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Abstract

In the area of natural language processing, deep
learning models are recently known to be vulner-
able to various types of adversarial perturbations,
but relatively few works are done on the defense
side. Especially, there exists few effective defense
method against the successful synonym substitu-
tion based attacks that preserve the syntactic struc-
ture and semantic information of the original text
while fooling the deep learning models. We con-
tribute in this direction and propose a novel adver-
sarial defense method called Synonym Encoding
Method (SEM). Specifically, SEM inserts an en-
coder before the input layer of the target model to
map each cluster of synonyms to a unique encoding
and trains the model to eliminate possible adver-
sarial perturbations without modifying the network
architecture or adding extra data. Extensive ex-
periments demonstrate that SEM can effectively
defend the current synonym substitution based at-
tacks and block the transferability of adversarial
examples. SEM is also easy and efficient to scale
to large models and big datasets.

1 INTRODUCTION

Deep Neural Networks (DNNs) have made great success
in various machine learning tasks. However, recent studies
have found that DNNs are often vulnerable to adversar-
ial examples, in which the original examples are modified
imperceptibly to humans but could mislead deep learning
models. More seriously, the adversaries are found not only
in computer vision tasks [Szegedy et al., 2014] but even in
Natural Language Processing (NLP) tasks [Papernot et al.,
2016], raising security and safety concerns. For instance,
spammers can evade the spam filtering system with crafted
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adversarial examples of spam emails while preserving the
intended meaning.

In contrast to the fact that numerous methods have been pro-
posed in the area of computer vision for adversarial attacks
[Goodfellow et al., 2015, Carlini and Wagner, 2017, Athalye
et al., 2018, Dong et al., 2018, Guo et al., 2019, Wang and
He, 2021] and defenses [Goodfellow et al., 2015, Guo et al.,
2018, Song et al., 2019], there are relatively few works done
in the area of NLP. Works on text adversaries just emerge
in recent years, and most of them are inspired by methods
proposed for images [Zhang et al., 2019b]. However, exist-
ing adversarial learning methods for images could not be
directly applied to texts due to the discrete property of texts
in nature. Furthermore, if we want a crafted text perturba-
tion to be barely perceptible to humans, it should maintain
the lexical and grammatical correctness and preserve the
original semantic information, making it harder to craft the
textual adversarial examples.

Current adversarial attacks in NLP roughly invoke one or
several of the following methods: modifying the characters
within a word [Liang et al., 2017, Ebrahimi et al., 2018,
Li et al., 2019], adding or removing words [Liang et al.,
2017, Samanta and Mehta, 2017], replacing words based
on embedding perturbations [Papernot et al., 2016, Gong
et al., 2018], substituting words with synonyms [Samanta
and Mehta, 2017, Alzantot et al., 2018, Ren et al., 2019],
and crafting paraphrases for the entire sentence [Iyyer et al.,
2018, Ribeiro et al., 2018]. However, perturbations on char-
acters or words that destroy the syntax can be easily detected
and defended by the spelling or syntax check [Rodriguez
and Rojas-Galeano, 2018, Pruthi et al., 2019]. Moreover,
both paraphrasing and word replacement determined by the
embedding perturbations usually face the challenge of ensur-
ing the preservation of the original semantics. As synonym
substitution aims to satisfy the lexical, grammatical and
semantic constraints, it is much harder to be detected by
automatic spelling or syntax check as well as human investi-
gation, and hence synonym substitution is more efficacious
for textual adversarial attacks.
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On the defense side for synonym substitution based attacks,
Alzantot et al. [2018] and Ren et al. [2019] incorporate
the perturbed examples during the training in an attempt to
improve the model robustness, but witness an insufficient
amount of adversarial examples for the adversarial training
due to the low efficiency of adversary generation. Another
line of work [Jia et al., 2019, Huang et al., 2019] is towards
certified robustness and based on Interval Bound Propa-
gation (IBP) [Gowal et al., 2019]. However, such defense
methods are hard to scale to big datasets and large neural
networks for their high complexity and also result in lower
accuracy on benign data due to the loose upper bounds.

