
Know Your Limits: Uncertainty Estimation with ReLU Classifiers Fails at
Reliable OOD Detection (Supplementary material)

Dennis Ulmer1 Giovanni Cinà2

1ITU Copenhagen, Copenhagen, Denmark
2Pacmed BV, Amsterdam, Netherlands,

A ADDITIONAL PROOFS

This appendix section contains additional proofs and deriva-
tions that could not be included in the main paper due to
spatial constraints.

A.1 CONNECTION BETWEEN SOFTMAX AND
SIGMOID

In this section we briefly outline the connection between
the softmax and the sigmoid function, which was originally
shown in Bridle [1990]. Let the sigmoid function be defined
as

σ(x) =
exp(x)

1 + exp(x)

and softmax according to the definition Section 3.3. The
output of fθ in a multi-class classification problem with C
classes corresponds to a C-dimensional column vector that
is based on an affine transformation of the network’s last
intermediate hidden representation xL, such that fθ(x) =
WL xL.1 Correspondingly, the output of fθ for a single
class c can be written as the dot product between xL and
the corresponding row vector of WL denoted as w(c)

L , such
that fθ(x)c ≡ w

(c)T
L xL. For a classification problem with

C = 2 classes, we can now rewrite the softmax probabilities
in the following way:2

pθ(y = 1|x) =
exp(w

(1)T
L xL)

exp(w
(0)T
L xL) + exp(w

(1)T
L xL)

Subtracting a constant from the weight term inside the expo-
nential function does not change the output of the softmax
function. Using this property, we can show the sigmoid

1The bias term bL was omitted here for clarity.
2The following argument holds without loss of generality for

pθ(y = 0|x).

function to be a special case of the softmax for binary clas-
sification:

pθ(y = 1|x)

=
exp((w

(1)
L −w

(0)
L)T xL)

exp((w
(0)
L −w

(0)
L)T xL) + exp((w

(1)
L −w

(0)
L)T xL)

=
exp((w

(1)
L −w

(0)
L)T xL)

1 + exp((w
(1)
L −w

(0)
L)T xL

=
exp(w∗TL xL)

1 + exp(w∗TL xL)

where w∗L = w
(1)
L −w

(0)
L corresponds to the new parameter

vector which is used to parametrize a single output unit for
a network in the binary classification setting.

A.2 LINEARIZATION OF RELU NETWORKS

In the section we give a more detailed version of the deriva-
tion of the linearization fθ(x) = V(x)x+a(x) with

V(x) = WL

(L−1∏
l=1

Φl(x)WL−l

)

a(x) = bL +

L−1∑
l=1

(L−l∏
l′=1

WL+1−l′ ΦL−l′(x)

)
bl

We start from Equation 6:

fθ(x) =WL ΦL−1(x)
(
WL−1 ΦL−2(x)

(
. . .

Φ1(x)
(
W1 x+b1

)
. . .
)

+ bL−1
)

+ bL

To make the steps more intuitive and to retain readability,
we illustrate the necessary steps on a simple three layer
network:

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

mailto:<dennis.ulmer@mailbox.org>
mailto:<giovanni.cina@pacmed.nl>

fθ(x) =W3 Φ2(x)
(
W2 Φ1(x)

(
W1 x+b1) + b2) + b3

=W3 Φ2(x)
(
W2 Φ1(x)W1 x+W2 Φ1(x)b1)

+ b2) + b3

=W3 Φ2(x)W2 Φ1(x)W1︸ ︷︷ ︸
=V(x)

x

+ W3 Φ2(x)W2 Φ1(x)b1 +W3 Φ2(x)b2 +b3︸ ︷︷ ︸
=a(x)

which we can identify as the parts of the affine transforma-
tion above.

A.3 CONSTRUCTION OF POLYTOPAL REGIONS

In this section, we reiterate the reasoning by Hein et al.
[2019] behind the construction the polytopal regions. For
this purpose, the authors define an additional diagonal ma-
trix ∆l(x) per layer l:

∆l(x) =

sign(f lθ(x)1) · · · 0
...

. . .
...

