Bias-Corrected Peaks-Over-Threshold Estimation of the CVaR (Supplementary Material)

Jia Yuan Yu ³

¹Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada ²Department of Mathematics and Statistics, Concordia University, Montreal, Canada ³Concordia Institute for Information Systems Engineering, Concordia University, Montreal, Canada

A PROOFS

We first recall the stochastic order notation (e.g., Vaart [1998, Section 2.2]), which will be used throughout subsequent proofs.

Definition A.1 (Stochastic *o* and *O* symbols). Let X_n , R_n denote sequences of random variables. Then,

$$\begin{split} X_n &= o_p(R_n) \quad \text{means} \quad \forall \varepsilon > 0, \ \lim_{n \to \infty} \mathbb{P}(|X_n/R_n| > \varepsilon) = 0, \\ X_n &= O_p(R_n) \quad \text{means} \quad \forall \varepsilon > 0, \ \exists M, N > 0, \ \forall n > N, \ \mathbb{P}(|X_n/R_n| > M) < \varepsilon. \end{split}$$

The often used notation $X_n = o_p(1)$ means that X_n converges to zero in probability, and $X_n = O_p(1)$ means that X_n is bounded in probability.

A.1 PROOF OF THEOREM 3.1

We first state the following lemma, which is equivalent to Beirlant et al. [2003, Proposition 1] with different notation.

Lemma A.1. Suppose assumption 2.1 and assumption 2.2 hold. Then $\forall \varepsilon > 0$, $\exists t_0, \forall t, x \text{ such that } t \geq t_0 \text{ and } tx \geq t_0$,

$$(1-\varepsilon)e^{-\varepsilon|\log x|} \le \left[\frac{U(tx) - U(t)}{a(t)} - \frac{x^{\xi} - 1}{\xi}\right] / \left[A(t) I_{\xi,\rho}(x)\right] \le (1+\varepsilon)e^{\varepsilon|\log x|},\tag{1}$$

where

$$A(t) = \frac{tU''(t)}{U'(t)} - \xi + 1 \quad \text{and} \quad I_{\xi,\rho}(x) = \begin{cases} \frac{1}{\rho} \left(\frac{x^{\xi+\rho} - 1}{\xi+\rho} - \frac{x^{\xi} - 1}{\xi} \right), & \rho < 0, \ \xi + \rho \neq 0, \\ \frac{1}{\rho} \left(\log x - \frac{x^{\xi} - 1}{\xi} \right), & \rho < 0, \ \xi + \rho = 0, \\ \frac{1}{\xi} \left(x^{\xi} \log x - \frac{x^{\xi} - 1}{\xi} \right), & \rho = 0. \end{cases}$$

Proof. In Beirlant et al. [2003], the statement is given as $\forall \varepsilon > 0$, $\exists t_0, \forall t, x$ such that $t \ge t_0$ and $t + x \ge t_0$,

$$(1-\varepsilon)e^{-\varepsilon|x|} \le \left[\frac{V(t+x) - V(t)}{V'(t)} - \frac{e^{\xi x} - 1}{\xi}\right] / \left[\tilde{A}\left(e^{t}\right)\tilde{I}_{\xi,\rho}(x)\right] \le (1+\varepsilon)e^{\varepsilon|x|},\tag{2}$$

where

$$V(t) = (\bar{F})^{-1} (e^{-t}), \qquad \tilde{A}(t) = \frac{V''(\log t)}{V'(\log t)} - \xi, \qquad \tilde{I}_{\xi,\rho}(x) = I_{\xi,\rho}(e^x)$$

Then, for $t \ge 1$,

$$V(\log t) = (\bar{F})^{-1}(1/t) = (1/\bar{F})^{-1}(t) = U(t)$$

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

and

$$V'(\log t) = tU'(t) = a(t), \quad V''(\log t) = t^2 U''(t) + tU'(t) \quad \Rightarrow \quad \tilde{A}(t) = A(t).$$

Since log is strictly increasing, eq. (2) holds with log t and log x where log $t \ge t_0$ and log $tx \ge t_0$. Substituting expressions in eq. (2), we get eq. (1).

The following corollary will also be used in the main proof of this section.

Corollary A.1. An immediate consequence of lemma A.1 is for all x > 0,

$$\lim_{t \to \infty} \frac{\frac{U(tx) - U(t)}{a(t)} - \frac{x^{\xi} - 1}{\xi}}{A(t)} = I_{\xi,\rho}(x).$$
(3)

corollary A.1 can also be found in De Haan and Ferreira [2006, Theorem 2.3.12]. Before proving our main result of this section, we first recall the dominated convergence theorem which will be needed later.

Theorem A.1 (Dominated convergence theorem). Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of real-valued functions defined on $S \subset \mathbb{R}$ such that $\forall x \in S$, $\lim_{n \to \infty} f_n(x) \to f(x)$. If $\forall x \in S$, n,

$$|f_n(x)| \le g(x)$$

for some integrable (i.e., the integral is finite over S) function g, then

$$\lim_{n \to \infty} \int_{S} f_n(x) dx = \int_{S} \lim_{n \to \infty} f_n(x) dx = \int_{S} f(x) dx.$$

Proof of Theorem 3.1. We use corollary A.1 to derive a convergence result for the approximation error of the VaR, i.e, $q_{\alpha} - q_{u,\alpha}$. Then, using lemma A.1 and theorem A.1, we will be able to derive the convergence of $\epsilon_{u,\alpha}$.

For any $p \in (0, 1)$ and $y \in \text{dom } F$ such that F(y) = p,

$$\left(\frac{1}{\overline{F}}\right)(y) = \frac{1}{\overline{F}(y)} = \frac{1}{1-p},$$

which implies that

$$U\left(\frac{1}{1-p}\right) = \left(\frac{1}{\bar{F}}\right)^{-1} \left(1/(1-p)\right) = y.$$

Hence,

$$U(1/(1-\alpha)) = U(\tau_u\beta) = q_\alpha$$
 and $U(\tau_u) = u$

Then, from the definition of $q_{u,\alpha}$ we get

$$q_{u,\alpha} = u + \frac{\sigma(u)}{\xi} \left(\beta^{\xi} - 1\right) = U(\tau_u) + \frac{a(\tau_u)}{\xi} (\beta^{\xi} - 1).$$

Setting $D_u(\beta) = (q_\alpha - q_{u,\alpha})/(a(\tau_u)A(\tau_u))$, it then follows from the previous two equations and corollary A.1 with $t = \tau_u$, $x = \beta$ that

$$D_u(\beta) = \frac{U(\tau_u\beta) - U(\tau_u) - \frac{a(\tau_u)}{\xi}(\beta^{\xi} - 1)}{a(\tau_u)A(\tau_u)} = \frac{\frac{U(\tau_u\beta) - U(\tau_u)}{a(\tau_u)} - \frac{\beta^{\xi} - 1}{\xi}}{A(\tau_u)} \to I_{\xi,\rho}(\beta) \quad \text{as } u \to \infty.$$
(4)

From the definition of the GPD approximation error and the CVaR, for a fixed u, α ,

$$\frac{\epsilon_{u,\alpha}}{a(\tau_u)A(\tau_u)} = \frac{c_{u,\alpha} - c_{\alpha}}{a(\tau_u)A(\tau_u)} = -\frac{1}{1-\alpha} \int_{\alpha}^{1} \frac{q_{\gamma} - q_{u,\gamma}}{a(\tau_u)A(\tau_u)} d\gamma = -\beta \int_{\beta}^{\infty} \frac{D_u(x)}{x^2} dx,$$
(5)

where $D_u(x) = (q_\gamma - q_{u,\gamma})/(a(\tau_u)A(\tau_u))$ and we have used the substitution $x = \overline{F}(u)/(1-\gamma)$. We now apply the dominated convergence theorem to get the limiting behaviour of eq. (5) as $u \to \infty$. From lemma A.1, $\forall \varepsilon > 0$, $\exists u_0$ such that $\forall u \ge u_0, x \in [\beta, \infty)$,

$$\left|\frac{D_u(x)}{x^2}\right| \le (1+\varepsilon)x^{\varepsilon-2}I_{\xi,\rho}(x)$$

 $(1+\varepsilon)x^{\varepsilon-2}I_{\xi,\rho}(x)$ is integrable over $[\beta,\infty)$ as long as $\varepsilon < 1-\xi$. Since $\xi < 1$, let $\varepsilon = (1-\xi)/2$. Then theorem A.1 can be applied to $D_u(x)/x^2$. Setting $K_{\xi,\rho}(\beta) = -\beta \int_{\beta}^{\infty} [I_{\xi,\rho}(x)/x^2] dx$, it follows that

$$\lim_{u \to \infty} \frac{\epsilon_{u,\alpha}}{a(\tau_u)A(\tau_u)} = \lim_{u \to \infty} -\beta \int_{\beta}^{\infty} \frac{D_u(x)}{x^2} dx$$
$$= -\beta \int_{\beta}^{\infty} \lim_{u \to \infty} \frac{D_u(x)}{x^2} dx$$
$$= -\beta \int_{\beta}^{\infty} \frac{I_{\xi,\rho}(x)}{x^2} dx$$
$$= K_{\xi,\rho}(\beta),$$

where the last integral can be computed explicitly to obtain eq. (8).

