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A PROOFS

We first recall the stochastic order notation (e.g., [Vaart| [[1998| Section 2.2]), which will be used throughout subsequent
proofs.

Definition A.1 (Stochastic o and O symbols). Let X,,, R,, denote sequences of random variables. Then,
X, =o0p(R,) means Ve >0, nh_)rI;C P(|X,/Rn| >¢) =0,
X, =0,(R,) means Ve>0,3IM,N>0,Vn>N,P(|X,/R,|>M)<e.
The often used notation X,, = o,(1) means that X,, converges to zero in probability, and X,, = O,(1) means that X,, is

bounded in probability.

A.1 PROOF OF THEOREM 3.1

We first state the following lemma, which is equivalent to Beirlant et al.| [2003, Proposition 1] with different notation.
Lemma A.1. Suppose assumption 2.1 and assumption 2.2 hold. Then Ve > 0, 3tg, Vt, x such thatt > to and tx > to,

Ulte) —U((t) 2% —1

(1—e)e=ltosrl < ] /A1) Ie p(2)] < (1 +€)el o8], (1)

at) €
where
— % e :}1), p<0,6+p#0,
A(t) = 0 —&+1 and  Iep(x) =4, logx—‘T>, p<0,&+p=0,
% xglogx—%), p=0.

Proof. In|Beirlant et al.|[2003]], the statement is given as Ve > 0, 3tg, Vi, z such thatt > tg and t + = > ¢,

Vit+z)=V(E) -1
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Then, for¢t > 1, ) )
V(logt) = (F)~'(1/t) = (1/F)"'(t) = U (1),

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).


mailto:<d\protect _troop@encs.concordia.ca>?Subject=Your UAI 2021 paper

and
V'(logt) = tU'(t) = a(t), V"(logt) =t2U"(t) +tU'(t) = A(t) = A(t).

Since log is strictly increasing, eq. () holds with log ¢ and log = where log ¢ > ¢ and log tz > ¢,. Substituting expressions
in eq. (), we get eq. (I). O
The following corollary will also be used in the main proof of this section.

Corollary A.1. An immediate consequence of lemmalA.l|is for all x > 0,

U(te)=U(t)  z5-1
lim a(t)

= Ig p(2). (€)
corollary can also be found in|De Haan and Ferreiral [2006, Theorem 2.3.12]. Before proving our main result of this

section, we first recall the dominated convergence theorem which will be needed later.

Theorem A.1 (Dominated convergence theorem). Let { f,,}52  be a sequence of real-valued functions defined on S C R
such thatVx € S, lim, o fn(x) = f(z). IfVx € S, n,

|[fn(2)] < g(x)

for some integrable (i.e., the integral is finite over S) function g, then

lim fn( )dx:/snlglgofn(x)dx:/sf(:c)dx

n— oo

Proof of Theorem 3.1. We use corollary [A.T|to derive a convergence result for the approximation error of the VaR, i.e,
o — Qu,a- Then, using lemma|[A.T|and theorem [A.T] we will be able to derive the convergence of €, 4.

For any p € (0,1) and y € dom F such that F'(y) = p,

(;) (y)=%=ﬁ,

()= G) e

Ul/(1-a)=U(tuf) =¢a and U(r,) = u.

Then, from the definition of ¢, o we get

which implies that

Hence,

o = ut T (55— 1) = () + g )

Setting Dy, () = (¢ — qu.a)/(a(7u)A(7y)), it then follows from the previous two equations and corollary[A.1|with ¢ = 7,
r = (3 that

) (36 — 1) U(ruB)=U(ra) _ p-1

a(Tu) 3
A = Ie ,(B) asu— oo. )

(Tuﬁ) ( u) -
a(7u) A(Ty

From the definition of the GPD approximation error and the CVaR, for a fixed u, «,

6u,az _ Cu,a_ca _ 1 ! q qu D
a(r)A(ra) — a(r)A(r) **1—a/a atr) A =P / 2

Du(B) =




where Dy, () = (¢y — qu,)/(a(Tu)A(7,)) and we have used the substitution z = F(u)/(1 — 7). We now apply the
dominated convergence theorem to get the limiting behaviour of eq. (8) as u — oc. From lemma[A.1] Ve > 0, Jug such
that Vu > ug, x € [, 0),

’D u()

2

< (L+e)a™ e p(w).

