative constant. Also, the term $\frac{(r-1)}{2}$ is a positive constant. Consequently, Eq. (S22) goes to $-\infty$ in the limit as $N \to \infty$, which implies that Eq. (S20) approaches to 0.

Case 3: \mathbf{Z} is not a Markov blanket of Y.

The first term in Eq. (S21) is of O(N) and dominates the second term, which is $O(\log N)$. According to Lemma 2.4, $H(Y|\mathbf{Z}') < H(Y|\mathbf{Z})$; thus, the term $H(Y|\mathbf{Z}') - H(Y|\mathbf{Z})$ becomes a negative number. As a result, Eq. (S21) becomes $-\infty$, which equivalently implies that Eq. (S20) becomes 0.

References

Thomas M Cover. Elements of Information Theory. John Wiley & Sons, 1999.

- David Heckerman, Dan Geiger, and David M Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. *Machine Learning*, 20(3):197–243, 1995.
- Leonard Henckel, Emilija Perković, and Marloes H. Maathuis. Graphical criteria for efficient total effect estimation via adjustment in causal linear models. *arXiv preprint arXiv:1907.02435*, 2019.
- J Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, 2000.
- Thomas Richardson, Peter Spirtes, et al. Ancestral graph Markov models. The Annals of Statistics, 30(4):962–1030, 2002.
- Ilya Shpitser and Judea Pearl. Identification of joint interventional distributions in recursive semi-Markovian causal models. In *Proceedings of the 21st National Conference on Artificial Intelligence*, pages 1219–1226, 2006.