A.2 PROOF OF THEOREM 4.2

First recall Slutsky's lemma (see, for example, Vaart [1998, Lemma 2.8]).

Lemma A.2 (Slutsky). Let X_n , X, Y_n be random vectors or variables. If $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} c$ for a constant c, then

- (i) $X_n + Y_n \stackrel{d}{\to} X + c;$ (ii) $X_n Y_n \stackrel{d}{\to} X c;$
- (iii) $X_n/Y_n \xrightarrow{d} X/c$ provided $c \neq 0$.

Proof of Theorem 4.2. First note that since \hat{A}_n and \hat{b}_n are consistent, i.e.,

$$\frac{\hat{A}_n}{A(n/k)} \xrightarrow{p} 1, \qquad \hat{b}_n \xrightarrow{p} b_{\xi,\rho},$$

then by lemma A.2, the fact that $\hat{\sigma}_{\text{MLE}}^{(n)}/a(n/k) \xrightarrow{p} 1$ (which follows from theorem 4.1), and the assumption of theorem 4.1 that $\lim_{n\to\infty} \sqrt{k}A(n/k) \rightarrow \lambda < \infty$,

$$\begin{split} \sqrt{k}\hat{A}_n \left(\hat{b}_n^{(1)}, \ \frac{\hat{\sigma}_{\text{MLE}}^{(n)}}{a(n/k)}\hat{b}_n^{(2)}\right) &= \sqrt{k}A(n/k)\frac{\hat{A}_n}{A(n/k)} \left(\hat{b}_n^{(1)}, \ \frac{\hat{\sigma}_{\text{MLE}}^{(n)}}{a(n/k)}\hat{b}_n^{(2)}\right) \\ & \stackrel{P}{\to} \lambda \left(b_{\xi,\rho}^{(1)}, \ b_{\xi,\rho}^{(2)}\right) \\ &= \lambda b_{\xi,\rho}. \end{split}$$

Then, by expanding terms and applying lemma A.2 once again,

$$\begin{split} \sqrt{k}(\hat{\xi}_n - \xi, \ \hat{\sigma}_n/a(n/k) - 1) &= \sqrt{k}(\hat{\xi}_{\text{MLE}}^{(n)} - \hat{A}_n \hat{b}_n^{(1)} - \xi, \ \hat{\sigma}_{\text{MLE}}^{(n)}(1 - \hat{A}_n \hat{b}_n^{(2)})/a(n/k) - 1) \\ &= \sqrt{k}(\hat{\xi}_{\text{MLE}}^{(n)} - \xi, \ \hat{\sigma}_{\text{MLE}}^{(n)}/a(n/k) - 1) - \sqrt{k} \hat{A}_n \left(\hat{b}_n^{(1)}, \ \frac{\hat{\sigma}_{\text{MLE}}^{(n)}}{a(n/k)} \hat{b}_n^{(2)} \right) \\ &\stackrel{d}{\to} N(\lambda b_{\xi,\rho}, \Sigma) - \lambda b_{\xi,\rho} \\ &= N(0, \Sigma). \end{split}$$

A.3 PROOF OF THEOREM 4.3

We first give the delta method, which can be found in, for example, Rémillard [2016, Appendix B.3.4.1].

Theorem A.2 (Delta method). Let $\hat{\theta}_n \in \mathbb{R}^m$ be a random vector based on a sample of size n. Suppose that $h : \mathbb{R}^m \mapsto \mathbb{R}$ is such that for i = 1, ..., m, $\frac{\partial h}{\partial \theta_i}$ exists and is continuous in a neighborhood of θ . If $\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{d}{\rightarrow} N(0, V)$, then

$$\sqrt{n}(h(\hat{\theta}_n) - h(\theta)) \stackrel{d}{\to} N(0, \nabla h(\theta)^\top V \nabla h(\theta)),$$

where $\nabla h(\theta)$ is the gradient of h evaluated at θ .

Next, we prove some useful lemmas which will be used in the proof of theorem 5.1.

Lemma A.3. Let X_1, \ldots, X_n be an i.i.d. sample with common cdf F, and suppose $k = k_n \to \infty$ and $k/n \to 0$ as $n \to \infty$. With $u = X_{(n-k,n)}$ and $\xi \in \mathbb{R}$,

$$\sqrt{k} \left((k\tau_u/n)^{\xi} - 1 \right) \stackrel{a}{\to} N(0,\xi^2).$$

Proof. Letting $h_{\xi}(x) = x^{-\xi}$,

$$\sqrt{k} \left((k\tau_u/n)^{\xi} - 1 \right) = \sqrt{k} \left((n\bar{F}(u)/k)^{-\xi} - 1 \right) = \sqrt{k} \left(h_{\xi}(n\bar{F}(u)/k) - h_{\xi}(1) \right).$$

From Beirlant et al. [2009, Theorem 3.1], we know that $\sqrt{k}(n\bar{F}(u)/k-1) \stackrel{d}{\rightarrow} N(0,1)$. Hence, by theorem A.2,

$$\sqrt{k} \left((k\tau_u/n)^{\xi} - 1 \right) \xrightarrow{d} N(0, h'_{\xi}(1) \cdot 1 \cdot h'_{\xi}(1)) = N(0, \xi^2)$$

Corollary A.2. Let $\alpha = \alpha_n = 1 - (1/\beta)k/n$ where $\beta > 1$ is a constant not depending on n. Then,

$$\sqrt{k}(s_{u,\alpha}^{\xi} - \beta^{\xi}) \xrightarrow{d} N(0, \xi^2 \beta^{2\xi}).$$

Proof.

$$s_{u,\alpha} = \bar{F}(u) \left(\frac{n}{k}\right) \frac{k}{n(1-\alpha)} = \beta n \bar{F}(u)/k = \frac{\beta n}{k\tau_u},$$

and so

$$\sqrt{k}(s_{u,\alpha}^{\xi} - \beta^{\xi}) = \beta^{\xi}\sqrt{k}((k\tau_u/n)^{-\xi} - 1) = -\beta^{\xi}(n\bar{F}(u)/k)^{\xi}\sqrt{k}((k\tau_u/n)^{\xi} - 1).$$
(6)

Beirlant et al. [2009, Theorem 3.1] implies that $n\bar{F}(u)/k \xrightarrow{p} 1$. Hence, lemma A.3 with eq. (6) implies

$$\sqrt{k}(s_{u,\alpha}^{\xi} - \beta^{\xi}) \xrightarrow{d} N(0, \xi^2 \beta^{2\xi}).$$

Lemma A.4. Suppose that the assumptions of theorem 4.1 hold. Then as $n \to \infty$,

$$\sqrt{k}\left(\frac{a(\tau_u)}{a(n/k)} - (k\tau_u/n)^{\xi}\right) = o_p(1).$$
(7)

Proof. Under assumption 2.1 and assumption 2.2, the following uniform inequality from De Haan and Ferreira [2006, Theorem 2.3.6] holds: for any $\varepsilon, \delta > 0$ there exists $t_0 = t_0(\varepsilon, \delta)$ such that for all $t, tx \ge t_0$,

$$\left|\frac{\frac{a(tx)}{a(t)} - x^{\xi}}{A(t)} - x^{\xi} \frac{x^{\rho} - 1}{\rho}\right| \le \varepsilon x^{\xi + \rho} \max\left(x^{\delta}, x^{-\delta}\right).$$
(8)