In this work, we propose a novel defense method against
synonym substitution based attacks. Specifically, we postu-
late that a generalization that is not strong enough usually
results in different classification results for the neighbors
{x′|x′ ∈ Vε(x)} of a benign example x in the data mani-
fold. Based on this hypothesis, we propose a new defense
paradigm called Synonym Encoding Method (SEM) that
encodes each cluster of synonyms to a unique encoding so
as to force all the neighbors of an input text x to share the
same code of x. Specifically, we first cluster the synonyms
according to the Euclidean distance in the embedding space
to construct the encoder. Then, we insert the encoder before
the input layer of a deep learning model without modifying
its architecture and train the model with such an encoder
on the original dataset to effectively defend the adversarial
attacks in the context of text classification.

The proposed method is simple, efficient and highly scal-
able. Experiments on three popular datasets demonstrate that
SEM can effectively defend synonym substitution based ad-
versarial attacks and block the transferability of adversarial
examples in the context of text classification. Also, SEM
maintains computational efficiency and is easy to scale to
large neural networks and big datasets without modifying
the network architecture or using extra data. Meanwhile,
SEM achieves almost the same accuracy on benign data as
the original model does, and the accuracy is higher than that
of the certified defense method IBP.

2 BACKGROUND

LetW denote the dictionary containing all the legal words.
Let x = 〈w1, . . . , wi, . . . , wn〉 denote an input text, C the
corpus that contains all the possible input texts, and Y ∈
NK the output space where K is the dimension of Y . The
classifier f : C → Y takes an input x and predicts its label
f(x). Let Sm(x, y) denote the confidence value for the yth

category at the softmax layer for input x. Let Syn(w, δ, k)
represent the set of the first k synonyms ofw within distance
δ in the embedding space, namely

Syn(w, δ, k) = {ŵ1, . . . , ŵi, . . . , ŵk|ŵi ∈ W
∧‖w − ŵ1‖p ≤ ... ≤ ‖w − ŵk‖p < δ},

where ‖w − ŵ‖p is the p-norm distance and we use Eu-
clidean distance (p = 2) in this work.

2.1 TEXTUAL ADVERSARIAL EXAMPLES

Suppose we have an oracle classifier c : C → Y that could
always output the correct label for any input text. For a
subset (training set or test set) of texts T ⊆ C and a small
constant ε, we could define the natural language adversarial
examples as following:

A = {xadv ∈ C | ∃x ∈ T , d(x, xadv) < ε ∧
f(xadv) 6= c(xadv) = c(x) = f(x)},

where d(x, xadv) is a distance metric that evaluates
the dissimilarity between the benign example x =
〈w1, . . . , wi, . . . , wn〉 and the adversarial example xadv =
〈w′1, . . . , w′i, . . . , w′n〉. In word-level attacks, d(·, ·) is usu-
ally defined as the p-norm distance:

d(x, xadv) = ‖x− xadv‖p =

(∑
i

‖wi − w′i‖p

) 1
p

.

2.2 TEXTUAL ADVERSARIAL ATTACKS

In recent years, various adversarial attacks for text clas-
sification have been proposed, including character-level,
word-level and sentence-level attacks. Ebrahimi et al. [2018]
propose a method called HotFlip that swaps characters
for character-level attack based on cost gradients. Li et al.
[2019] propose TextBugger that considers mostly character-
level perturbations with some word-level perturbations by
inserting, removing, swapping and substituting letters or
replacing words. For a more combined approach, Liang
et al. [2017] propose to attack the target model by inserting
Hot Training Phrases (HTPs) and modifying or removing
Hot Sample Phrases (HSPs). Similarly, Samanta and Mehta
[2017] propose to remove or replace important words or
introduce new words in the text to craft adversarial exam-
ples. On the sentence level, Iyyer et al. [2018] propose
syntactically controlled paraphrase networks (SCPNs) to
generate adversarial examples by rephrasing the sentence.
Additionally, Ribeiro et al. [2018] generalize adversaries
into semantically equivalent adversarial rules (SEARs).

