
Supplementary material: Probabilistic selection of inducing points
in sparse Gaussian processes

A DERIVATION OF DEEP GAUSSIAN PROCESSES

For completeness we provide a derivation of the Deep Gaussian process models used in section 5. We follow Damianou and
Lawrence [2013] and Salimbeni and Deisenroth [2017] and consider the layer-wise composition of functions where each
function is endowed with a Gaussian process prior. By putting a prior and associated variational distribution on the inputs,
the GP-LVM (Lawrence [2004], Titsias and Lawrence [2010]) that we consider in Section 5.3 emerges as a special case.

Considering a process with L layers (that is, function compositions) with the joint likelihood:

p(Y, {F`}L`=1 | X) = p(Y | FL)p(FL | F`−1) . . . p(F2 | F1)p(F1 | X). (1)

We capitalise all variable names to let it reflect that the function and observed outputs may have multiple dimensions. We
assume w.l.o.g. that all functions have output dimensionality D. For notational convenience we define F0 , X.

In our implementation, we let the function evaluations factorise across output dimensions, and so the conditional probabilities
are given by:

p(F` | F`−1) =

D∏
1=d

N
(
f `,d | µ`,d,Σ`,d

)
, 0 ≤ ` ≤ L,

µ`,di = m`(F`−1i) Σ`,dij = κ`
(
F`−1i ,F`−1j

)
,

where f `,d are all function evaluations of output dimension d, and F`i is the i’th evaluation across dimensions. Note that
we could increase flexibility by using different kernel and mean functions for each dimension in a given layer, but for our
experiments we have not found that necessary.

The posterior over latent variables in (1) is p({F}L`=1 | X,Y) which we approximate with a variational posterior. As for the
standard sparse GP, we first augment all vectors of function evaluations with inducing points, {U`,Z`}L`=1, which are to be
marginalised out along with {F`}L`=1. The variational posterior, Q, then takes the form:

Q = q({F`,U`}L`=1)

=

L∏
`=1

p(F` | U`,F`−1,Z`)q(U`)

=

L∏
`=1

D∏
d=1

p(f `,d | u`,d,F`−1,Z`)q(u`,d).

Note that all dimensions for a given layer are informed by the same set of inducing inputs but different sets of inducing
outputs. Inserting this into the standard ELBO derivation, we obtain:

log p(Y | X) ≥
∫
Q log

p(Y, {F`,U`}L`=1 | X,Z)

Q
d{F`,U`}L`=1

=

∫
Q log

p(Y | FL){(((((((((
p(F` | U`,F`−1,Z`)p(U` | Z`)}L`=1

{(((((((((
p(F` | U`,F`−1,Z`)q(U`)}L`=1

d{F`,U`}L`=1

= EQ
[
log p(Y | FL)

]
−

L∑
`=1

D∑
d=1

KL[q(u`,d) ‖ p(u`,d | Z`)]. (2)

Defining q(u`,d) = N
(
u`,d |m`,d,S`,d

)
with (m`,d,S`,d) being variational parameters, the KL divergence terms of (2)

are all computable in closed form. Within each layer and for a specific dimension, the inducing outputs can be marginalised

out analytically yielding a distribution that factorises over datapoints:

q(f `,d | F`−1,Z`) =

∫
p(f `,d | u`,d,F`−1,Z`)q(u`,d | Z`) du`,d

=

N∏
i=1

N
(
f `,di | µ`,di ,

(
σ`,di

)2)
,

µ`,di = m`(F`−1i)−
(
α`i
)T

(m`,d −m`(Z`))

σ`,di = κ`(F`−1i ,F`−1i)−
(
α`i
)T

(κ`(Z`,Z`)− S`)α`i

α`i = κ`(Z`,Z`)−1κ(Z`,F`−1i)

Assuming that the likelihood is conditionally independent across both data points and dimensions, the entire expectation
in (2) decomposes into one-dimensional expectations, each of which relies only on one input observation as well as the
variational parameters:

EQ
[
log p(Y | FL)

]
=

N∑
i=1

D∑
d=1

Eqdi
[
log p(ydi | f

L,d
i)

]
,

qdi =

L∏
`=1

N
(
f `,di | µ`,di ,

(
σ`,di

)2)
. (3)

Since each distribution in (3) can be re-parameterised according to Kingma et al. [2015], the expectation in (2) is easily
optimised through Monte Carlo sampling as suggested in Salimbeni and Deisenroth [2017].