0 · · · sign(f lθ(x)nl
)

Together with the linearization of the network at x explained
in Appendix A.2, this is used to define a set of half-spaces
for every neuron in the network:

Hl,i(x) =
{
z ∈ Rd

∣∣∣ ∆l(x)
(
Vl(x)i z+al(x)i

)
≥ 0
}

Here, Vl(x)i and bl(x)i denote the parts of the affine trans-
formation obtained for the i-th neuron of the l-th layer, so
the i-th row vector in Vl(x) and the i-th scalar in bl(x), re-
spectively. Finally, the polytope Q containing x is obtained
by taking the intersection of all half-spaces induced by every
neuron in the network:

Q(x) =
⋂

l∈1,...,L

⋂
i∈1,...,nl

Hl,i(x)

A.4 PROOF OF PROPOSITION 1

We proceed to analyze the behaviour of gradients in the
limit via two more lemmas; First, we establish the saturating
property of the softmax in Lemma 9, i.e. the model doesn’t
change its decision anymore in the limit.

Lemma 9. Let c, c′ ∈ C be two arbitrary classes. It then
holds for their corresponding output components (logits)
that

lim
fθ(x)c→±∞

∂

∂fθ(x)c′
σ̄(fθ(x))c = 0 (1)

Figure 1: Illustration taken from the work of Gao and Pavel
[2017], illustrating the interplay of softmax probabilities
between components for C = 2 in R2.

Proof. Here, we first begin by evaluating the derivative of
one component of the function w.r.t to an arbitrary compo-
nent:

∂

∂fθ(x)c′
σ̄(fθ(x))c =

∂

∂fθ(x)c′

exp(fθ(x)c)∑
c′′∈C exp(fθ(x)c′′)

=
1(c = c′) exp(fθ(x)c)∑

c′′∈C exp(fθ(x)c′′)
− exp(fθ(x)c) exp(fθ(x)c′)(∑

c′′∈C exp(fθ(x)c′′)
)2

This implies that ∂
∂fθ(x)c′

σ̄(fθ(x))c =

− exp(2fθ(x)c)(∑
c′′∈C exp(fθ(x)c′′)

)2
+

exp(fθ(x)c)∑
c′′∈C exp(fθ(x)c′′)

If c = c′

− exp(fθ(x)c + fθ(x)c′)(∑
c′′∈C exp(fθ(x)c′′)

)2 If c 6= c′

(2)

or more compactly:

∂

∂fθ(x)c′
σ̄(fθ(x))c = σ̄(fθ(x))c

(
1(c = c′)−σ̄(fθ(x))c′

)
Based on Equation 2, we can now investigate the asymptotic
behavior for fθ(x)c → ∞ more easily, starting with the
c = c′ case:

lim
fθ(x)c→∞

∂

∂fθ(x)c′
σ̄(fθ(x))c

= lim
fθ(x)c→∞

− exp(fθ(x)c)∑
c′′∈C exp(fθ(x)c′′)

exp(fθ(x)c)∑
c′′∈C exp(fθ(x)c′′)︸ ︷︷ ︸

-1

+ lim
fθ(x)c→∞

exp(fθ(x)c)∑
c′′∈C exp(fθ(x)c′′)︸ ︷︷ ︸

1

= 0

(3)

With the numerator and denominator being dominated by
the exponentiated fθ(x)c in Equation 3, the first term will

tend to−1, while the second term will tend to 1, resulting in
a derivative of 0. The c 6= c′ can be analyzed the following
way:

lim
fθ(x)c→∞

∂

∂fθ(x)c′
σ̄(fθ(x))c

= lim
fθ(x)c→∞

(
− exp(fθ(x)c)∑

c′′∈C exp(fθ(x)c′′)

)
︸ ︷︷ ︸

−1

· lim
fθ(x)c→∞

(
exp(fθ(x)c′)∑

c′′∈C exp(fθ(x)c′′)

)
︸ ︷︷ ︸

0

= 0

(4)

Again, we factorize the fraction in Equation 4 into the
product of two softmax functions, one for component c, one
for c′. The first factor will again tend to −1 as in the other
case, however the second will approach 0, as only the sum
in the denominator will approach infinity. As the limit of
a product is the products of its limits, this lets the whole
expression approach 0 in the limit.