Among all the types of adversarial attacks, synonyms sub-
stitution based attack [Kuleshov et al., 2018, Alzantot et al.,
2018, Ren et al., 2019, Zang et al., 2020, Yang et al., 2020]
is the representative method because it satisfies the lexical,
grammatical and semantic constraints and is harder to be
detected by both automatic and human investigation. Here
we provide a brief overview of three popular synonym sub-
stitution based adversarial attack methods.

Kuleshov et al. [2018] propose a Greedy Search Algo-
rithm (GSA) that substitutes words with their synonyms

824



so as to maintain the semantic and syntactic similarity.
Specifically, given an input text x, GSA first constructs
a synonym set Ws for all words wi ∈ x. Then at each
step, GSA greedily chooses a word ŵ′i ∈ Ws that min-
imizes the confidence value Sm(x̂, ytrue), where x̂ =
〈w′1, . . . , w′i−1, ŵ′i, w′i+1, . . . , w

′
n〉.

Alzantot et al. [2018] propose a Genetic Algorithm (GA)
with two main operators: 1) Mutate(x) randomly chooses
a word wi ∈ x and replaces wi with ŵi. Here, ŵi is de-
termined as one of the synonyms Syn(wi, δ, k) that does
not violate the syntax constraint imposed by the Google
one billion words language model [Chelba et al., 2013]
and minimizes the confidence value on category ytrue. 2)
Crossover(x1, x2) randomly chooses a word at each posi-
tion from the candidate adversarial examples x1 or x2 to
construct a new text x. They adopt these two operators to it-
eratively generate populations of candidate adversaries until
there exists at least one successful adversarial example in
the current population.

Ren et al. [2019] propose a novel synonym substitution
based attack method called Probability Weighted Word
Saliency (PWWS), which considers the word saliency as well
as the classification confidence. They define word saliency
as the confidence change after removing this word tem-
porarily. PWWS greedily substitutes word wi ∈ x with its
optimal synonym ŵ∗i , where wi has the maximum score
on the combination of classification confidence change and
word saliency among the unreplaced words.

2.3 TEXTUAL ADVERSARIAL DEFENSES

As text adversarial attacks have only attracted increasing
interest since 2018, up to now there are relatively few works
on adversarial defenses.

On the character-level, Pruthi et al. [2019] propose to place a
word recognition model in front of the downstream classifier
to defend adversarial spelling mistakes. Jones et al. [2020]
propose Robust Encodings (RobEn) that maps the input
sentences to a smaller, discrete space of encodings so as to
eliminate various adversarial typos. Hofmann et al. [2020]
propose Base-Inflection Encoding (BITE) that tokenizes
English text by reducing inflected words to their base forms
to generate robust symbol sequences against the inflectional
adversarial examples.

On the word-level, Alzantot et al. [2018] and Ren et al.
[2019] incorporate their generated adversarial examples at
the training stage to elevate the model robustness. Notice
that Iyyer et al. [2018] also include their generated adversar-
ial paraphrases during the training to augment the training
data. However, such data augmentation technique is subject
to the limit of adversarial examples that could not be effi-
ciently generated during training. To cover all possible word
substitutions of an input, Jia et al. [2019] and Huang et al.

[2019] target certified robustness based on Interval Bound
Propagation (IBP) [Gowal et al., 2019] , i.e., to provide a
provable guarantee that the model is robust to all word sub-
stitutions in this sample. Such defenses, however, are hard
to scale to large datasets and neural networks such as BERT
due to the high complexity, and result in lower accuracy on
benign data due to the looser upper bounds.

Different from adversarial training which incorporates extra
adversarial examples and IBP which modifies the architec-
ture, our work trains the model with an encoder for syn-
onyms embedded in front of the input layer with normal
training to improve the model robustness.