(1+¢e)a®21I¢ ,(z) is integrable over [6 oo)aslongase < 1—¢&. Since & < 1,lete = (1 — £)/2. Then theorem can
be applied to D,,(z)/x?. Setting K¢ ,(8) = —f3 fﬁ [I¢ p(x)/x?]dz, it follows that

Eua

: D
A A T, —h /
= fﬂ/ lim
g umo T
© Ie ,(x
= —,B/ﬂ 7525 L4

= K&,p(/@)a

where the last integral can be computed explicitly to obtain eq. (8). O

dx

A.2 PROOF OF THEOREM 4.2

First recall Slutsky’s lemma (see, for example, Vaart [1998, Lemma 2.8]).
Lemma A.2 (Slutsky). Let X,,, X, Y,, be random vectors or variables. If X, L X and Y, 5 e for a constant c, then
(i) Xp+Y0 5 X te

(ii) XnYn % Xe;
(iii) Xpn/Yn 4 X/c provided ¢ # 0.

Proof of Theorem 4.2. First note that since An and Bn are consistent, i.e.,
A,
A(n/k)

then by lemm the fact that 6412 /a(n/k) 2 1 (which follows from theorem 4.1), and the assumption of theorem 4.1
that lim,, o, VEA(n/k) = X < oo,

B, by B ey,

A (n)

2 2(1 UIEALE 1 a'r(/ITLL:z (2
Vi (bg)’ aln/R) " ) VEAG/R) 4 < ) (b“ a(n/F) bg))
B (v, o)

= b,

Then, by expanding terms and applying lemma [A-2]once again,
V(G =&, 6a/aln/k) = 1) = VE(EG — AnbS) — & 6501 = Ab) /a(n/k) — 1)

~(n)
— F(n) & Jaln _ OMLE  7(2)
V(G — & ol /atn/k) — 1)~ VEA, (30, 252

4 N(Abe,p, ) — Abep
= N(0,%).



A.3 PROOF OF THEOREM 4.3

We first give the delta method, which can be found in, for example, |[Rémillard| [2016, Appendix B.3.4.1].

Theorem A.2 (Delta method). Let 6,, € R™ be a random vector based on a sample of size n. Suppose that h : R™ — R is
such thatfori =1,...,m, % exists and is continuous in a neighborhood of 0. If /n(6,, — 0) < N(0,V), then

Vir(h(Bn) = h(8)) 5 N(0,VA(6) V'V (0)),
where Vh(0) is the gradient of h evaluated at 6.

Next, we prove some useful lemmas which will be used in the proof of theorem 5.1.

Lemma A.3. Let X1,...,X,, be an i.i.d. sample with common cdf F, and suppose k = k,, — oo and k/n — 0 as n — oc.
Withu = X, n) and £ € R,

Vi (k7 /)¢ — 1) 5 N(0,2).
Proof. Letting he(x) = 27¢,
VE (kru/n)¢ = 1) = VE (nF(u)/k)~¢ = 1) = Vk (he(nF(u) /k) — he(1)) -
From|Beirlant et al|[2009] Theorem 3.1], we know that v/&(nF () /k — 1) > N(0,1). Hence, by theorem|[A.2]

VE ((ku/n)¢ —1) 5 N(0,hL(1) - 1- Be(1)) = N(0,€2).

O
Corollary A.2. Let « = o, = 1 — (1/8)k/n where 3 > 1 is a constant not depending on n. Then,
V(55,0 — B%) 5 N(0,626%).
Proof.
swa = P) () ey = PP/ =
and so
V(550 = 8%) = BVE((kru/n) ¢ = 1) = =% (nF (u) /k) VE((kr /)¢ = 1). (©)
Beirlant et al.|[2009, Theorem 3.1] implies that n.F'(u)/k 2 1. Hence, lemmawith eq. (El) implies
V(55,0 = B9 5 N(0,625%).
O
Lemma A.4. Suppose that the assumptions of theorem 4.1 hold. Then as n — 0,
Vi (S0 (i o)) = 0,0, )
a(n/k)

Proof. Under assumption 2.1 and assumption 2.2, the following uniform inequality from |De Haan and Ferreira [2006,
Theorem 2.3.6] holds: for any €, § > 0 there exists to = to(e, d) such that for all ¢, tx > to,

a(tz) 13
Oy — P _1
(®) _ gt z

< ezt P max (2°,27°%) . ®)
A(t) p ( )