Hence, with t = n/k and $x = k\tau_u/n$, for any $\varepsilon, \delta > 0$ and with large enough n,

$$\begin{split} \sqrt{k} \left(\frac{a(\tau_u)}{a(n/k)} - (k\tau_u/n)^{\xi} \right) &= \sqrt{k} A(n/k) \left[\frac{\frac{a(\tau_u)}{a(n/k)} - (k\tau_u/n)^{\xi}}{A(n/k)} - (k\tau_u/n)^{\xi} \frac{(k\tau_u/n)^{\rho} - 1}{\rho} \right] \\ &+ \sqrt{k} A(n/k) (k\tau_u/n)^{\xi} \frac{(k\tau_u/n)^{\rho} - 1}{\rho} \\ &\leq \sqrt{k} A(n/k) \left| \frac{\frac{a(\tau_u)}{a(n/k)} - (k\tau_u/n)^{\xi}}{A(n/k)} - (k\tau_u/n)^{\xi} \frac{(k\tau_u/n)^{\rho} - 1}{\rho} \right| \\ &+ \sqrt{k} A(n/k) (k\tau_u/n)^{\xi} \frac{(k\tau_u/n)^{\rho} - 1}{\rho} \\ &\leq \sqrt{k} A(n/k) \varepsilon (k\tau_u/n)^{\xi + \rho} \max\left((k\tau_u/n)^{\delta}, (k\tau_u/n)^{-\delta} \right) \\ &+ \sqrt{k} A(n/k) (k\tau_u/n)^{\xi} \frac{(k\tau_u/n)^{\rho} - 1}{\rho}. \end{split}$$

Since $k\tau_u/n \xrightarrow{p} 1$ and $\sqrt{k}A(n/k) \to \lambda < \infty$ as $n \to \infty$ (by the assumption of theorem 4.1), and since ε can be made arbitrarily small as $n \to \infty$, both terms tend to 0 in probability as $n \to \infty$, hence eq. (7) follows.

The following corollary is an immediate result by combining lemma A.3 and lemma A.4.

Corollary A.3. Suppose that the assumptions of theorem 4.1 hold. Then,

$$\sqrt{k}\left(\frac{a(\tau_u)}{a(n/k)}-1\right) \xrightarrow{d} N(0,\xi^2).$$

Proof of Theorem 4.3. With $\alpha = 1 - (1/\beta)k/n$ and $u = X_{(n-k,n)}$,

$$\frac{\hat{c}_{\alpha}^{(n)}}{a(n/k)} = \frac{\hat{\sigma}_n/a(n/k)}{1-\hat{\xi}_n} \left(1 + \frac{\beta^{\hat{\xi}_n} - 1}{\hat{\xi}_n}\right) + \frac{u}{a(n/k)} = d_\beta(\hat{\xi}_n, \hat{\sigma}_n/a(n/k)) + \frac{u}{a(n/k)},$$

and recalling that $s_{u,\alpha} = \bar{F}(u)/(1-\alpha)$,

$$\frac{c_{u,\alpha}}{a(n/k)} = \frac{\sigma(u)/a(n/k)}{1-\xi} \left(1 + \frac{s_{u,\alpha}^{\xi} - 1}{\xi}\right) + \frac{u}{a(n/k)} \\ = \frac{1}{1-\xi} \left(1 + \frac{s_{u,\alpha}^{\xi} - 1}{\xi}\right) + \frac{\sigma(u)/a(n/k) - 1}{1-\xi} \left(1 + \frac{s_{u,\alpha}^{\xi} - 1}{\xi}\right) + \frac{u}{a(n/k)}.$$

Then for the first term,

$$\frac{1}{1-\xi} \left(1 + \frac{s_{u,\alpha}^{\xi} - 1}{\xi} \right) = \frac{1}{1-\xi} \left(1 + \frac{s_{u,\alpha}^{\xi} - 1 + \beta^{\xi} - \beta^{\xi}}{\xi} \right)$$
$$= \frac{1}{1-\xi} \left(1 + \frac{\beta^{\xi} - 1}{\xi} + \frac{s_{u,\alpha}^{\xi} - \beta^{\xi}}{\xi} \right)$$
$$= d_{\beta}(\xi, 1) + \frac{s_{u,\alpha}^{\xi} - \beta^{\xi}}{\xi(1-\xi)}.$$

Recalling that $\sigma(u) = a(\tau_u)$ and combining the previous expressions,

$$\frac{\sqrt{k}}{a(n/k)} \left(\hat{c}_{\alpha}^{(n)} - c_{u,\alpha} \right) = \sqrt{k} \left(d_{\beta}(\hat{\xi}_n, \hat{\sigma}_n/a(n/k)) - d_{\beta}(\xi, 1) \right) - \sqrt{k} \left(\frac{a(\tau_u)/a(n/k) - 1}{1 - \xi} \left(1 + \frac{s_{u,\alpha}^{\xi} - 1}{\xi} \right) + \frac{s_{u,\alpha}^{\xi} - \beta^{\xi}}{\xi(1 - \xi)} \right) = S - R, \quad (9)$$

where we have denoted each term by S and R, respectively. By the delta method (theorem A.2),

$$S \xrightarrow{d} N(0, \nabla d_{\beta}(\xi, 1)^{\top} \Sigma \nabla d_{\beta}(\xi, 1)).$$

For the second term, let

$$P = \sqrt{k} \left(\frac{a(\tau_u)}{a(n/k)} - (k\tau_u/n)^{\xi} \right) \quad \text{ and } \quad Q = \sqrt{k} \left((k\tau_u/n)^{\xi} - 1 \right).$$

Then $\sqrt{k}(a(\tau_u)/a(n/k) - 1) = P + Q$ and from eq. (6), $\sqrt{k}(s_{u,\alpha}^{\xi} - \beta^{\xi}) = -s_{u,\alpha}^{\xi}Q$. Hence,

$$R = \frac{1}{\xi(1-\xi)} \left[(P+Q)(\xi + s_{u,\alpha}^{\xi} - 1) - s_{u,\alpha}^{\xi} Q \right] = \frac{(\xi + s_{u,\alpha}^{\xi} - 1)}{\xi(1-\xi)} P - \frac{Q}{\xi}.$$

corollary A.2 implies that $s_{u,\alpha}^{\xi} = \beta^{\xi} + o_p(1)$ as $n \to \infty$ and from lemma A.4 we know that $P = o_p(1)$ as $n \to \infty$. By lemma A.3, $Q \xrightarrow{d} N(0, \xi^2)$, and so $R \xrightarrow{d} N(0, 1)$. Compared to *S*, the asymptotic variance of *R* is approximately 0, and we ignore its contribution in further calculations. Then, eq. (9) implies

$$\frac{\sqrt{k}}{a(n/k)} \left(\hat{c}_{\alpha}^{(n)} - c_{u,\alpha} \right) \xrightarrow{d} N \left(0, \nabla d_{\beta}(\xi, 1)^{\top} \Sigma \nabla d_{\beta}(\xi, 1) \right) = N(0, V),$$

where

$$\nabla d_{\beta}(\xi, 1) = \left[\frac{\partial d_{\beta}}{\partial x}(\xi, 1), \frac{\partial d_{\beta}}{\partial y}(\xi, 1) \right]^{\top},$$

with

$$\frac{\partial d_{\beta}}{\partial x}(\xi,1) = \frac{\beta^{\xi}(2\xi + \xi(1-\xi)\log\beta - 1)}{\xi^{2}(1-\xi)^{2}} + \frac{1}{\xi^{2}}, \quad \frac{\partial d_{\beta}}{\partial y}(\xi,1) = \frac{\beta^{\xi} + \xi - 1}{\xi(1-\xi)}.$$

A.4 PROOF OF THEOREM 5.1

We first prove the following lemma, which shows that when τ_u is replaced by n/k in theorem 3.1, the asymptotic behaviour of $\epsilon_{u,\alpha}$ is the same (in probability).