3 METHODOLOGY

In this section, we first introduce our motivation, then
present the proposed Synonym Encoding Method (SEM)
for adversarial defense.

3.1 MOTIVATION

Let X denote the input space and Vε(x) denote the ε-
neighborhood of a data point x ∈ X , where Vε(x) = {x′ ∈
X |‖x′ − x‖p < ε}. As illustrated in Figure 1 (a), we pos-
tulate that the weak generalization of the model leads to
the existence of adversarial examples. Specifically, for any
data point x ∈ X , ∃x′ ∈ Vε(x), f(x′) 6= y′true and x′ is an
adversarial example of x.

Ideally, to defend adversarial attacks, we need to train a
classifier f that not only guarantees f(x) = ytrue, but also
assures ∀x′ ∈ Vε(x), f(x′) = y′true. Thus, one of the most
effective ways is to add more labeled data to improve the
adversarial robustness [Schmidt et al., 2018]. As illustrated
in Figure 1 (b), with infinite labeled data, we can train a
model f : ∀x′ ∈ Vε(x), f(x′) = y′true with high probability
so that model f is robust enough to adversaries. Practically,
however, labeling data is very expensive, and it is impossible
to have even approximately infinite labeled data.

Thus, as illustrated in Figure 1 (c), Wong and Kolter [2018]
propose to construct a convex outer bound and guarantee
that all data points in this bound share the same label. The
goal is to train a model f : ∀x′ ∈ Vε(x), f(x′) = f(x) =
ytrue. Specifically, they propose a linear-programming (LP)
based upper bound on the robust loss by adopting a linear
relaxation of the ReLU activation and minimize this upper
bound during the training. Then, they bound the LP opti-
mal value and calculate the element-wise bounds on the
activation functions based on a backward pass through the
network. Although their method does not need any extra
data, it is hard to scale to realistically-sized networks due to
the high calculation complexity. Similarly, we find that In-
terval Bound Propagation (IBP) [Gowal et al., 2019] based
methods, that can offer certified defense in the text domain,
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Figure 1: The neighborhood of a data point x in the input space. (a) Normal training: there exists some data point x′ that the
model has never seen before and yields wrong classification. (b) Adding infinite labeled data: this is an ideal case that the
model has seen all possible data points to resist adversaries. (c) Sharing label: all the neighbors share the same label with x.
(d) Mapping neighborhood data points: mapping all neighbors to center x so as to eliminate adversarial examples.

also face such challenge of high computational cost and lead
to low classification accuracy on benign data.

In this work, as illustrated in Figure 1 (d), we propose
a novel way to find an encoder E : X → X where
∀x′ ∈ Vε(x), E(x′) = x. In this way, we force the clas-
sification boundary to be smoother without requiring any
extra data to train the model or modifying the model’s ar-
chitecture. All we need to do is to insert the encoder before
the input layer and train the model on the original training
set. Now the problem turns into locating the neighbors of a
data point x. For image tasks, it is hard to find all images in
the neighborhood of x in the input space, because the conti-
nuity results in infinite neighbors. For NLP tasks, however,
utilizing the property that words in sentences are discrete
tokens, we can easily find almost all synonymous neighbors
of an input text. Based on this insight, we propose a new
method called Synonym Encoding to locate the neighbors of
the input text x.

3.2 SYNONYM ENCODING

We assume that a smaller distance between two sentences in
the embedding space indicates a closer meaning of the two
sentences without considering the rephrased synonymous
sentences. Therefore, we suppose that the neighbors of x are
its synonymous sentences. In order to find these sentences,
a reliable way is to substitute the words in the original
sentence with their close synonyms. In this way, to construct
an encoder E that encodes a set of synonyms to the same
code, we cluster the synonyms in the embedding space
and allocate a unique token for each cluster. The details of
synonym encoding are shown in Algorithm 1.