When fθ(x)c → −∞, both cases approach 0 due to the
exponential function, which proves the lemma.

How to interplay between different softmax components
produces zero gradients in the limit is illustrated in Figure 1.
In Lemma 10, we compare the rate of growth of different
components of pθ. We show that for the decomposed func-
tion pθ , the rate at which the softmax function converges to
its output distribution in the limit outpaces the change in the
underlying logits w.r.t. the network input.

Lemma 10. Suppose that fθ is a ReLU-network. Let x′ ∈
RD, suppose α is a scaling vector and that the associated
PUP P(x′, d) has a corresponding matrix V with no zero
entries. Then it holds that

∀c′ ∈ C, lim
αd→∞

(
∂

∂fθ(x)c′
σ̄(fθ(x))c

)−1∣∣∣∣
x=α�x′

−
(

∂

∂xd
fθ(x)c′

)∣∣∣∣
x=α�x′

=∞
(5)

Proof. We evaluate the first term of Equation 5 to show that
it grows exponentially in the limit. By Lemma 2 we know
that in the limit αd → ∞ the vector α�x′ will remain
within P(x′, d). Since the matrix associated with this PUP
has no zero entries, we know by Lemma 1 that the gradient
of fθ(x)c on dimension d is either always positive or nega-
tive, hence fθ(x)c → ±∞. Given Lemma 9 describing the
asymptotic behavior in the limit, it follows that

lim
fθ(x)c→±∞

(
∂

∂fθ(x)c′
σ̄(fθ(x))c

)−1
=∞

where we can see that the result is a symmetrical function
displaying exponential growth in the limit of fθ(x)c →
±∞. We now show that because we assumed fθ to be a
neural network consisting of L affine transformations with
ReLU activation functions, the output of the final layer is
only going to be a linear combination of its inputs.3 This
can be proven by induction. Let us first look at the base
case L = 1. In the rest of this proof, we denote xl as the
input to layer l, with x1 ≡ x, and Wl,bl the correspond-
ing layer parameters. al signifies the result of the affine
transformation that is then fed into the activation function.

fθ(x) = φ(a1) = φ(W1 x1 +b1)

∂fθ(x)

∂ x1
=
φ(a1)

∂ a1

∂ a1
∂ x1

= 1(x1 > 0)T W1

∂fθ(x)

∂x1d
= 1(xd > 0)w1d

(6)

where 1(x1 > 0) = [1(x11 > 0), . . . ,1(x1d > 0)]T , w1d

denotes the d-th column of W1. This is a linear function,
which proves the base case. Let now ∂ xl

∂ x1
denote the partial

derivative of the input to the l-th layer w.r.t to the input
and suppose that it is linear by the inductive hypothesis.
Augmenting the corresponding network by another linear
adds another term akin to the second expression in Equation
6 to the chain of partial derivatives:

∂ xl+1

∂ x1
=
∂ xl+1

∂ xl

∂ xl
∂ x1

(7)

which is also a linear function of, proving the induction
step. Because we know that both terms of the product in
Equation 7 are linear, the second term of the Equation 5 is
as well. Together with the previous insight that the first term
is exponential, this implies that it will outgrow the second
in the limit, creating an infinitively-wide gap between them
and thereby proving the lemma.

Equipped with the results of Lemmas 9 and 10, we can
finally prove the proposition:

Proof. We show that one scalar factor contained in the fac-
torization of the gradient ∇xpθ(y = c|x) tends to zero
under the given assumptions, having the whole gradient
become the zero vector in the limit. We begin by again fac-
torizing the gradient ∇xpθ(y = c|x) using the multivariate
chain rule:

∇xpθ(y = c|x) =

C∑
c′=1

∂

∂fθ(x)c′
σ̄(fθ(x))c · ∇xfθ(x)c′

(8)

3Here we make the argument for the whole function fθ :
RD → RC , but the conclusions also applies to every output com-
ponent of the function fθ(x)c.