Lemma A.5. Suppose that the assumptions of theorem 4.1 hold. Let $\alpha = 1 - (1/\beta)k/n$ where $\beta > 1$ is a constant not depending on *n*. Then,

$$\frac{\epsilon_{u,\alpha}}{a(n/k)A(n/k)K_{\xi,\rho}(\beta)} \xrightarrow{p} 1.$$

Proof. We follow the same line of reasoning as in the proof of theorem 3.1. First, we have

$$\begin{split} q_{u,\alpha} &= u + \frac{\sigma(u)}{\xi} (s_{u,\alpha}^{\xi} - 1) \\ &= U(\tau_u) + \frac{a(\tau_u)}{\xi} (s_{u,\alpha}^{\xi} - 1) \\ &= U(n/k) + \frac{a(n/k)}{\xi} (\beta^{\xi} - 1) + U(\tau_u) - U(n/k) + \frac{1}{\xi} \left[a(\tau_u) (s_{u,\alpha}^{\xi} - 1) - a(n/k) (\beta^{\xi} - 1) \right] \\ &= U(n/k) + \frac{a(n/k)}{\xi} (\beta^{\xi} - 1) + U(\tau_u) - U(n/k) \\ &+ \frac{1}{\xi} \left[a(\tau_u) (s_{u,\alpha}^{\xi} - \beta^{\xi}) + (a(\tau_u) - a(n/k)) (\beta^{\xi} - 1) \right]. \end{split}$$

Given that $q_{\alpha} = U(1/(1-\alpha)) = U(n\beta/k)$,

$$\begin{aligned} \frac{q_{\alpha} - q_{u,\alpha}}{a(n/k)A(n/k)} &= \frac{\frac{U(n\beta/k) - U(n/k)}{a(n/k)} - \frac{\beta^{\xi} - 1}{\xi}}{A(n/k)} \\ &- \frac{U(\tau_u) - U(n/k)}{a(n/k)A(n/k)} - \frac{a(\tau_u)(s_{u,\alpha}^{\xi} - \beta^{\xi})}{\xi a(n/k)A(n/k)} - \left(\frac{a(\tau_u)}{a(n/k)} - 1\right) \frac{\beta^{\xi} - 1}{\xi A(n/k)} \\ &= I - II - III - IV. \end{aligned}$$

In what follows, terms *I-IV* will be analyzed separately then finally combined.

I: By corollary A.1, with t = n/k and $x = \beta$ we know that term I tends to $I_{\xi,\rho}(\beta)$ as $n \to \infty$.

II: Under assumption 2.1 and assumption 2.2, the following uniform inequality from De Haan and Ferreira [2006, Theorem 2.3.6] holds: for any $\varepsilon, \delta > 0$ there exists $t_0 = t_0(\varepsilon, \delta)$ such that for all $t, tx \ge t_0$,

$$\left|\frac{\frac{U(tx)-U(t)}{a(t)} - \frac{x^{\xi}-1}{\xi}}{A(t)} - \frac{x^{\xi+\rho}-1}{\xi+\rho}\right| \le \varepsilon x^{\xi+\rho} \max\left(x^{\delta}, x^{-\delta}\right).$$
(10)

We can write II as

$$II = \frac{\frac{U(\tau_u) - U(n/k)}{a(n/k)} - \frac{(k\tau_u/n)^{\xi} - 1}{\xi}}{A(n/k)} + \frac{(k\tau_u/n)^{\xi} - 1}{\xi A(n/k)}.$$

Hence, with t = n/k and $x = k\tau_u/n$, the first term tends to 0 in probability using eq. (10) and essentially the same arguments as in the proof of lemma A.4. So, by the assumption of theorem 4.1 that $\sqrt{k}A(n/k) \rightarrow \lambda < \infty$ as $n \rightarrow \infty$ and lemma A.3,

$$II = \frac{Q}{\xi\sqrt{k}A(n/k)} + o_p(1) = \frac{Z}{\lambda} + o_p(1), \quad n \to \infty,$$

where $Q = \sqrt{k}((k\tau_u/n)^{\xi} - 1)$ and Z denotes a standard normal random variable.

III: corollary A.3 implies that $a(\tau_u)/a(n/k) \xrightarrow{p} 1$ and by eq. (6), $s_{u,\alpha}^{\xi} - \beta^{\xi} = -s_{u,\alpha}^{\xi} Q/\sqrt{k}$. Corollary A.2 implies that $s_{u,\alpha}^{\xi} \xrightarrow{p} \beta^{\xi}$, and so

$$III = \frac{a(\tau_u)(s_{u,\alpha}^{\xi} - \beta^{\xi})}{\xi a(n/k)A(n/k)} = \frac{-s_{u,\alpha}^{\xi}Q}{\xi\sqrt{k}A(n/k)}(1 + o_p(1)) = -\frac{\beta^{\xi}}{\lambda}Z + o_p(1), \quad n \to \infty.$$

IV: With $P = \sqrt{k} \left(\frac{a(\tau_u)}{a(n/k)} - (k\tau_u/n)^{\xi} \right)$ and applying lemma A.4,

$$IV = \left(\frac{a(\tau_u)}{a(n/k)} - 1\right) \frac{\beta^{\xi} - 1}{\xi A(n/k)} = (P+Q)\frac{\beta^{\xi} - 1}{\xi \sqrt{k}A(n/k)} = \frac{\beta^{\xi} - 1}{\lambda}Z + o_p(1), \quad n \to \infty.$$

Now combining all terms, as $n \to \infty$,

$$\frac{q_{\alpha} - q_{u,\alpha}}{a(n/k)A(n/k)} = I - II - III - IV$$
$$= I_{\xi,\rho}(\beta) - \frac{Z}{\lambda} + \frac{\beta^{\xi}}{\lambda}Z - \frac{\beta^{\xi} - 1}{\lambda}Z + o_p(1) = I_{\xi,\rho}(\beta) + o_p(1), \quad n \to \infty.$$

Hence, following the same reasoning as in the proof of theorem 3.1,

$$\frac{\epsilon_{u,\alpha}}{a(n/k)A(n/k)} = \frac{c_{u,\alpha} - c_{\alpha}}{a(n/k)A(n/k)}$$
$$= -\frac{1}{1-\alpha} \int_{\alpha}^{1} \frac{q_{\gamma} - q_{u,\gamma}}{a(n/k)A(n/k)} d\gamma \xrightarrow{p} -\beta \int_{\beta}^{\infty} \frac{I_{\xi,\rho}(x)}{x^{2}} dx = K_{\xi,\rho}(\beta).$$

Proof of Theorem 5.1. First,

$$\hat{c}_{\epsilon,\alpha}^{(n)} - c_{\alpha} = \hat{c}_{\alpha}^{(n)} - \hat{\epsilon}_{\alpha}^{(n)} - c_{\alpha} = \hat{c}_{\alpha}^{(n)} - c_{u,\alpha} - \hat{\epsilon}_{\alpha}^{(n)} + c_{u,\alpha} - c_{\alpha} = \hat{c}_{\alpha}^{(n)} - c_{u,\alpha} - \hat{\epsilon}_{\alpha}^{(n)} + \epsilon_{u,\alpha}.$$

Hence,

$$\frac{\sqrt{k}(\hat{c}_{\epsilon,\alpha}^{(n)} - c_{\alpha})}{\hat{\sigma}_n} = \frac{\sqrt{k}(\hat{c}_{\alpha}^{(n)} - c_{u,\alpha})}{\hat{\sigma}_n} - \frac{\sqrt{k}(\hat{\epsilon}_{\alpha}^{(n)} - \epsilon_{u,\alpha})}{\hat{\sigma}_n}.$$
(11)

For the first term on the right-hand side of eq. (11),

$$\frac{\sqrt{k}(\hat{c}_{\alpha}^{(n)} - c_{u,\alpha})}{\hat{\sigma}_n} = \frac{a(n/k)}{\hat{\sigma}_n} \frac{\sqrt{k}(\hat{c}_{\alpha}^{(n)} - c_{u,\alpha})}{a(n/k)} \stackrel{d}{\to} N(0,V), \tag{12}$$

which follows from theorem 5.1 and applying lemma A.2 with the fact that $\hat{\sigma}_n/a(n/k) \xrightarrow{p} 1$.