B INFERENCE USING THE RE-PARAMETERISATION TRICK

In section 3 we present a general inference scheme based on score function estimation that make very few assumptions
about the variational point process. However, when using a Possion point process it is possible to derive an inference scheme
based on the re-parametrisaiton trick which we include here for completeness.

We build on Maddison et al. [2017] who provide a method for stochastically estimating (φ, θ) of the expression
ED∼pφ(d)[gθ(D)] where D ∈ {0, 1}L is a one-hot encoding of a value drawn from a multinomial distribution with
probabilities φ = (φ1, φ2, . . . , φL):

p[D` = 1] = φi,

L∑
`=1

D` = 1.

The approach is conceptually the same as in [Kingma et al, 2015] in that the instantiations of D ∼ pθ(d) is re-written
as D = hφ(T), T ∼ π(t) where hφ is a discrete (and so non-differentiable), deterministic function and π(t) is an
(unparameterised) distribution over the domain of hφ. This allows us to move φ inside the expectation:

ED∼pφ(d)[gθ(D)] = ET∼π(t)[gθ(hφ(T))].

By further making a continuous relaxation of hφ, the expectation can be approximated and maximised through Monte Carlo
sampling. This relaxation is governed by a temperature parameter, that controls how closely the continuous approximations
resembles a true one-hot vector. Lower temperature means more accurate approximations but also reduces the amount of
gradient information that can be communicated between states of d.

To apply this method for our point process estimation, we first introduce a binary vector, b ∈ [0, 1]K , that indicates which
inducing points are present in a given sample Z ⊆ Z?, i.e. bk = 1⇔ zk ∈ Z. Next, we construct a new expression for the
bound, L̂(Z?;b), that takes the entire candidate set as input and masks out those inducing points for which bk = 0, such
that L̂(Z?;b) = L(Z). This construction is presented in B.1. If we now have a distribution over binary vectors, qλ(b), that
is equivalent to qλ(Z) in the sense that the same subsets are given same probabilities, then:

Eqλ(Z) [L(Z)] = Eqλ(b)
[
L̂(Z?;b)

]
. (4)

When qλ(Z) is a discrete Poisson point process, the equivalent distribution over b is

qλ(b) =

K∏
k=1

λbkk (1− λk)1−bk .

Substituting this into (4), we have

Eqλ(b)[L̂(Z?;b)] = Eq(b1)[Eq(b2)[· · · [Eq(bK)[L̂(Z?;b)]] · · ·]],

where q(bk) = Bernoulli(λk). Now, each of q(bk) can be re-parameterised, yielding an expression that is compatible with
the formulation from Maddison et al. [2017].

B.1 MASKING THE BOUND

The masked bound, L̂(Z?;b), is obtained by evaluating the usual bound from (1) over the entire candidate set, Z?, but under
a modified GP with the following mean and kernel function:

m̂b(x) = m(x) ·∆(x,b)

κ̂b(x,x′) = κ(x,x′) ·∆(x,b) ·∆(x′,b) if x 6= x′

κ̂b(x,x) = ∆(x,b)(κ(x,x)− 1) + 1

∆(x,b) =

M∏
j=1

b
δ(x−zj)
j .

Despite the somewhat convoluted expressions, the above procedures can be carried out efficiently as vector manipulations of
the mean vector and covariance matrix.

The updated mean and kernel function has the effect of factorising the complement evaluations, uC = f(Z?) \ u, into a
standard normal:

p(y, f ,uC | X,Z?) = p(y, f | X,Z)p(uC), p(uC) = N (uC | 0, I) .