By Lemma 1 and 2 we know that fθ is a component-wise
strictly monotonic function on P(x′, d), which implies for
the limit of αd → ∞ that ∀c ∈ C : fθ(x)c → ±∞. Then,
Lemma 9 implies that the first factor of every part in the
sum of Equation 8 will tend to zero in the limit. Lemma
10 ensures that the first factor approximates zero quicker
than every component of the gradient∇xfθ(x)c′ potentially
approaching infinity, causing the product to result in the zero
vector. As this results in a sum over C zero vectors in the
limit, this proves the lemma.

A.5 PROOF OF PROPOSITION 2

Proof. We start by rewriting the softmax probability for the
c-th logit:

σ̄(fθ(x))c =
exp(fθ(x)c)∑

c′∈C exp(fθ(x)c′)

= 1−
∑
c′′∈C\{c} exp(fθ(x)c′′)∑
c′∈C exp(fθ(x)c′)

By Lemma 1 and 2 we have shown that fθ is a component-
wise strictly monotonic function on P(x′, d), so we know
that ∀c′ ∈ C : fθ(x)c′ → ±∞ as αd → ∞. We now treat
the two limits ±∞ in order. Because of the assumption that
d-column of V has no duplicate entries, this implies that
there must be a c ∈ C s.t. ∀c′ 6= c : vcd > vc′d. Thus,
in the limit of fθ(x)c → ∞, the sum in the denominator
of the fraction including the logit of c will tend to infinity
faster than the the sum in the numerator not including c’s
logit, and thus the fraction itself will tend to 0, proving this
case. In the case of fθ(x)c → −∞, the numerator of the
fraction will tend to 0 faster than the denominator, having
the fraction approach 0 in the limit as well, proving the
second case and therefore the lemma.

A.6 PROOF OF LEMMA 4

Proof.

lim
α→∞

∣∣∣∣∣∣∣∣∇x Ep(θ |D)

[
pθ(y = c|x)

]∣∣∣∣
x=α�x′

∣∣∣∣∣∣∣∣
2

Linearity of gradient:

= lim
α→∞

∣∣∣∣∣∣∣∣Ep(θ |D)

[
∇xpθ(y = c|x)

]∣∣∣∣
x=α�x′

∣∣∣∣∣∣∣∣
2

Utilize Jensen’s inequality φ(E[x]) ≤ E[φ(x)] as l2-norm
is a convex function and Proposition 1:

≤ lim
α→∞

Ep(θ |D)

[∣∣∣∣∣∣∣∣∇xpθ(y = c|x)

∣∣∣∣
x=α�x′

∣∣∣∣∣∣∣∣
2︸ ︷︷ ︸

=0 (Proposition 1)

]
= 0

Because the last expression is an upper bound to the original
expression and the l2 norm is lower-bounded by 0, this
proves the lemma.

A.7 PROOF OF LEMMA 5

Lemma 5. (Asymptotic behavior with softmax variance)
Suppose that f (1)θ , . . . , f

(K)
θ are ReLU networks. Let x′ ∈

RD, suppose α is a scaling vector and that for all k, the
associated PUP P(k)(x′, d) has a corresponding matrix
V(k) with no zero entries. It holds that

lim
αd→∞

∣∣∣∣∣∣∣∣∇x
1

C

C∑
c=1

Ep(θ |D)

[(
pθ(y = c|x)

)2]

− Ep(θ |D)

[
pθ(y = c|x)

]2∣∣∣∣
x=α�x′

∣∣∣∣∣∣∣∣
2

= 0

Proof.

lim
α→∞

∣∣∣∣∣∣∣∣∇x
1

C

C∑
c=1

Ep(θ |D)

[(
pθ(y = c|x)

)2]

−Ep(θ |D)

[
pθ(y = c|x)

]2∣∣∣∣
x=α�x′

∣∣∣∣∣∣∣∣
2

Linearity of gradient:

= lim
αd→∞

∣∣∣∣∣∣∣∣ 1

C

C∑
c=1

∇xEp(θ |D)

[(
pθ(y = c|x)

)2]

−∇xEp(θ |D)

[
pθ(y = c|x)

]2∣∣∣∣
x=α�x′

∣∣∣∣∣∣∣∣
2

Apply triangle inequality ||x + y|| ≤ ||x|| + ||y|| to sum
over all c:

≤ lim
αd→∞

1

C

C∑
c=1

∣∣∣∣∣∣∣∣∇xEp(θ |D)

[(
pθ(y = c|x)

)2]

−∇xEp(θ |D)

[
pθ(y = c|x)

]2∣∣∣∣
x=α�x′

∣∣∣∣∣∣∣∣
2

On the first term use linearity of gradients and apply chain
rule, do it in the reverse order on the second term:
= lim
αd→∞

1

C

C∑
c=1

∣∣∣∣∣∣∣∣Ep(θ |D)

[
2pθ(y = c|x)∇xpθ(y = c|x)︸ ︷︷ ︸

=0 (Proposition 1)

∣∣∣∣
x=α�x′

]

−

(
2Ep(θ |D)

[
pθ(y = c|x)

])

·Ep(θ |D)

[
∇xpθ(y = c|x)︸ ︷︷ ︸
=0 (Proposition 1)

∣∣∣∣
x=α�x′

] ∣∣∣∣∣∣∣∣
2

= 0

We can see that due to an intermediate result of Proposition
1, i.e. that ∇xpθ(y = c|x) approaches the zero vector in
the limit, the innermost gradients tend to zero, bringing the
whole expression to 0.

Because the final is an upper bound to the original expres-
sion and because the l2 norm has a lower bound of 0, this
proves the lemma.

A.8 PROOF OF LEMMA 6

Lemma 6. (Asymptotic behavior for predictive entropy)
Suppose that f (1)θ , . . . , f

(K)
θ are ReLU networks. Let x′ ∈

RD, suppose α is a scaling vector and that for all k, the
associated PUP P(k)(x′, d) has a corresponding matrix
V(k) with no zero entries. It holds that

lim
αd→∞

∣∣∣∣∣∣∣∣∇xH
[
Ep(θ |D)

[
pθ(y|x)

]]∣∣∣∣
x=α�x′

∣∣∣∣∣∣∣∣
2

= 0

Proof.

lim
αd→∞

∣∣∣∣∣∣∣∣∇xH
[
Ep(θ |D)

[
pθ(y|x)

]]∣∣∣∣
x=α�x′

∣∣∣∣∣∣∣∣
2

= lim
αd→∞

∣∣∣∣∣∣∣∣∇x

(
C∑
c=1

Ep(θ |D)

[
pθ(y = c|x)

]
· log

(
Ep(θ |D)

[
pθ(y = c|x)

]))∣∣∣∣
x=α�x′

∣∣∣∣∣∣∣∣
2

Linearity of gradient:

= lim
αd→∞

∣∣∣∣∣∣∣∣ C∑
c=1

∇x

(
Ep(θ |D)

[
pθ(y = c|x)

]
· log

(
Ep(θ |D)

[
pθ(y = c|x)

]))∣∣∣∣
x=α�x′

∣∣∣∣∣∣∣∣
2

Apply product rule:

= lim
αd→∞

∣∣∣∣∣∣∣∣
(

C∑
c=1

Ep(θ |D)

[
pθ(y = c|x)

]
·
(
Ep(θ |D)

[
pθ(y = c|x)

])−1
· ∇x

(
Ep(θ |D)

[
pθ(y = c|x)

])

+∇x

(
Ep(θ |D)

[
pθ(y = c|x)

])
· log

(
Ep(θ |D)

[
pθ(y = c|x)

])∣∣∣∣
x=α�x′

∣∣∣∣∣∣∣∣
2

Factor out gradient:

= lim
αd→∞

∣∣∣∣∣∣∣∣ C∑
c=1

∇xEp(θ |D)

[
pθ(y = c|x)

]
·
(

1 + log

(
Ep(θ |D)

[
pθ(y = c|x)

]))∣∣∣∣
x=α�x′

∣∣∣∣∣∣∣∣
2

Apply triangle inequality to sum over all c:

≤ lim
αd→∞

C∑
c=1

∣∣∣∣∣∣∣∣∇xEp(θ |D)

[
pθ(y = c|x)

]
·
(

1 + log

(
Ep(θ |D)

[
pθ(y = c|x)

]))∣∣∣∣
x=α�x′

∣∣∣∣∣∣∣∣
2

As the log expectation just evaluates to a scalar, it can be
pulled out of the norm and we can apply Lemma 4