For the second term, first recall that

$$\frac{\hat{\epsilon}_{\alpha}^{(n)}}{a(n/k)A(n/k)} = \frac{\hat{\sigma}_n \hat{A}_n \hat{K}_n}{a(n/k)A(n/k)} \xrightarrow{p} K_{\xi,\rho}(\beta),$$

which follows from lemma A.2 and the continuous mapping theorem. Then, under the assumption that $\sqrt{k}A(n/k) \rightarrow \lambda < \infty$ $(n \rightarrow \infty)$, it follows from lemma A.2 and lemma A.5 that

$$\frac{\sqrt{k}(\hat{\epsilon}_{\alpha}^{(n)} - \epsilon_{u,\alpha})}{\hat{\sigma}_n} = \frac{a(n/k)\sqrt{k}A(n/k)}{\hat{\sigma}_n} \left(\frac{\hat{\epsilon}_{\alpha}^{(n)} - \epsilon_{u,\alpha}}{a(n/k)A(n/k)}\right) = \lambda(1 + o_p(1))\left(K_{\xi,\rho}(\beta) - K_{\xi,\rho}(\beta) + o_p(1)\right) = o_p(1), \quad n \to \infty.$$
(13)

Combining the convergence in eq. (12) and eq. (13) with eq. (11), it follows that

$$\frac{\sqrt{k}(\hat{c}_{\epsilon,\alpha}^{(n)}-c_{\alpha})}{\hat{\sigma}_n} \xrightarrow{d} N(0,V),$$

and hence,

$$\frac{\sqrt{k}(\hat{c}_{\epsilon,\alpha}^{(n)} - c_{\alpha})}{\hat{\sigma}_n \sqrt{\hat{V}_n}} = \frac{\sqrt{k}(\hat{c}_{\epsilon,\alpha}^{(n)} - c_{\alpha})}{\hat{\sigma}_n \sqrt{V}} \frac{\sqrt{V}}{\sqrt{\hat{V}_n}} \xrightarrow{d} N(0,1)$$

which follows from the fact that $\hat{V}_n \xrightarrow{p} V$ (from the continuous mapping theorem) and lemma A.2.

A.5 CONSISTENCY OF A(n/k) ESTIMATOR

In Haouas et al. [2018], an estimator for $A_0(n/k)$ is given,¹ where the function A_0 satisfies the second-order condition of De Haan and Ferreira [2006, Theorem 2.3.9], where for all x > 0,

$$\lim_{t \to \infty} \frac{\frac{U(tx)}{U(t)} - x^{\xi}}{A_0(t)} = x^{\xi} \frac{x^{\rho} - 1}{\rho}.$$
(14)

Note that under assumption 2.1 and assumption 2.2, eq. (14) is satisfied. The relation between the function A defined in eq. (6) and A_0 is given in De Haan and Ferreira [2006, Table 3.1], where

$$A = \frac{\xi + \rho}{\xi} A_0. \tag{15}$$

We shall use this relation and an estimator for $A_0(n/k)$ to derive an estimator for A(n/k). To prove consistency of the forthcoming estimator, we start with the following relation from Haouas et al. [2018]:

$$\lim_{t \to \infty} \frac{A_0(t)}{R(t)} = 1,\tag{16}$$

¹The results of Haouas et al. [2018] are presented in the truncated data setting, where for a sample (X_i, Y_i) , i = 1, ..., n from a couple of independent random variables (X, Y), X_i is only observed when $X_i \leq Y_i$. Their results can be adapted to the non-truncation setting by assuming that $\mathbb{P}(X \leq Y) = 1$.

where

$$R(t) = \frac{(1-\rho^2)(M^{(2)}(t) - 2(M^{(1)}(t))^2)}{2\rho M^{(1)}(t)}, \quad M^{(j)}(t) = t \int_{U(t)}^{\infty} \log^j \left(x/U(t)\right) dF(x)$$

This leads to an estimator for $A_0(n/k)$ Haouas et al. [2018, p. 7],

$$\hat{A}_{0}^{(n)} = \frac{(1 - \hat{\rho}_{n}^{2})(\hat{M}_{n}^{(2)} - 2(\hat{M}_{n}^{(1)})^{2})}{2\hat{\rho}_{n}\hat{M}_{n}^{(1)}},$$

where $\hat{M}_n^{(j)}$ is an estimator for $M^{(j)}(n/k)$, given by

$$\hat{M}_{n}^{(j)} = \frac{1}{k} \sum_{i=1}^{k} [\log X_{(n-i+1,k)} - \log X_{(n-k,n)}]^{j},$$

which is also given in section 4. Note that $\hat{M}_n^{(1)}$ is the well-known Hill estimator of ξ . $\hat{M}_n^{(j)}$ is consistent for j = 1, 2 under the conditions of the following lemma.

Lemma A.6. Suppose that assumption 2.1 holds. If $k = k_n \rightarrow \infty$, $k/n \rightarrow 0$ as $n \rightarrow \infty$, then

$$\frac{\hat{M}_n^{(j)}}{M^{(j)}(n/k)} \xrightarrow{p} 1, \qquad j = 1, 2.$$

Proof. From Haouas et al. [2018, equation 1.9],

$$M^{(1)}(t) \to \xi$$
 and $M^{(2)}(t) \to 2\xi^2, \quad t \to \infty$

By De Haan and Ferreira [2006, Theorem 3.2.2], $\hat{M}_n^{(1)} \xrightarrow{p} \xi$, and by De Haan and Ferreira [2006, Equation 3.5.7], $\hat{M}_n^{(2)} \xrightarrow{p} 2\xi^2$. Hence, by lemma A.2,

$$\frac{\hat{M}_n^{(1)}}{M^{(1)}(n/k)} \to 1 \quad \text{and} \quad \frac{\hat{M}_n^{(2)}}{M^{(2)}(n/k)} \to 1, \quad n \to \infty.$$

From eq. (15), an estimator for A(n/k) is

$$\hat{A}_{n} \triangleq \frac{(\hat{\xi}_{\text{MLE}}^{(n)} + \hat{\rho}_{n})(1 - \hat{\rho}_{n})^{2}(\hat{M}_{n}^{(2)} - 2(\hat{M}_{n}^{(1)})^{2})}{2\hat{\xi}_{\text{MLE}}^{(n)}\hat{\rho}_{n}\hat{M}_{n}^{(1)}}$$

which is consistent under the conditions of the following lemma.

Lemma A.7. Suppose that the assumptions of theorem 4.1 hold. If $\hat{\rho}_n \xrightarrow{p} \rho$,

$$\frac{\hat{A}_n}{A(n/k)} \xrightarrow{p} 1$$

Proof. By theorem 4.1, $\hat{\xi}_{\text{MLE}}^{(n)} \xrightarrow{p} \xi$, and so by eq. (16) and eq. (15),

$$\frac{\hat{A}_n}{A(n/k)} = \frac{\hat{\xi}_{\text{MLE}}^{(n)} + \hat{\rho}_n}{\hat{\xi}_{\text{MLE}}^{(n)}} \cdot \frac{\xi}{\xi + \rho} \cdot \frac{\hat{A}_0^{(n)}}{A_0(n/k)} = (1 + o_p(1)) \frac{\hat{A}_0^{(n)} R(n/k)}{R(n/k)A_0(n/k)} = (1 + o_p(1)) \frac{\hat{A}_0^{(n)}}{R(n/k)},$$

as $n \to \infty$. By lemma A.6,

$$\frac{\hat{A}_{0}^{(n)}}{R(n/k)} = \frac{\rho(1-\hat{\rho}_{n}^{2})M^{(1)}(n/k)}{\hat{\rho}_{n}(1-\rho^{2})\hat{M}_{n}^{(1)}} \cdot \frac{\hat{M}_{n}^{(2)}-2(\hat{M}_{n}^{(1)})^{2}}{M^{(2)}(n/k)-2(M^{(1)}(n/k))^{2}} \\
= (1+o_{p}(1))\frac{\hat{M}_{n}^{(2)}-2(\hat{M}_{n}^{(1)})^{2}}{M^{(2)}(n/k)-2(M^{(1)}(n/k))^{2}},$$

. 1		-

as $n \to \infty$. From Gomes et al. [2002, p. 389],

$$\frac{\hat{M}_n^{(2)} - 2(\hat{M}_n^{(1)})^2}{A_0(n/k)} \xrightarrow{p} \frac{2\xi\rho}{(1-\rho)^2}$$

Hence,

$$\frac{\hat{M}_n^{(2)} - 2(\hat{M}_n^{(1)})^2}{M^{(2)}(n/k) - 2(M^{(1)}(n/k))^2} = (1 + o_p(1))\frac{2\xi\rho}{(1-\rho)^2} \cdot \frac{A_0(n/k)}{M^{(2)}(n/k) - 2(M^{(1)}(n/k))^2}, \quad n \to \infty.$$

Finally, combining eq. (16) with the fact that $M^{(1)}(n/k) \to \xi$ as $n \to \infty$,

$$\frac{A_0(n/k)}{M^{(2)}(n/k) - 2(M^{(1)}(n/k))^2} = (1 + o(1))\frac{(1 - \rho)^2}{2\rho M^{(1)}(n/k)} = (1 + o(1))\frac{(1 - \rho)^2}{2\rho\xi}, \quad n \to \infty$$

and thus

$$\frac{\hat{M}_n^{(2)} - 2(\hat{M}_n^{(1)})^2}{M^{(2)}(n/k) - 2(M^{(1)}(n/k))^2} \xrightarrow{p} 1 \quad \text{which implies} \quad \frac{\hat{A}_n}{A(n/k)} \xrightarrow{p} 1.$$

B ESTIMATION ALGORITHMS

B.1 ADAPTIVE ρ ESTIMATION

The ρ estimator given in section 4,

$$\hat{\rho}_n = \frac{3(T_n^{(\tau)}(m) - 1)}{T_n^{(\tau)}(m) - 3},$$

requires the choice of two parameters: a sample fraction m, and tuning parameter τ . Depending on the underlying distribution, the reliability of $\hat{\rho}_n$ can be very sensitive to the choice m and τ . The adaptive algorithm of [Caeiro and Gomes, 2015, Section 4.1] provides an automated way to select these parameters. We present a slightly modified version of their algorithm here, which we use in our experiments.