Basically, we iterate through the word dictionary in the de-
scending order of word frequency and try to find suitable
code for each word. For a word wi that is not encoded, we
find its synonym set by Syn(wi, δ, k) and let its code be
the encoding of its closest encoded synonym if there exists
any, otherwise we set the code to be the word itself. We
further propagate this code to any of its non-encoded syn-
onyms. In this way, we obtain an encoder that automatically

Algorithm 1 Synonym Encoding Algorithm

Input: W: dictionary of words
n: size ofW
δ: distance for synonyms
k: number of synonyms for each word

Output: E: encoding result
1: E = {w1 : None, . . . , wn : None}
2: Sort the words dictionaryW by word frequency
3: for each word wi ∈ W do
4: if E[wi] = NONE then
5: if ∃ŵji ∈ Syn(wi, δ, k), E[ŵji ] 6= NONE then
6: ŵ∗i ← the closest encoded synonym ŵji ∈

Syn(wi, δ, k) to wi
7: E[wi] = E[ŵ∗i ]
8: else
9: E[wi] = wi

10: end if
11: for each word ŵji in Syn(wi, δ, k) do
12: if E[ŵji ] = NONE then
13: E[ŵji ] = E[wi]
14: end if
15: end for
16: end if
17: end for
18: return E

finds synonym clusters of various sizes and provides for
the words in each cluster the same code with the highest
frequency. Note that in our experiment, we implement the
synonym encoding on GloVe vectors after counter-fitting
[Mrkšić et al., 2016], which injects antonymy and synonymy
constraints into the vector space representations so as to re-
move antonyms from being considered as similar words.
Moreover, the hyper-parameter k, the number of synonyms
we consider for each word, and δ, the upper bound for the
distance between the original word and its synonyms in the
embedding space, are determined through experiments. A
too small value of k or δ would result in an insufficient
cluster, while a too large value would cause the cluster to
include words that are not close synonyms to each other.
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Through careful experimental study, we find k = 10 and
δ = 0.5 a proper choice with regard to the trade-off between
generalization and robustness.

After obtaining the encoder E, we can train the model with
E embedded before the input layer using normal training.
Note that the encoder is only based on the given dictionary
and dataset, and is unrelated to the model.

4 EXPERIMENTS

To validate the efficacy of SEM, we take IBP and adversar-
ial training as our baselines and evaluate the performance
of SEM against three synonym substitution based attacks,
namely GSA, PWWS and GA, on three popular benchmark
datasets involving CNN, RNN and BERT models.

4.1 EXPERIMENTAL SETUP

We first provide an overview of datasets, classification mod-
els and baselines used in experiments.

Datasets. We select three popular datasets: IMDB, AG’s
News, and Yahoo! Answers. IMDB [Potts, 2011] is a
large dataset for binary sentiment classification, contain-
ing 25, 000 highly polarized movie reviews for training and
25, 000 for testing. AG’s News [Zhang et al., 2015] con-
sists of news articles pertaining four classes: World, Sports,
Business and Sci/Tech. Each class contains 30, 000 train-
ing examples and 1, 900 testing examples. Yahoo! Answers
[Zhang et al., 2015] is a topic classification dataset from the
“Yahoo! Answers Comprehensive Questions and Answers"
version 1.0 dataset with 10 categories, such as Society &
Culture, etc. Each class contains 140,000 training samples
and 5,000 testing samples.

Models. To evaluate the effectiveness of our method, we
adopt several state-of-the-art models for text classification,
including Convolution Neural Networks (CNNs), Recurrent
Neural Networks (RNNs) and BERT. The embedding di-
mension for all CNN and RNN models are 300 [Mikolov
et al., 2013]. We replicate the CNN’s architecture from
Kim [2014], that contains three convolutional layers with
filter size of 3, 4, and 5 respectively, a max-pooling layer
and a fully-connected layer. LSTM consists of three LSTM
layers where each layer has 128 LSTM units and a fully-
connected layer [Liu et al., 2016]. Bi-LSTM contains a
bi-directional LSTM layer whose forward and reverse have
128 LSTM units respectively and a fully-connected layer.
For the BERT model, we fine-tune base-uncased BERT [De-
vlin et al., 2018] using the corresponding dataset.