= lim
αd→∞

C∑
c=1

(
1 + log

(
Ep(θ |D)

[
pθ(y = c|x)

]))
︸ ︷︷ ︸

Scalar

·
∣∣∣∣∣∣∣∣∇xEp(θ |D)

[
pθ(y = c|x)

]∣∣∣∣
x=α�x′

∣∣∣∣∣∣∣∣
2︸ ︷︷ ︸

=0 (Lemma 4)

= 0

As the final result is an upper bound to the original expres-
sion and is lower-bounded by 0 due to the l2 norm, this
proves the lemma.

A.9 PROOF OF LEMMA 7

Lemma 7. (Asymptotic behavior for approximate mutual in-
formation) Suppose that f (1)θ , . . . , f

(K)
θ are ReLU networks.

Let x′ ∈ RD, suppose α is a scaling vector and that for
all k, the associated PUP P(k)(x′, d) has a corresponding
matrix V(k) with no zero entries. It holds that

lim
αd→∞

∣∣∣∣∣∣∣∣∇x

(
H
[
Ep(θ |D)

[
pθ(y|x)

]]
− Ep(θ |D)

[
H
[
pθ(y|x)

]])∣∣∣∣
x=α�x′

∣∣∣∣∣∣∣∣
2

= 0

Proof.

lim
αd→∞

∣∣∣∣∣∣∣∣∇x

(
H
[
Ep(θ |D)

[
pθ(y|x)

]]
− Ep(θ |D)

[
H
[
pθ(y|x)

]])∣∣∣∣
x=α�x′

∣∣∣∣∣∣∣∣
2

Linearity of gradients:

≤ lim
αd→∞

∣∣∣∣∣∣∣∣ (∇xH
[
Ep(θ |D)

[
pθ(y|x)

]]
−∇xEp(θ |D)

[
H
[
pθ(y|x)

]])∣∣∣∣
x=α�x′

∣∣∣∣∣∣∣∣
2

Linearity of gradients on second part of difference:

= lim
αd→∞

∣∣∣∣∣∣∣∣ (∇xH
[
Ep(θ |D)

[
pθ(y|x)

]]
− Ep(θ |D)

[
∇xH

[
pθ(y|x)

]])∣∣∣∣
x=α�x′

∣∣∣∣∣∣∣∣
2

Applying chain rule and intermediate result of Proposition
1:

= lim
αd→∞

∣∣∣∣∣∣∣∣∇xH
[
Ep(θ |D)

[
pθ(y|x)

]]∣∣∣∣
x=α�x′

− Ep(θ |D)

[C∑
c=1

(
1 + log pθ(y = c|x)

)
∇xpθ(y = c|x)︸ ︷︷ ︸
=0 Proposition 1)

]
∣∣∣∣
x=α�x′

∣∣∣∣∣∣∣∣
2

Because this lets the entire second term become the zero
vector in the limit, the remaining part reduces to the case
proven in Lemma 6:

= lim
αd→∞

∣∣∣∣∣∣∣∣∇xH
[
Ep(θ |D)

[
pθ(y|x)

]]∣∣∣∣
x=α�x′

∣∣∣∣∣∣∣∣
2︸ ︷︷ ︸

Lemma 6

= 0

As the final result is an upper bound to the original expres-
sion and the l2 norm provides a lower bound of 0, this proves
the lemma.

B SYNTHETIC DATA EXPERIMENTS

We perform our experiments on the half-moons dataset,
using the corresponding function to generate the dataset in
scikit-learn [Pedregosa et al., 2011], producing 500
samples for training and 250 samples for validation using a
noise level of .125.

We do hyperparameter search using the ranges listed
in Table 2, settling on the values given in Table
1 after 200 evaluation runs per model (for NN and
MCDropout; the hyperparameters found for NN were then
used for PlattScalingNN, AnchoredNNEnsemble,
NNEnsemble as well). We also performed a similar hy-
perparameter search for the Bayes-by-backprop [Blundell
et al., 2015] model, which seemed to not have yielded a
suitable configuration even after extensive search, which
is why results were omitted here. All models were trained
with a batch size of 64 and for 20 epochs at most using
early stopping with a patience of 5 epochs and the Adam
optimizer.