Note, that this also implies that any Gram matrix produced by κ̂b is positive semi-definite and so GP(m̂b, κ̂b) remains a
valid Gaussian process. Assuming that a similar factorisation holds for our variational distribution s.t. q(f ,uC) = q(f)p(uC)
(which is the case under e.g. the collapsed bound), we have

L(Z?;b) =

∫
q(f ,uC) log

p(y, f ,uC | X,Z?)
q(f ,uC)

d[f ,uC]

=

∫
q(f)p(uC) log

p(y, f | X,Z)p(uC)

q(f)p(uC)
d[f ,uC]

= L(Z).

As such, we have an equivalent expression for L(Z) that lends itself to the reparameterisation trick when qλ(b) is a Poisson
point process.

B.2 COMPARISON TO SCORE FUNCTION ESTIMATION

Empirical evidence suggests that our method, when relying on this technique for maximising (2), produce comparable
results as the score function estimator when applied to non-deep models. However, in deep models there is a considerable
propagation of noise through the layers which is induced by the continuous relaxation of the Bernoulli distributions in (4).
This makes it difficult to get stable estimates of λ, especially in the “deeper” layers, prompting us to focus primarily on the
score function estimator in this work.

In terms of efficiency, the re-parameterisation approach does not require multiple samples per optimisation step as is the
case for SFE. However, SFE only needs to evaluate L(Z) for those inducing points, that have been sampled from the from
the candidate set, while the re-parameterisation approach always include all points. When a high level of sparsity is induced
by the prior, this makes SFE notably more efficient.

C EXPERIMENTAL SETUPS

In the following, we provide the implementation details and experimental setups necessary for recreating our results.

C.1 IMPLEMENTATION

Our implementation relies on the GPyTorch framework (Gardner et al. [2018]) which enables modular construction of exact
and sparse Gaussian process models with GPU acceleration. We ran the experiments on a RTX 2080 TI GPU system. All
experiments pertaining to computation speed were run on the dedicated computing server.

All of our Gaussian process priors used a zero mean function and radial basis function (RBF) kernel with Automatic
Relevance Detection (ARD). We used the Adam optimiser (Kingma and Ba [2014]) with fixed learning rate of 0.01 for all
the free parameters except those related to the variational point process, which had a fixed learning rate 0.2. In each iteration
of (3) we drew 4 samples from qλ(Z).

All hyper-parameters (lengthscale and variance of the RBF kernels and, for regression, Gaussian noise variance) were
initialised to 1. The inducing inputs were initialised to a random subset of observed inputs. We note, however, that we
compared against other common initialisation methods (e.g. Latin hyper-cube sampling and K-means clustering) without
noting any difference in performance.

All input and output data was standardised before fitting the model. However, any predictive likelihood reported was
evaluated in the original rather than the scaled space.

C.2 TRAINING PHASES

In the informativeness and DGP experiments we found it useful to divide the inference into three phases where we would
first pre-train without the Poisson point process (PPP), then include the PPP in the training, sample a subset of inducing
points from the PPP, and finally post-train with only those points and without the PPP. In the following we will refer to the
number of epochs used for each phase as respectively npre, nPPP, and npost.

C.3 INFORMATIVENESS EXPERIMENT

C.3.1 Synthetic data

In the experiment for synthetic data of Section 5.1 we considered three generative characteristic: 1. observation noise,
2. kernel smoothness, and 3. input clustering, each of which were evaluated with different “intensity” levels. For each
combination of condition and intensity, we sampled 500 observations from the following, generative model:

x ∼ p(x),

f ∼ GP(0, κ(x,x′; γ)),

y ∼ N
(
f , Iσ2

)
.