Hence, with ¢ = n/k and = k7, /n, for any £, 6 > 0 and with large enough n,

a(ra) Tu/1)E p_
\/E( s - (kTu/n)£> - \/EA(n/k) {a(n/k) . — (kTy/n)¢ i 1}

a(n/k) A(n/k) p
N /n)ﬁ(’%/“p)"l
< VEA(n/k) “61(5:7‘314;”(/’7;“/ e <kTu/n>f<’w/np>”—1
+ VEA(n/K) (k. /n)fU”u/”p)”—1
< VEA(n/k)e(kran)H max (ki fn)?, (brfm) )
4 VRAG/b) () L

Since k7, /n % 1 and VEA(n/k) — X < 0o as n — oo (by the assumption of theorem 4.1), and since ¢ can be made
arbitrarily small as n — 0o, both terms tend to 0 in probability as n — co, hence eq. (7) follows. O
The following corollary is an immediate result by combining lemma[A.3]and lemmal[A.4]

Corollary A.3. Suppose that the assumptions of theorem 4.1 hold. Then,

Vi (a‘g/“]z) - 1) 4 N(0,62).

Proof of Theorem 4.3. With o = 1 — (1/8)k/n and u = X (,_j, »),

A(n) ~ 3
Co _ Oon/a(n/k) pen —1 u o 2 5 laln U
aw/k) T 14, (” )*a(n/m = dolem onfaln/ M) + Sy

and recalling that s,, o, = F(u)/(1 — ),

Cua  O(u)/a(n/k) <1 N sﬁya — 1) w

ate/k) 1€ & ) al/m)
_ 1 Sia — 1 o(u)/a(n/k) — 1 $§0—1 w
_1_§<1+ : >+ ¢ <1+ z >+a<n/k).

Then for the first term,

1 Si,a_l o 1 5%70[_1"'_6&_65
A

1 ﬁf_l Si,a_ﬂg
1£<1+ =L T )

8151, a Bf
=d e ©
5(€,1) + (1D
Recalling that o (u) = a(7,) and combining the previous expressions,
\/E A(n) _ A
(/) (ca - Cu,a) =Vk (dﬁ(fn,an/a(n/k)) —dg(€, 1))

I Y R S VRS AN Ve A
\/E< ¢ <1+ : >+§(1_£)>_S R, 9



where we have denoted each term by S and R, respectively. By the delta method (theorem[A.2)),

S 4 N(0,Vds(€,1)TSVdg(E,1)).

For the second term, let

P=vVk (a‘zg}% - (kTu/n)€> and Q= vk ((kru/n)s —1).

Then vk (a(r,)/a(n/k) — 1) = P 4 Q and from eq. (EI), V(s o — B°) = —s§ ,Q. Hence,

§
L [(P+ Q)(f + Sg,a - 1) - Sg,aQ] = wp - %

£1-¢) £1-¢)
corollary [A.2)implies that s , = ¢ 4 0,(1) as n — oo and from lemmawe know that P = 0,(1) as n — oo. By

lemmalA.3} Q AN (0,£2),and so R AN (0,1). Compared to S, the asymptotic variance of R is approximately 0, and we
ignore its contribution in further calculations. Then, eq. (9) implies

\/E ~(n) d _
where
. O0dg Odg T
Vdg(€,1) = {ax(g,l),ay(g@) ,
with
9dg B2+ E(1-9logB—1) 1 ddg e
[ e ¢y G A ey

A.4 PROOF OF THEOREM 5.1

We first prove the following lemma, which shows that when 7, is replaced by n/k in theorem 3.1, the asymptotic behaviour
of €, is the same (in probability).

Lemma A.5. Suppose that the assumptions of theorem 4.1 hold. Let « = 1 — (1/8)k/n where § > 1 is a constant not
depending on n. Then,
€u,a P,
: 1

a(n/k)A(n/k)Ke ,(B)

Proof. We follow the same line of reasoning as in the proof of theorem 3.1. First, we have

tna =t T~ 1)
~ )+ s, -1
= 00 + S 5~ 1) 4 Um) = Ul/) + ¢ [a(m)s — 1) — aln/B)(5¢ - )]
= ) + L 55— 1)+ U — U/

+ % [a(7u) (85,0 — B°) + (a(ra) — a(n/k))(5° —1)] .



Given that g, = U(1/(1 — o)) = U(nB/k),

UnB/k)~Un/k) _ g1
do = Gua  _ a(n/F) €
a(n/k)A(n/k) A(n/k)
CU(r) —Um/k)  a(r)(sia =B < a(ra) 1) B -1
a(n/k)A(n/k)  &a(n/k)A(n/k) a(n/k)

£A(n/k)
=1—1II-III-1V.