All of the plots produced can be found in Figure 2 and 3,
where uncertainty values where plotted for different ranges
depending on the metric (variance: 0-0.25; (negative) en-
tropy: 0-1; mutual information: 4 − 5; (1 -) max. prob:

0− 0.5), with deep purple signifying high uncertainty and
white signifying low uncertainty / high certainty.

Table 1: Best hyperparameters found on the half-moon
dataset.

Model Hyperparameter Value

NN hidden_sizes [25, 25, 25]
NN dropout_rate 0.014552
NN lr 0.000538

MCDropout hidden_sizes [25, 25, 25, 25]
MCDropout dropout_rate 0.205046
MCDropout lr 0.000526

Table 2: Distributions or options that hyperparameters were
sampled from during the random hyperparameter search.

Hyperparameter Description Chosen from

hidden_sizes Hidden layers 1-5 layers of 15, 20, 25
lr Learning rate U(log(10−4), log(0.1))

dropout_rate Dropout rate U(0, 0.5)

We can see in Figure 2 that maximum probability and pre-
dictive entropy behave quite similarly, forming a tube-like
region of high uncertainty along what appear to be the de-
cision boundary. In both cases, the region appears to be
sharper in the case of maximum probability (right column)
and also more defined after additional temperature scaling
(bottom row). For all models and metrics, we see that the
gradient magnitude decreases and approaches zero away
from the training data (yellow / green plots), except for the
cases discussed in Section 6.

In the next figure, Figure 3, we observe the uncertainty sur-
faces for models using multiple network instances. For the
remaining models it is interesting to see that class variance
(left column) didn’t seem to produce significantly different
values across the feature space except for the anchored en-
semble. For predictive entropy (central column), we can see
a similar behaviour compared to the single-instances models.
Interestingly, the “fuzziness” of the high-uncertainty region
increases with the ensemble and becomes increasing large
with its anchored variant. Nevertheless, regions with static
levels of certainty still exist in this case. For the mutual
information plots (right column), epistemic uncertainty is
lowest around the training data, where the model is best
specified, which creates another tube-like region of high
confidence even where there is no training data, an effect
that is reduced with the neural ensemble and almost com-
pletely solved by the anchored ensemble. For all metrics,
we see a magnitude close to zero for the uncertainty gra-
dient away from the training data, except for the decision
boundaries, as discussed in Section 6.

Predictive Entropy Maximum probability
N
N

P
l
a
t
t
S
c
a
l
i
n
g
N
N

Figure 2: Uncertainty measured by different metrics for
single-instance models (purple plots) and their gradient mag-
nitude (yellow / green plots).

References

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu,
and Daan Wierstra. Weight uncertainty in neural net-
works. arXiv preprint arXiv:1505.05424, 2015.

John S Bridle. Probabilistic interpretation of feedforward
classification network outputs, with relationships to sta-
tistical pattern recognition. In Neurocomputing, pages
227–236. Springer, 1990.

Bolin Gao and Lacra Pavel. On the properties of the softmax
function with application in game theory and reinforce-
ment learning. arXiv preprint arXiv:1704.00805, 2017.

Matthias Hein, Maksym Andriushchenko, and Julian Bitter-
wolf. Why relu networks yield high-confidence predic-
tions far away from the training data and how to mitigate

the problem. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 41–50,
2019.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort,
Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu
Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg,
et al. Scikit-learn: Machine learning in python. the Jour-
nal of machine Learning research, 12:2825–2830, 2011.

Class variance Predictive Entropy Mutual Information

M
C
D
r
o
p
o
u
t

N
N
E
n
s
e
m
b
l
e

A
n
c
h
o
r
e
d
N
N
E
n
s
e
m
b
l
e

Figure 3: Uncertainty measured by different metrics for multi-instance models (purple plots) and the gradient of the
uncertainty score w.r.t to the input (yellow / green plot).

	Additional Proofs
	Connection between Softmax and Sigmoid
	Linearization of ReLU networks
	Construction of polytopal regions
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7

	Synthetic Data Experiments