Algorithm 1: Adaptive algorithm for ρ estimation (ADARHO)

Input: An i.i.d. sample $X_1, ..., X_n$, test parameters $\tau_1, ..., \tau_q$, test sample fractions $m_1, ..., m_r$, precision p. **Output:** $\hat{\rho}_n$ 1 for i = 1, ..., q do

 $\begin{array}{l} \text{for } j = 1, \dots, r \text{ do} \\ \text{2} & \left| \begin{array}{c} \text{for } j = 1, \dots, r \text{ do} \\ \text{3} & \left| \begin{array}{c} \text{Compute } \hat{\rho}_n^{(\tau_i)}(m_j) \text{ using eq. (12), rounded to } p \text{ decimal places} \\ \text{end} \\ \text{5} & \left| \begin{array}{c} \text{set } m_{\min}^{(\tau_i)}, m_{\max}^{(\tau_i)} \text{ to be the minimum and maximum } m \text{ values associated with the longest run of consecutive} \\ \text{equal } \hat{\rho}_n^{(\tau_i)} \text{ values} \\ \text{6} & \left| \begin{array}{c} \text{set } l^{(\tau_i)} = m_{\max}^{(\tau_i)} - m_{\min}^{(\tau_i)} + 1, \text{ the length of the largest run} \\ \text{7 end} \\ \text{8} \text{ Set } k = \arg \max_{i=1,\dots,q} l^{(\tau_i)} \end{array} \right. \end{array}$

9 Set $\hat{\rho}_n$ to the median of $\hat{\rho}_n^{(\tau_k)}(m_{\min}^{(\tau_k)}), \hat{\rho}_n^{(\tau_k)}(m_{\min}^{(\tau_k)}+1), \dots, \hat{\rho}_n^{(\tau_k)}(m_{\max}^{(\tau_k)})$

B.2 AUTOMATED THRESHOLD SELECTION

The method of Bader et al. [2018] is as follows. Consider a fixed set of thresholds $u_1 < ... < u_l$, where for each u_i we have k_i excesses. The sequence of null hypotheses for each respective test i, i = 1, ..., l, is given by

 $H_0^{(i)}$: The distribution of the k_i excesses above u_i follows the GPD.

For each threshold u_i , let $\hat{\theta}_i = (\hat{\xi}_{u_i}^{(n)}, \hat{\sigma}_{u_i}^{(n)})$ denote the MLEs computed from the k_i excesses above u_i . The Anderson-Darling (AD) test statistic comparing the empirical threshold excesses distribution with the GPD is then calculated. Let $y_{(1)} < ... < y_{(k_i)}$ denote the ordered threshold excesses for test i, and apply the transformation $z_{(j)} = G_{\hat{\theta}_i}(y_{(j)})$, $j = 1, ..., k_i$, where G denotes the cdf of the GPD. The AD statistic for test i is then

$$A_i^2 = -k_i - \frac{1}{k_i} \sum_{j=1}^{k_i} (2j-1) \left[\log \left(z_{(j)} \right) + \log \left(1 - z_{(k_i+1-j)} \right) \right].$$
(17)

Corresponding *p*-values for each test statistic can then be found by referring to a lookup table (e.g., Choulakian and Stephens [2001]) or computed on-the-fly. Using the *p*-values p_1, \ldots, p_l calculated for each test, the ForwardStop rule of G'Sell et al. [2016] is used to choose the threshold. This is done by calculating

$$\hat{w}_F = \max\left\{w \in I \ \middle| \ -\frac{1}{w} \sum_{i=1}^w \log\left(1 - p_i\right) \le \gamma\right\},\tag{18}$$

where γ is a chosen significance parameter and $I \subseteq \{1, \ldots, l\}$, $I \neq \emptyset$. Under this rule, the threshold u_v is chosen, where $v = \min\{w \in I \mid w > \hat{w}_F\}$. If no \hat{w}_F exists, then no rejection is made and $u_{\min(I)}$ is chosen. If $\hat{w}_F = \max(I)$, then $u_{\max(I)}$ is chosen. The overall procedure is summarized in Algorithm 2.

Remark B.1. In the threshold selection procedure of Bader et al. [2018], \hat{w}_F is given with $I = \{1, \ldots, l\}$, but we make the modification that I is an arbitrary index set in view of CVaR estimation: since $c_{u,\alpha}$ tends to infinity when ξ tends to 1, in order to ensure reasonable estimates of the CVaR we use a cutoff parameter $\xi_{max} < 1$, where the MLE $\hat{\xi}_{u_i}^{(n)}$ and corresponding threshold u_i are discarded if $\hat{\xi}_{u_i}^{(n)} > \xi_{max}$.

Remark B.2. Instead of choosing the candidate thresholds u_1, \ldots, u_l directly, it is usually more convenient to choose threshold percentiles q_1, \ldots, q_l and compute u values via the empirical quantile function, i.e., $u_i = \hat{F}_n^{-1}(q_i)$.

Algorithm 2: Automated threshold selection (AUTOTHRESH)

Input: An i.i.d. sample $X_1, ..., X_n$, significance parameter γ , threshold percentiles $0 < q_1, ..., q_l < 1$, cutoff $\xi_{max} < 1$. **Output:** $(\hat{\xi}_{\text{MLE}}^{(n)}, \hat{\sigma}_{\text{MLE}}^{(n)}), u$ if $I \neq \emptyset$, otherwise return NaN

1 $I \leftarrow \emptyset$ **2** for i = 1, ... l do Set $u_i = \hat{F}_n^{-1}(q_i)$ 3 Compute $(\hat{\xi}_{u_i}^{(n)}, \hat{\sigma}_{u_i}^{(n)})$ from k_i threshold excesses using maximum likelihood 4 if $\hat{\xi}_{u_i}^{(n)} \leq \xi_{max}$ then 5 Compute A_i^2 using eq. (17) 6 Set p_i to p-value for A_i^2 using lookup table 7 $I \leftarrow I \cup \{i\}$ 8 end 9 10 end 11 if $I \neq \emptyset$ then Set $W = \{ w \in I \mid -\frac{1}{w} \sum_{i=1}^{w} \log(1 - p_i) \le \gamma \}$ 12 if $W \neq \emptyset$ then 13 Compute \hat{w}_F using eq. (18) 14 if $\hat{w}_F = \max(I)$ then 15 $v \leftarrow \max(I)$ 16 else 17 $v \leftarrow \min\{w \in I \,|\, w > \hat{w}_F\}$ 18 end 19 else 20 $v \leftarrow \min(I)$ 21 22 end $u \leftarrow u_v$ 23 $(\hat{\xi}_{\text{MLE}}^{(n)}, \hat{\sigma}_{\text{MLE}}^{(n)}) \leftarrow (\hat{\xi}_{u_v}^{(n)}, \hat{\sigma}_{u_v}^{(n)})$ 24 25 end