Baselines. We take adversarial training [Goodfellow et al.,
2015] and the certified defense IBP [Jia et al., 2019] as
our baselines. We adopt three synonym substitution based
attacks, GSA [Kuleshov et al., 2018], PWWS [Ren et al.,

2019] and GA [Alzantot et al., 2018] (described in Section
2.2), to evaluate the defense performance of baselines and
SEM. However, due to the low efficiency of text adversarial
attacks, we cannot implement adversarial training as it is in
the image domain. In experiments, we adopt PWWS, which
is faster than GA and more effective than GSA, to generate
10% adversarial examples of the training set, and re-train the
model incorporating adversarial examples with the training
data. Besides, as Shi et al. [2020] point out that large-scale
pre-trained models such as BERT are too challenging to be
tightly verified with current technologies by IBP, we do not
adopt IBP as the baseline on BERT. For fair comparison,
we construct the synonym set using GloVe vectors after
counter-fitting for all methods.

4.2 EVALUATION ON DEFENSE EFFICACY

To evaluate the efficacy of SEM, we randomly sample 200
correctly classified examples on different models from each
dataset and use the above adversarial attacks to generate
adversarial examples on the target models with or with-
out defense. The more effective the defense method is, the
less the classification accuracy the model drops. Table 1
demonstrates the performance of various defense methods
on benign examples or under adversarial attacks.

We could check each row to find the best defense results for
each model under the setting of no-attack, GSA, PWWS,
and GA attacks:

• Under the setting of no-attack, adversarial training (AT)
could improve the classification accuracy of most mod-
els on three datasets, as adversarial training (AT) also
augments the training data. However, IBP achieves much
lower accuracy on benign data due to its high complex-
ity and looser upper bounds. Our defense method SEM
reaches an accuracy that is very close to the normal train-
ing (NT), with a small trade-off between robustness and
accuracy. Such trade-off is also common for defense
methods in the image domain that has been theoreti-
cally studied [Zhang et al., 2019a, Tsipras et al., 2019].
As discussed in Section 4.4, we select suitable hyper-
parameters according to this trade-off for the best joint
performance.

• Under the three different attacks, however, both the clas-
sification accuracy with normal training (NT) and ad-
versarial training (AT) drop significantly. For normal
training (NT), the accuracy degrades more than 51%,
26% and 43% on the three datasets, respectively. And
adversarial training (AT) cannot defend these attacks
effectively, especially for PWWS and GA on IMDB and
Yahoo! Answers with CNN and RNN models, where ad-
versarial training (AT) only improves the accuracy by a
small amount (smaller than 5%). One possible reason is
that adversarial training (AT) needs massive adversarial
examples, which are much more than the benign exam-
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Table 1: The classification accuracy (%) of various models on three datasets, with or without defense methods, on benign
data or under adversarial attacks. For each model (Word-CNN, LSTM, Bi-LSTM or BERT), the highest classification
accuracy for various defense methods is highlighted in bold to indicate the best defense efficacy. NT: Normal Training, AT:
Adversarial Training.

Dataset Attack Word-CNN LSTM Bi-LSTM BERT

NT AT IBP SEM NT AT IBP SEM NT AT IBP SEM NT AT SEM

IMDB

No-attack 88.7 89.1 78.6 86.8 87.3 89.6 79.5 86.8 88.2 90.3 78.2 87.6 92.3 92.5 89.5
GSA 13.3 16.9 72.5 66.4 8.3 21.1 70.0 72.2 7.9 20.8 74.5 73.1 24.5 34.4 89.3

PWWS 4.4 5.3 72.5 71.1 2.2 3.6 70.0 77.3 1.8 3.2 74.0 76.1 40.7 52.2 89.3
GA 7.1 10.7 71.5 71.8 2.6 9.0 69.0 77.0 1.8 7.2 72.5 71.6 40.7 57.4 89.3