Here, κ is an RBF kernel with variance 1.0 and lengthscale γ. To generate data for condition 1 and 2. we set each p(x) to a
uniform distribution over [0, 100]. The intensities were then given by γ for condition 1 and σ for condition 2. To generate
data for condition 3, we set p(x) to a homogeneous mixture of 5 normal distributions, {N

(
uj , β

−1)}5j=1, with equidistant
means distributed over the input domain, X = [0, 100]. The intensity was then given by the shared precision, β; i.e. higher
values yields more clustering, and as β → 0 the mixture converges weakly to a uniform distribution. The default values for
the intensity parameters were σ = 0.1, γ = 1.0.

All baselines models of the experiment were trained for 1000 epochs. For the adaptive method we fixed the prior parameter
α to 0.05 and used npre = 200, nPPP = 600, npost = 200.

C.3.2 Real-world data

For the real-world data we corrupted the original outputs, y, with additive, standard Gaussian noise scaled by a constant
factor:

ŷ = y + ε · σ̂(y) · v, ε ∼ N (0, 1) ,

where σ̂(y) is the empirical standard deviation of the observed outputs. The constant v ∈ [0, 1) determines the level of
corruption and is the value reported in Figure 4. The baselines models were trained for 5000 epochs. For the adaptive method
we used npre = 2500, nPPP = 1500, npost = 1000. The prior parameters α needed to be configured for each dataset as more
observations will tend to diminish the influence of the prior. The configurations are listed in Table 1.

Dataset N D Noise levels α
UCI Concrete 1030 8 [0.0, 0.2, 0.3, 0.4] 0.01
UCI Energy 768 8 [0.0, 0.05, 0.1, 0.15] 0.05
UCI Kin8nm 8192 8 [0.0, 0.2, 0.3, 0.4] 0.1
UCI Protein 45730 9 [0.0, 0.3, 0.5, 0.7] 0.2

Table 1: Specifications for the informativeness experiment carried out on real-world benchmark datasets.

C.4 DEEP GAUSSIAN PROCESS

For all DGP experiment in Section 5.2 we first trained the layers individually for 200 epochs each. In the gridsearch we then
fitted both layers for another 3000 epochs. For the adaptive method we used npre = 1000, nPPP = 500, npost = 1500.

C.5 GPLVM

For the GPLVM we did not divide into different training phases as in the other experiments. Rather, we included the PPP in
the entire training and learned probability of inclusion along with the SVGP function and latent representation. The prior
parameter, α, was fixed to 3. We used the qPCR dataset from https://github.com/sods/ods which holds 437
observations, each with 48 outputs (cell stages).

https://github.com/sods/ods

REFERENCES

A. Damianou and N. Lawrence. Deep Gaussian Processes. In Proceedings of the International Conference on Artificial
Intelligence and Statistics, pages 207–215, 2013.

J. R. Gardner, G. Pleiss, D. Bindel, K. Q. Weinberger, and A. G. Wilson. GPyTorch: Blackbox matrix-matrix Gaussian
process inference with GPU acceleration. In Advances in Neural Information Processing Systems, 2018.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

D. P. Kingma, T. Salimans, and M. Welling. Variational dropout and the local reparameterization trick. arXiv preprint
arXiv:1506.02557, 2015.

N. D. Lawrence. Gaussian process latent variable models for visualisation of high dimensional data. In Advances in Neural
Information Processing Systems, pages 329–336, 2004.

C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A continuous relaxation of discrete random variables. In
International Conference on Learning Representations, 2017.

H. Salimbeni and M. P. Deisenroth. Doubly stochastic variational inference for deep Gaussian processes. In Advances in
Neural Information Processing Systems, pages 4589–4600, 2017.

M. Titsias and N. D. Lawrence. Bayesian Gaussian process latent variable model. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, pages 844–851, 2010.

	Derivation of deep Gaussian processes
	Inference using the re-parameterisation trick
	Masking the bound
	Comparison to score function estimation

	Experimental setups
	Implementation
	Training phases
	Informativeness experiment
	Synthetic data
	Real-world data

	Deep Gaussian Process
	GPLVM