In what follows, terms I-IV will be analyzed separately then finally combined.
I: By corollary [A.1} with ¢ = n/k and 2 = 3 we know that term I tends to I¢ ,(3) as n — oc.

11: Under assumption 2.1 and assumption 2.2, the following uniform inequality from [De Haan and Ferreiral [2006, Theorem
2.3.6] holds: for any ¢, § > 0 there exists ty = to(&, d) such that for all ¢, tx > to,

U(tz)—U(t) z6—1

— E+p _
a(?) ¢ 2 L < ezt max (x‘s, x*‘s) . (10)
A(t) E+p
We can write 1] as .
Ultu)=U(n/k) _ (kTu/n)*—1
17— __a/k) 3 (ktu/n)s —1

A(n/k) EA(n/k)

Hence, with ¢ = n/k and © = k7, /n, the first term tends to 0 in probability using eq. and essentially the same
arguments as in the proof of lemma So, by the assumption of theorem 4.1 that vVkA(n/k) — A < oo as n — oo and

lemma[A3]

—L 0 :E 0 n — 00
I_E\/EA(n/k)—i— p(1) b\ + 0p(1), — 00,

where Q = vk((kt,/n)¢ — 1) and Z denotes a standard normal random variable.

III: corollaryimplies that a(7,)/a(n/k) 2 1 and by eq. @), $§.0 — B = =55 ,Q/VEk. Corollaryimplies that
I 13
8% o, — B%, and so

a5, =85 —s5..Q _ B
M= Gl AW ~ ehA@mm T T T ATl e
IV:With P = vk (aa((;/“lg) — (kTu/n)g) and applying lemma
_(alr) gE—1 gr—-1 p-1 o " — o0
IV_(a(n/k) 1) AR _(P+Q)g\/EA(n/k) == Z + 0p(1), — 00.

Now combining all terms, as n — oo,

Goa — Qu,a

W:I—II—III—IV
Z € €1
=L (8) - 24 P

Z+o0p(1) =I¢ ,(B) + 0p(1), n — 0.
Hence, following the same reasoning as in the proof of theorem 3.1,

€u,a cu,a — Ca

a(n/k)A(n/k) — a(n/k)A(n/k)

_ 1 ! 4y — Qu, P o° I§, (;1;) B
C l-a /a a(n}k)A(nW/k) dy = _ﬁ/ﬁ ;2 dz = K¢ ,(B).

O



Proof of Theorem 5.1. First,

aﬁ”a —eq =M &) =My 0 — &Vt cun — o = &Y —cua — €™ + ey
Hence,
\/E(égg - Ca) _ \/%(é((xn) - Cu,a) 7 \/E(ggz) - Eu,a) (11)
On B o On ’
For the first term on the right-hand side of eq. (TT),
An) _ A(n) _
\/E(Ca _ Cu,a) _ a(n/k) \/E(C(y Cu,a) i> N(O, V)7 (]2)

Gn - 6n a(n/k)
which follows from theorem 5.1 and applying lemmawith the fact that &, /a(n/k) = 1.
For the second term, first recall that

el GndnKn b
a(n/k)A(n/k) - a(n/k)A(n/k) = Ke »(B),

which follows from lemmal|A.2|and the continuous mapping theorem. Then, under the assumption that vVEA(n/k) — X < 0o
(n — o0), it follows from lemma|[A.2]and lemmal[A 3] that

VEE — eu)  aln/R)VEA/E) [ &) — ey
- 5 a(n/k)A(n/k)
= A1+ 0p(1)) (K¢ p(B) — Ke,p(B) +0p(1)) = 0p(1), n—o00. (13)
Combining the convergence in eq. (12) and eq. (I3) with eq. (TT), it follows that

On On

k Agn) - Lo
M A N(0,V),
0—71,
and hence,
VRS — ca) _ VR —ca) VY 4 )
6n\/‘?»n 6-71\/V V Vn 7 ’
which follows from the fact that V,, 2 V (from the continuous mapping theorem) and lemma O

A.5 CONSISTENCY OF A(n/k) ESTIMATOR

In|Haouas et al.[[2018], an estimator for Ag(n/k) is givenﬂ where the function A satisfies the second-order condition of
De Haan and Ferreiral [2006, Theorem 2.3.9], where for all z > 0,