AG’s
News

No-attack 92.3 92.2 89.4 89.7 92.6 92.8 86.3 90.9 92.5 92.5 89.1 91.4 94.6 94.7 94.1
GSA 45.5 55.5 86.0 80.0 35.0 58.5 79.5 85.5 40.0 55.5 79.0 87.5 66.5 74.0 88.5

PWWS 37.5 52.0 86.0 80.5 30.0 56.0 79.5 86.5 29.0 53.5 75.5 87.5 68.0 78.0 88.5
GA 36.0 48.0 85.0 80.5 29.0 54.0 76.5 85.0 30.5 49.5 78.0 87.0 58.5 71.5 88.5

Yahoo!
Answers

No-attack 68.4 69.3 64.2 65.8 71.6 71.7 51.2 69.0 72.3 72.8 59.0 70.2 77.7 76.5 76.2
GSA 19.6 20.8 61.0 49.4 27.6 30.5 30.0 48.6 24.6 30.9 39.5 53.4 31.3 41.8 66.8

PWWS 10.3 12.5 61.0 52.6 21.1 22.9 30.0 54.9 17.3 20.0 40.0 57.2 34.3 47.5 66.8
GA 13.7 16.6 61.0 59.2 15.8 17.9 30.5 66.2 13.0 16.0 38.5 63.2 15.7 33.5 66.4

Table 2: The classification accuracy (%) of various models for adversarial examples generated through other models on
AG’s News for evaluating the transferability. * indicates that the adversarial examples are generated based on this model.

Attack Word-CNN LSTM Bi-LSTM BERT

NT AT IBP SEM NT AT IBP SEM NT AT IBP SEM NT AT SEM

GSA 45.5* 86.0 87.0 87.0 80.0 89.0 83.0 90.5 80.0 87.0 87.5 91.0 92.5 94.5 90.5
PWWS 37.5* 86.5 87.0 87.0 70.5 87.5 83.0 90.5 70.0 87.0 86.5 90.5 90.5 95.0 90.5

GA 36.0* 85.5 87.0 87.0 75.5 88.0 83.5 90.5 76.0 86.5 86.0 91.0 91.5 95.0 90.5

GSA 84.5 89.0 87.5 87.0 35.0* 87.0 83.5 90.5 73.0 85.0 86.5 91.0 93.0 95.5 90.5
PWWS 83.0 89.0 87.5 87.0 30.0* 86.0 85.0 90.5 67.5 85.5 86.5 90.5 93.0 95.0 90.5

GA 84.0 89.5 87.5 87.0 29.0* 88.0 83.5 90.5 70.5 87.5 87.0 91.0 92.5 95.5 90.5

GSA 81.5 88.0 87.5 87.0 72.5 89.5 84.0 90.5 40.0* 85.5 87.5 91.0 93.5 95.5 91.0
PWWS 80.0 87.0 87.0 86.5 67.5 87.5 83.5 90.5 29.0* 85.5 87.0 90.5 92.5 95.5 90.5

GA 80.0 89.5 87.5 87.0 69.5 88.5 83.5 90.5 30.5* 85.0 86.5 90.5 92.5 95.0 90.5

GSA 83.5 87.0 87.5 87.0 84.0 88.0 83.5 89.5 83.0 88.0 87.0 89.5 66.5* 95.5 90.5
PWWS 81.0 87.5 88.0 87.0 82.5 88.0 84.0 91.5 83.0 88.0 87.5 91.5 68.0* 94.5 90.5

GA 82.0 87.0 88.0 87.0 82.0 88.0 83.5 91.0 82.0 88.0 87.5 91.0 58.5* 94.0 90.0

ples, to improve the robustness, but adversarial training
(AT) here in the text domain could not obtain enough
adversarial examples on the current model due to the low
efficiency of existing adversary generation. In contrast,
SEM can remarkably improve the robustness of the deep
learning models under all the three attacks and achieve
the best robustness on LSTM, Bi-LSTM and BERT mod-
els on the three datasets. Note that IBP, firstly proposed
for images, is more suitable for CNN models but does
not perform very well on RNN models. Moreover, on the
more complex dataset Yahoo! Answers, SEM converges
more quickly than normal training due to the simplicity
of encoded space, while IBP is very hard to train and
cannot achieve good performance on either benign data
or adversarial examples due to its high complexity for
training.