B.3 ALGORITHM TO COMPUTE THE UNBIASED POT ESTIMATOR

This section provides the algorithm used to compute UPOT in its entirety, which makes use of both algorithm 1 and algorithm 2. In our experiments, we set $\tau_1 = -1.5, \tau_2 = -1.25, \ldots, \tau_{13} = 1.5, m_1 = 100, m_2 = 200, \ldots, m_r = n - 1, p = 1$ in algorithm 1, and $\gamma = 0.1, q_1 = 0.79, q_2 = 0.80, \ldots, q_{20} = 0.98, \xi_{max} = 0.9$ in algorithm 2. Assume these choices of values in the following algorithm.

```
Algorithm 3: Unbiased peaks-over-threshold CVaR estimator (UPOT)
Input: An i.i.d. sample X_1, ..., X_n, confidence level \alpha
Output: \hat{c}_{\epsilon,\alpha}^{(n)}
   1 \mathbf{x} \leftarrow \text{AUTOTHRESH}(X_1, ..., X_n)
   2 if x is not NaN then
              (\hat{\xi}_{\text{MLE}}^{(n)}, \hat{\sigma}_{\text{MLE}}^{(n)}), u \leftarrow \mathbf{x}
   3
             \hat{\rho_n} \leftarrow \text{ADARHO}(X_1, ..., X_n)
   4
             Compute \hat{b}_n using eq. (14)
   5
             Compute \hat{A}_n using eq. (13) and the k threshold excesses above u
   6
             (\hat{\xi}_n, \hat{\sigma}_n) \leftarrow (\hat{\xi}_{\text{MLE}}^{(n)} - \hat{A}_n \hat{b}_n^{(1)}, \ \hat{\sigma}_{\text{MLE}}^{(n)} (1 - \hat{A}_n \hat{b}_n^{(2)}))
   7
             Compute \hat{\epsilon}_{\alpha}^{(n)} using eq. (18)
   8
             Compute \hat{c}_{\alpha}^{(n)} using eq. (16)
   9
             \hat{c}^{(n)}_{\epsilon,\alpha} \leftarrow \hat{c}^{(n)}_{\alpha} - \hat{\epsilon}^{(n)}_{\alpha}
  10
  11 end
```

Remark B.3. It may happen that Algorithm 3 fails if AUTOTHRESH returns NaN, in which case no suitable estimates of ξ are found. This is an indication that the underlying data distribution does not satisfy the condition $\xi < 1$ and the CVaR does not exist. To make Algorithm 3 robust, the sample average estimate is used as a fallback when the latter occurs. We report the failure rate of UPOT during experiments in table 1.

C EXAMPLES OF HEAVY-TAILED DISTRIBUTIONS

C.1 BURR

The Burr distribution with parameters c, d has cdf given by

$$F_{c,d}(x) = 1 - (1 + x^c)^{-d}, \quad c, d, x > 0.$$

The CVaR for the Burr distribution can be derived from its expression for the conditional moment given in Kumar [2017, Section 2.2]. If $X \sim \text{Burr}(c, d)$,

$$\operatorname{CVaR}_{\alpha}(X) = \frac{d[(1/q_{\alpha})^{c}]^{d-1/c}}{(1-\alpha)(d-1/c)} {}_{2}F_{1}\left(d-\frac{1}{c}, 1+d, d-\frac{1}{c}+1; -\frac{1}{q_{\alpha}}\right), \quad cd > 1,$$
(19)

where ${}_{2}F_{1}$ denotes the hypergeometric function and $q_{\alpha} = F_{c,d}^{-1}(\alpha)$. Values of ξ, ρ and functions a and A are given by

$$\xi = \frac{1}{cd}, \quad \rho = -\frac{1}{d}, \quad a(t) = \frac{t^{1/d}}{cd} \left(t^{1/d} - 1 \right)^{1/c-1}, \quad A(t) = \frac{1-c}{cd(t^{1/d} - 1)},$$

where a and A are defined for $t \ge 1$.

C.2 FRÉCHET

The Fréchet distribution with parameter γ has cdf given by

$$F_{\gamma}(x) = e^{-x^{-\gamma}}, \quad \gamma, x > 0.$$

If $X \sim \text{Fréchet}(\gamma)$,

$$\operatorname{CVaR}_{\alpha}(X) = (1-\alpha)^{-1} \left[\Gamma\left(\gamma - 1/\gamma\right) - \Gamma\left(\gamma - 1/\gamma, -\log(\alpha)\right) \right], \quad \gamma > 1,$$
(20)

where $\Gamma(\cdot)$ and $\Gamma(\cdot, \cdot)$ denote the gamma and upper incomplete gamma functions, respectively. Values of ξ , ρ and functions a and A are given by

$$\xi = \frac{1}{\gamma}, \quad \rho = -1, \quad a(t) = \frac{\log\left(\frac{t}{t-1}\right)^{-1-\frac{1}{\gamma}}}{\gamma(t-1)}, \quad A(t) = -\frac{1+\gamma+\gamma t\log(1-\frac{1}{t})}{\gamma(1-t)\log(1-\frac{1}{t})} - \frac{1}{\gamma},$$

where a and A are defined for $t \ge 1$.

C.2.1 Asymptotic variance of SA estimator for Fréchet distribution

An expression for the asymptotic variance (AVAR) of the SA estimator is given in [Trindade et al., 2007, Theorem 2]. Let Z be a continuous random variable such that $\mathbb{E}[Z^2]$ is finite. Then, for a confidence level α ,

$$\sqrt{n}\left(\operatorname{CVaR}_{\alpha}(Z) - \widehat{\operatorname{CVaR}}_{n,\alpha}(Z)\right) \xrightarrow{d} N(0,\theta^2),$$

where $\widehat{\text{CVaR}}_{n,\alpha}(Z)$ is the SA estimator given in eq. (3) and

$$\theta^2 = \frac{\operatorname{Var}([Z - q_{\alpha}]^+)}{(1 - \alpha)^2},$$

and $[x]^+ = \max\{0, x\}$. If $Z \sim \text{Fréchet}(\gamma)$, the condition that $\mathbb{E}[Z^2]$ is finite is equivalent to $\gamma > 2$. By the law of total expectation,

$$\mathbb{E}[[Z-q_{\alpha}]^{+}] = \mathbb{P}(Z \le q_{\alpha})\mathbb{E}[0] + \mathbb{P}(Z > q_{\alpha})\mathbb{E}[Z-q_{\alpha}|Z > q_{\alpha}] = (1-e^{-q_{\alpha}^{-\gamma}})\mathbb{E}[Z-q_{\alpha}|Z > q_{\alpha}].$$

The distribution of the conditional random variable on the right hand side has the same form as the excess distribution function, given in definition 2.4. Let

$$F_{\alpha,\gamma}(z) = \mathbb{P}(Z - q_{\alpha} \le z | Z > q_{\alpha}) = \frac{F_{\gamma}(z + q_{\alpha}) - F_{\gamma}(q_{\alpha})}{1 - F_{\gamma}(q_{\alpha})} = \frac{e^{-(z + q_{\alpha})^{-\gamma}} - e^{-q_{\alpha}^{-\gamma}}}{1 - e^{-q_{\alpha}^{-\gamma}}},$$
$$f_{\alpha,\gamma}(z) = F_{\alpha,\gamma}'(z) = \frac{\gamma(z + q_{\alpha})^{-\gamma - 1} e^{-(z + q_{\alpha})^{-\gamma}}}{1 - e^{-q_{\alpha}^{-\gamma}}}, \quad z > 0.$$

Hence,

$$\mathbb{E}[[Z - q_{\alpha}]^{+}] = \int_{0}^{\infty} \gamma(z + q_{\alpha})^{-\gamma - 1} z e^{-(z + q_{\alpha})^{-\gamma}} dz = \int_{q_{\alpha}}^{\infty} t^{-1/\gamma} e^{-t} dt = \Gamma(1 - 1/\gamma, q_{\alpha}), \quad \gamma > 1,$$

where $t = (z + q_{\alpha})^{-\gamma}$ and $\Gamma(\cdot, \cdot)$ denotes the upper incomplete gamma function. With a similar calculation, the second moment is

$$\mathbb{E}[([Z - q_{\alpha}]^{+})^{2}] = \Gamma(1 - 2/\gamma, q_{\alpha}), \quad \gamma > 2.$$

Finally, we can compute the AVAR of the SA estimator for the Fréchet distribution, which is

$$\frac{\theta^2}{n} = \frac{\mathbb{E}[([Z-q_{\alpha}]^+)^2] - \mathbb{E}[[Z-q_{\alpha}]^+]^2}{n(1-\alpha)^2} = \frac{\Gamma(1-2/\gamma, q_{\alpha}) - \Gamma(1-1/\gamma, q_{\alpha})^2}{n(1-\alpha)^2}, \quad \gamma > 2$$

C.3 HALF-T

If X follows the t distribution with ν degrees of freedom, then |X| follows the half-t distribution, which has cdf given by

$$F_{\nu}(x) = 2 - \mathcal{I}_{t(x)}\left(\frac{\nu}{2}, \frac{1}{2}\right), \quad \nu > 0, x \ge 0,$$

where $t(x) = \frac{\nu}{x^2 + \nu}$ and $\mathcal{I}_t(a, b)$ is the regularized incomplete Beta function. The CVaR for the half-t distribution can be derived from the expression for the CVaR of the t-distribution given in [Norton et al., 2019, Proposition 12]. If $X \sim \text{half-}t(\nu)$, then

$$\operatorname{CVaR}_{\alpha}(X) = 2 \frac{\nu + q_{\alpha}}{(\nu - 1)(1 - \alpha)} g_{\nu}(q_{\alpha}), \quad \nu > 1,$$

where g_{ν} is the probability density function of the standardized *t*-distribution, and $q_{\alpha} = T^{-1}\left(\frac{\alpha+1}{2}\right)$ where T^{-1} is the inverse of the cdf of standardized *t*-distribution. The half-*t* distribution is in MDA(H_{ξ}) with $\xi = 1/\nu$, and has $\rho = -2/\nu$ (Caeiro and Gomes [2015, Remark 2.1]). It does not seem possible to compute closed-form expressions for the functions *a* and *A* for the half-*t* distribution.