(14)

Note that under assumption 2.1 and assumption 2.2, eq. (I4) is satisfied. The relation between the function A defined in eq.
(6) and Ay is given inDe Haan and Ferreiral [2006} Table 3.1], where

A= HTPAO. (15)

We shall use this relation and an estimator for Ag(n/k) to derive an estimator for A(n/k). To prove consistency of the
forthcoming estimator, we start with the following relation from|Haouas et al.| [2018]]:

Ao(t)
im =1 16
Jim s =1, (16)
"The results of [Haouas et al.| [2018]] are presented in the truncated data setting, where for a sample (X:,Y:),i=1,...,nfroma

couple of independent random variables (X, Y), X; is only observed when X; < Y;. Their results can be adapted to the non-truncation
setting by assuming that P(X <Y) = 1.



where
— MO0 20000 e [ e (0 )
20M D (1) , MY1) —t/U(t)l g’ (/U (t)) dF (z).

This leads to an estimator for Ag(n/k) Haouas et al|[2018] p. 71,

Rt = &

1—p2) (M — 2(0))?)
2pn M

A = ,

where M7 is an estimator for 1) (n/k), given by

M) =

w\'—

k
Z log X(n—i-i—l,k) - log X(n—k,n)]ja

which is also given in section 4. Note that M,(Ll) is the well-known Hill estimator of &. M,(LJ ) is consistent for 7 = 1,2 under
the conditions of the following lemma.

Lemma A.6. Suppose that assumption 2.1 holds. If k = k,, — 00, k/n — 0 as n — oo, then

i,
—_— 1 =1,2.
MOk 0 T
Proof. From Haouas et al.|[2018| equation 1.9],

MDD @) = ¢ and M (1) - 22 - .

By |IDe Haan and Ferreiral [2006, Theorem 3.2.2], Mél) LN ¢, and by |IDe Haan and Ferreiral [2006, Equation 3.5.7],
M B 2€2. Hence, by lemma
i B g
MM (n/k) M@ (n/k)

From eq. (13)), an estimator for A(n/k) is

Ao (@4 pn) (1= p)2 (MY — 2(M1)?)

26502 p ML

which is consistent under the conditions of the following lemma.

Lemma A.7. Suppose that the assumptions of theorem 4.1 hold. If p,, RN 0,

An P, 1
An/k)
Proof. By theorem 4.1, £ % ¢, and so by eq. and eq. ,
A il e € Ag"> AV R(n/k) ALY
n _ MLEA n . —(1+ 1 _ Ao A/ R) 1+ 1 #7
awm - dn e Al T R R agm ~ ) R
as n — o00. By lemma[A.6]
A5V (1= )M (n/k) M — 2(MD)?

Rn/k) — p.(1— )Y MO(n/k) —2M O (n/k))?
N — 252

= (1+0,(1) 37 (n/k) —2(MD (n/k))2’




as n — oo. From|Gomes et al.|[2002} p. 389],

MY —2(0) 5 2%p
Ao(n/k) (=)

Hence,

M — 2> 2p Ag(n/k)

M@ /Ry — 2O (e~ T2 M) — s T
Finally, combining eq. with the fact that M (Y (n/k) — € as n — oo,
Ao(n/k) B 1-p? (1-p)?
M) — 2R D gy ~ e T e
and thus " (2) - R
M@ (n/k) — 2(MD (k)2 5 which implies An/B) P,

B ESTIMATION ALGORITHMS

B.1 ADAPTIVE p ESTIMATION

The p estimator given in section 4,
3T (m) — 1)

T\ (m) — 3
requires the choice of two parameters: a sample fraction m, and tuning parameter 7. Depending on the underlying distribution,
the reliability of p,, can be very sensitive to the choice m and 7. The adaptive algorithm of [Caeiro and Gomes, 2015,
Section 4.1] provides an automated way to select these parameters. We present a slightly modified version of their algorithm
here, which we use in our experiments.

Algorithm 1: Adaptive algorithm for p estimation (ADARHO)
Input: An i.i.d. sample X, .., X,,, test parameters 71, . . . 74, test sample fractions my, ..., m,, precision p.
Output: p,,

1fori=1,...qdo
2 forj=1,...rdo
(12)

3 Compute py, *’(m;) using eq. (12), rounded to p decimal places

4 end

5 Set ml(n:;), mf,ﬂ,? to be the minimum and maximum m values associated with the longest run of consecutive
equal 57" values

6 Set [(7i) = m,(r;x) — mr(nTi;) + 1, the length of the largest run

7 end

8 Setk = argmax;_; 1(7i)

9 Set p,, to the median of ﬁgf’“)(m(”)) 5iTw)

min /> Pn (mmin

(Tk)+1)7. A(Tk)( (Tk))

-y Pn TMmax

B.2 AUTOMATED THRESHOLD SELECTION

The method of |Bader et al.|[2018]] is as follows. Consider a fixed set of thresholds u; < ... < u;, where for each u; we
have k; excesses. The sequence of null hypotheses for each respective test¢,7 = 1,...,1[, is given by

Héi) . The distribution of the k; excesses above u; follows the GPD.



For each threshold wu;, let él = (& (”) &fﬁ)) denote the MLEs computed from the k; excesses above u;. The Anderson-
Darling (AD) test statistic comparlng the empirical threshold excesses distribution with the GPD is then calculated. Let
Yy < - < Y, denote the ordered threshold excesses for test i, and apply the transformation z(;) = G (y(j))
j=1,...k;, where G denotes the cdf of the GPD. The AD statistic for test 7 is then

ki

1
Af = —ki = 1> (25 = 1) [log (2()) +log (1= 2 1-)] - a7

Jj=1

Corresponding p-values for each test statistic can then be found by referring to a lookup table (e.g.,/Choulakian and Stephens
[2001])) or computed on-the-fly. Using the p-values py, .. ., p; calculated for each test, the ForwardStop rule of |G’Sell et al.
[2016] is used to choose the threshold. This is done by calculating

1 w
by = Il = =S log(1—p;) <~ 18
Wp max{we ’ wz og ( p)’y} (18)

i=1

where 7 is a chosen significance parameter and I C {1,...,1}, I # (). Under this rule, the threshold u,, is chosen, where
v =min{w € I|w > wr}. If no wr exists, then no rejection is made and w7y is chosen. If Wy = max(I), then
Umax(7) 18 chosen. The overall procedure is summarized in Algorithm E}

Remark B.1. In the threshold selection procedure of Bader et al.|[2018]], W is given with I = {1, ...,l}, but we make
the modification that I is an arbitrary index set in view of CVaR estimation: since c, q tends to infinity when tends to
1, in order to ensure reasonable estimates of the CVaR we use a cutoff parameter &4, < 1, where the MLE fm and
corresponding threshold u; are discarded if §ui > Emaz-

Remark B.2. Instead of choosing the candidate thresholds us, . . . ,w, directly, it is usually more convenient to choose
threshold percentiles q, . . . , q and compute u values via the empmcal quantile function, i.e., u; = F Yg).

Algorithm 2: Automated threshold selection (AUTOTHRESH)

Input: Ani.i.d. sample X1, .., X,,, significance parameter -, threshold percentiles 0 < g1, ...,q < 1, cutoff &4, < 1.
Output: ( En) o), wif I # ), otherwise return NaN
110

2fori=1,...1do
3 Set u; = F71(q;)

4 | Compute ( 7(]3), &™) from k; threshold excesses using maximum likelihood

if £ < €nas then

5
6 Compute A? using eq.
7 Set p; to p-value for A? using lookup table
8 I+ T1U{i}
9 end
10 end

1 if I # () then
2 SetW={well-L1%" log(l-p)<n}
13 if W # () then

14 Compute wr using eq.
15 if Wwp = max(7) then

16 | v < max(I)

17 else

18 | v« minf{w e I'|w> wp}
19 end

20 else

21 | v < min([)

22 end

23 U 4— Uy

u | (G ol — (60, 6l)

25 end




B.3 ALGORITHM TO COMPUTE THE UNBIASED POT ESTIMATOR

This section provides the algorithm used to compute UPOT in its entirety, which makes use of both al-
gorithm E] and algorithm @ In our experiments, we set 74 = —15,7 = —125,...,733 = 15, m; =
100,me = 200,...,my, = mn — 1, p = 1 in algorithm [IL and v = 0.1, ¢¢ = 0.79,¢o =
0.80,...,q20 = 0.98, &mnaz = 0.9 in algorithm Assume these choices of values in the following algorithm.
Algorithm 3: Unbiased peaks-over-threshold CVaR estimator (UPOT)
Input: Ani.i.d. sample X3, .., X,,, confidence level «
Output: ")