D NUMERICAL RESULTS

Figure 1: Absolute bias of estimating CVaR_{0.998} using UPOT (black), BPOT (red), and SA (blue).

Table 1: Data for all distributions used in experiments. CVaR_{α} denotes the exact CVaR value for $\alpha = 0.998$. Given at a sample size n = 50000, UPOT, BPOT, and SA denote the average estimated CVaR values across N = 1000 independent runs, and TP denotes the average threshold percentile chosen by algorithm 2. FR denotes the failure rate, the number of independent runs where algorithm 2 returned NaN, i.e., where no suitable estimate of ξ could be obtained and no CVaR estimate could be produced by the POT methods. This value is given at a sample size of n = 50000 since very few failures occurred beyond this sample size. CP denotes the coverage probability achieved by our confidence interval at a sample size n = 50000.

	CVaR_{α}	UPOT	BPOT	SA	TP	FR	СР
Burr(0.38, 4.0)	124.87	89.83	235.70	121.03	0.96	2	0.73
Burr(0.5, 3.0)	166.18	135.62	245.74	163.39	0.92	1	0.87
Burr(0.67, 2.25)	175.93	140.53	219.55	173.19	0.84	0	0.88
Burr(2.0, 0.75)	188.98	191.48	180.22	190.34	0.80	0	0.94
Burr(3.33, 0.45)	190.15	189.71	187.26	192.83	0.80	4	0.95
Fréchet(1.5)	188.96	188.94	182.11	181.76	0.80	4	0.89
Fréchet(1.75)	81.32	81.88	78.91	81.97	0.80	2	0.93
Fréchet(2.0)	44.71	44.76	43.25	44.52	0.80	1	0.94
Fréchet(2.25)	28.49	28.66	27.75	28.45	0.80	2	0.95
Fréchet(2.5)	20.02	20.07	19.49	19.94	0.80	1	0.95
half- <i>t</i> (1.5)	156.58	159.92	145.89	175.91	0.81	0	0.94
half- <i>t</i> (1.75)	74.52	75.40	69.49	74.02	0.82	2	0.94
half- $t(2.0)$	44.70	45.36	42.29	44.50	0.83	0	0.94
half- <i>t</i> (2.25)	30.74	31.27	29.26	30.68	0.84	1	0.95
half- <i>t</i> (2.5)	23.10	23.34	22.15	23.12	0.85	1	0.94

Table 2: Error values at sample size n = 50000.

	RMSE				Bias	
	UPOT	BPOT	SA	UPOT	BPOT	SA
Burr(0.38, 4.0)	48.56	134.15	64.04	-35.03	110.83	-3.84
Burr(0.5, 3.0)	47.71	121.18	124.71	-30.56	79.56	-2.78
Burr(0.67, 2.25)	48.88	58.97	81.34	-35.41	43.62	-2.75
Burr(2.0, 0.75)	17.48	22.27	88.48	2.50	-8.76	1.36
Burr(3.33, 0.45)	13.83	19.40	128.88	-0.44	-2.89	2.67
Fréchet(1.5)	19.47	21.31	69.35	-0.02	-6.85	-7.19
Fréchet(1.75)	6.10	7.07	24.25	0.56	-2.41	0.65
Fréchet(2.0)	2.71	3.36	7.45	0.05	-1.47	-0.20
Fréchet(2.25)	1.50	1.90	3.21	0.16	-0.75	-0.05
Fréchet(2.5)	0.92	1.18	1.69	0.05	-0.52	-0.08
half- $t(1.5)$	16.78	22.68	765.05	3.34	-10.69	19.33
half- <i>t</i> (1.75)	6.11	8.72	16.40	0.89	-5.03	-0.50
half- $t(2.0)$	3.58	4.92	7.62	0.66	-2.41	-0.20
half- <i>t</i> (2.25)	2.07	2.78	3.49	0.53	-1.48	-0.06
half- $t(2.5)$	1.44	1.88	2.06	0.23	-0.95	0.02

References

Brian Bader, Jun Yan, Xuebin Zhang, et al. Automated threshold selection for extreme value analysis via ordered goodnessof-fit tests with adjustment for false discovery rate. *The Annals of Applied Statistics*, 12(1):310–329, 2018.

- Jan Beirlant, J. P. Raoult, and Rym Worms. On the relative approximation error of the generalized Pareto approximation for a high quantile. *Extremes*, 6:335–360, 2003.
- Jan Beirlant, Elisabeth Joossens, and Johan Segers. Second-order refined peaks-over-threshold modelling for heavytailed distributions. *Journal of Statistical Planning and Inference*, 139(8):2800 – 2815, 2009. ISSN 0378-3758. doi: https://doi.org/10.1016/j.jspi.2009.01.006. URL http://www.sciencedirect.com/science/article/ pii/S0378375809000068.
- Frederico Caeiro and M. Ivette Gomes. Bias reduction in the estimation of a shape second-order parameter of a heavy-tailed model. *Journal of Statistical Computation and Simulation*, 85(17):3405–3419, 2015. doi: 10.1080/00949655.2014.975707.
- V Choulakian and M. A Stephens. Goodness-of-fit tests for the generalized Pareto distribution. *Technometrics*, 43(4): 478-484, 2001. doi: 10.1198/00401700152672573. URL https://doi.org/10.1198/00401700152672573.
- Laurens De Haan and Ana Ferreira. *Extreme Value Theory: An Introduction*. Springer-Verlag New York, 2006. doi: 10.1007/0-387-34471-3.
- M. Gomes, L. Haan, and L. Peng. Semi-parametric estimation of the second order parameter in statistics of extremes. *Extremes*, 5:387–414, 2002.
- Max Grazier G'Sell, Stefan Wager, Alexandra Chouldechova, and Robert Tibshirani. Sequential selection procedures and false discovery rate control. *Journal of the Royal Statistical Society Series B*, 78(2):423–444, March 2016. URL https://ideas.repec.org/a/bla/jorssb/v78y2016i2p423-444.html.
- Nawel Haouas, Abdelhakim Necir, and Brahim Brahimi. Estimating the second-order parameter of regular variation and bias reduction in tail index estimation under random truncation. *Journal of Statistical Theory and Practice*, 13, 10 2018.
- Devendra Kumar. The Singh–Maddala distribution: properties and estimation. *International Journal of System Assurance Engineering and Management*, 8, 03 2017. doi: 10.1007/s13198-017-0600-1.
- Matthew Norton, Valentyn Khokhlov, and Stan Uryasev. Calculating CVaR and bPOE for Common Probability Distributions With Application to Portfolio Optimization and Density Estimation. *Annals of Operations Research*, 2019. URL https://doi.org/10.1007/s10479-019-03373-1.
- Bruno Rémillard. Statistical methods for financial engineering. Chapman and Hall/CRC, 2016.
- A. Alexandre Trindade, Stan Uryasev, Alexander Shapiro, and Grigory Zrazhevsky. Financial prediction with constrained tail risk. *Journal of Banking & Finance*, 31(11):3524 3538, 2007. ISSN 0378-4266. doi: https://doi.org/10.1016/j.jbankfin. 2007.04.014. URL http://www.sciencedirect.com/science/article/pii/S0378426607001392. Risk Management and Quantitative Approaches in Finance.
- A. W. van der Vaart. *Asymptotic Statistics*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 1998. doi: 10.1017/CBO9780511802256.