1 x < AUTOTHRESH(Xj, .., X,,)

2 if x is not NaN then
30| (G, 66), u+ x
4 pn < ADARHO(X 1, .., X,,)
5
6

Compute bn using eq. (14)
Compute A, using eq. (13) and the & threshold excesses above u
7| (G Gm) < (€ — AnblD, 6l (1 — AbD))

§ | Compute ¢ using eq. (18)

o | Compute ¢ using eq. (16)
0 | &) e
11 end

Remark B.3. It may happen that Algorithm3|fails if AUTOTHRESH returns NaN, in which case no suitable estimates of &
are found. This is an indication that the underlying data distribution does not satisfy the condition ¢ < 1 and the CVaR does
not exist. To make Algorithm 3| robust, the sample average estimate is used as a fallback when the latter occurs. We report
the failure rate of UPOT during experiments in table[l]

C EXAMPLES OF HEAVY-TAILED DISTRIBUTIONS

C.1 BURR
The Burr distribution with parameters c, d has cdf given by
Foa(x)=1-(1+ )" e d,x > 0.

The CVaR for the Burr distribution can be derived from its expression for the conditional moment given in Kumar|[2017}
Section 2.2]. If X ~ Burr(c, d),

d[(1/ga) ]V 1 1 1
CVaR,(X) = ———F—F———= 21 (d——-,1+d,d——-+1;,—— |, cd>1, 19
RalX) =T gy@ 1o ot thd=otli—r), e (19
where o[ denotes the hypergeometric function and g, = ;dl (). Values of £, p and functions a and A are given by
1 1 t1/d 1/e=1 l-c
S (i CTC ) R T S el
S=w P W=y O = L@ —

where a and A are defined for ¢ > 1.

C.2 FRECHET
The Fréchet distribution with parameter « has cdf given by

Fy(z)=e" ", ~,2>0.



If X ~ Fréchet(y),
CVaR,(X) = (1—a) ' [T (y=1/7) = (y—1/v,—log(a))], ~7>1, (20)

where I'(+) and I'(-, -) denote the gamma and upper incomplete gamma functions, respectively. Values of £, p and functions
a and A are given by

—1-1
log (%1) A(t)__1+’y+7tlog(1— ) 1
(1 —t)log(1 - ¢

1
3
)

where a and A are defined for ¢ > 1.

C.2.1 Asymptotic variance of SA estimator for Fréchet distribution

An expression for the asymptotic variance (AVAR) of the SA estimator is given in [Irindade et al., 2007, Theorem 2]. Let Z
be a continuous random variable such that E[Z 2] is finite. Then, for a confidence level «,

Vit (CVaR4(2) ~ CVaR,,a(2)) 5 N(0,62),

where @n,a(Z ) is the SA estimator given in eq. (3) and

_ Var(1Z — aal)

2
e

and [z]* = max{0,z}. If Z ~ Fréchet(v), the condition that E[Z?] is finite is equivalent to v > 2. By the law of total
expectation,

]E[[Z - QOJJF] = IP)(Z S QQ)E[O] +P(Z > QQ)E[Z - QQ|Z > QOJ = (1 - eiq;’y)E[Z - QO¢|Z > QQ]‘

The distribution of the conditional random variable on the right hand side has the same form as the excess distribution
function, given in definition 2.4. Let

Fy(2 4 qa) = Fy(ga) _ e FHoe) " —emta”

Fa,’y(z) = P(Z — (o < Z|Z > qa) =

—F@) i ea
V(2 4 ga) e BFa)
f(x,'y(z) = F(;,Y(Z) = al e , z>0.

Hence,

MV—%JWZ/‘v@+%J””“4H%er:/ e = T(1— 1/7,q0), 7> 1,
0

do

where t = (2 + g, )~ 7 and I'(-, -) denotes the upper incomplete gamma function. With a similar calculation, the second
moment is

E([Z = aa]")’ ] =T(1 = 2/7,da), 7> 2.

Finally, we can compute the AVAR of the SA estimator for the Fréchet distribution, which is

0> E[([Z = qal")’] —E[[Z —go]"]* _ T(1 =2/7,9a) =T(1 = 1/7,4a)*
n o n(l —a)? N n(l — a)? 7> 2




C.3 HALF-T

If X follows the ¢ distribution with v degrees of freedom, then | X| follows the half-¢ distribution, which has cdf given by

1
F(x) =2 - Ty (” ) v> 0,2 >0,

272

where ¢(z) = 7%, and Z(a, b) is the regularized incomplete Beta function. The CVaR for the half-¢ distribution can be
derived from the expression for the CVaR of the ¢-distribution given in [Norton et al., 2019, Proposition 12]. If X ~ half-¢(v),
then

V+ qa

CVaR, (X) = 2mgy(qa)7

v>1,

where g, is the probability density function of the standardized t-distribution, and g, = T~ (2) where 7! is the
inverse of the cdf of standardized ¢-distribution. The half-¢ distribution is in MDA (H) with ¢ = 1/v, and has p = —2/v
(Caeiro and Gomes|[2015} Remark 2.1]). It does not seem possible to compute closed-form expressions for the functions a
and A for the half-¢ distribution.

D NUMERICAL RESULTS
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Figure 1: Absolute bias of estimating CVaRg g9s using UPOT (black), BPOT (red), and SA (blue).



Table 1: Data for all distributions used in experiments. CVaR,, denotes the exact CVaR value for o = 0.998. Given at a
sample size n = 50000, UPOT, BPOT, and SA denote the average estimated CVaR values across N = 1000 independent
runs, and TP denotes the average threshold percentile chosen by algorithm 2] FR denotes the failure rate, the number of
independent runs where algorithmreturned NaN, i.e., where no suitable estimate of £ could be obtained and no CVaR
estimate could be produced by the POT methods. This value is given at a sample size of n = 5000 since very few failures
occurred beyond this sample size. CP denotes the coverage probability achieved by our confidence interval at a sample size
n = 50000.

CvaR, UPOT BPOT SA TP FR CP
Burr(0.38, 4.0) 124.87  89.83 235.70 121.03 0.96 2 073
Burr(0.5, 3.0) 166.18 135.62 245.74 163.39 0.92 1 0.87
Burr(0.67,2.25) 17593 140.53 219.55 173.19 0.84 0 0.88
Burr(2.0, 0.75) 188.98 19148 180.22 190.34 0.80 0 094
Burr(3.33,0.45) 190.15 189.71 187.26 192.83 0.80 4 0.95
Fréchet(1.5) 188.96 18894 182.11 181.76 0.80 4 0.89
Fréchet(1.75) 81.32  81.88 7891 81.97 0.80 2 093
Fréchet(2.0) 44771 4476 4325 4452 0.80 I 094
Fréchet(2.25) 28.49  28.66 2775 2845 0.80 2 095
Fréchet(2.5) 20.02  20.07 19.49 1994 0.80 1 095
half-¢(1.5) 156.58 159.92 14589 17591 0.81 0 094
half-¢(1.75) 7452 7540 6949 7402 0.82 2 094
half-¢(2.0) 44770 4536 4229 4450 0.83 0 094
half-£(2.25) 30.74 3127 2926  30.68 0.84 1 095
half-£(2.5) 23.10 2334 2215 23.12 0.85 1 094

Table 2: Error values at sample size n = 50000.

RMSE Bias
UPOT BPOT SA UPOT BPOT SA

Burr(0.38, 4.0) 48.56 134.15 64.04 -35.03 110.83 -3.84
Burr(0.5, 3.0) 4771 121.18 124.71 -30.56  79.56 -2.78
Burr(0.67,2.25) 48.88 5897  81.34 -3541 43.62 -2.75
Burr(2.0, 0.75) 17.48 2227  88.48 2.50 -8.76 1.36
Burr(3.33,0.45)  13.83 19.40 128.88  -0.44 -2.89 2,67

Fréchet(1.5) 1947  21.31 69.35  -0.02 -6.85 -7.19
Fréchet(1.75) 6.10 7.07 2425 0.56 -2.41 0.65
Fréchet(2.0) 2.71 3.36 7.45 0.05 -1.47  -0.20
Fréchet(2.25) 1.50 1.90 3.21 0.16 -0.75  -0.05
Fréchet(2.5) 0.92 1.18 1.69 0.05 -0.52  -0.08
half-¢(1.5) 16.78  22.68 765.05 334  -10.69 19.33
half-¢(1.75) 6.11 872  16.40 0.89 -5.03  -0.50
half-¢(2.0) 3.58 4.92 7.62 0.66 -2.41  -0.20
half-#(2.25) 2.07 2.78 3.49 0.53 -1.48 -0.06
half-£(2.5) 1.44 1.88 2.06 0.23 -0.95  0.02
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