Furthermore, there might be a concern that mapping all
synonyms into a unique encoding could harm the subtle
linguistic distinctions or even cause that the words in the
same cluster would not always be synonyms in different
contexts. To explore whether this concern matters, we feed
perturbed texts, which are generated by randomly picking
10% words in the testing samples of AG’s News dataset
and substituting them with arbitrary words in the dictionary,
to normally trained (NT) CNN. We find that the model
accuracy only decays by 2.4%, indicating that deep neural
models for text classification are robust to such interference.
As previously mentioned, SEM exhibits a little decay on
the classification accuracy of benign data, which is also
consistent with the result of random substitution test. Thus,
such concern does not significantly affect the robustness and
stability of SEM.
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Figure 2: An illustration for various orders to traverse words at the 3rd line of Algorithm 1 in the embedding space. (a)
Traverse words first on the left, then on the right, then in the middle. The synonyms are encoded into two various codes (left
and right). (b) Traverse words first on the left, then in the middle, then on the right. All synonyms are encoded into a unique
code of the left. (c) Traverse words first on the right, then in the middle, then on the left. All synonyms are encoded into a
unique code of the right.

Figure 3: Word frequency of each word in IMDB dataset.

4.3 DEFENSE AGAINST TRANSFERABILITY

In the image domain, the transferability of adversarial attack
refers to its ability to decrease the accuracy of different mod-
els using adversarial examples generated based on a specific
model [Goodfellow et al., 2015, Dong et al., 2018, Wang
and He, 2021], which is a more realistic threat. Therefore, a
good defense method should not only defend the adversar-
ial attacks but also resist the transferability of adversarial
examples.

To evaluate the ability of blocking the attack transferability,
we generate adversarial examples on each model under nor-
mal training, and then test on other models with or without
defense on AG’s News dataset. As shown in Table 2, almost
on all RNN models with adversarial examples generated
on other model, SEM could yield the highest classification
accuracy. And on CNN models, SEM can achieve moderate
accuracy on par with the best one. On BERT, the transfer-
ability of adversarial examples generated on other models
performs very weak, and the accuracy here lies more on the
generalization, so AT achieves the best results.

4.4 DISCUSSION ON TRAVERSE ORDER

We further discuss the impact of the traverse order of syn-
onymous words. As shown in Figure 2, the traverse order
of words at the 3rd line of Algorithm 1 can influence the
final synonym encoding of a word and even lead to different
codes for the same synonyms set. In SEM, we traverse the
word in the descending order of word frequency to allocate
the encoding with the highest frequency to each word cluster.
Hence, the encoded text tends to adopt codes of the more
common words that are close synonyms to their original
ones. The word frequency of each word in IMDB is shown
in Figure 3.

To verify whether the order determined by word frequency
could help SEM achieve higher robustness, we first tra-
verse fixed number of words with the highest frequency (we
choose 0, 200, 400, 600, 800, 1, 000, 1, 500, 2, 000, 5, 000,
10, 000, 30, 000, 50, 000 respectively) and traverse the re-
maining words in arbitrary order to obtain a new encoder.
The accuracy on benign data and robustness under attacks
with different encoder on the four models are shown in Fig-
ure 4a-4d. As we can see, different traverse orders have little
effect on the accuracy of benign data but indeed influence
the robustness performance of SEM. On the four models,
when we shuffle the entire dictionary for random traverse
order (word count = 0), SEM achieves poor robustness but
is still better than normal training and adversarial training.
As we increase the number of fixed ordered words by word
frequency, the robustness increases rapidly. When the word
count is 5,000 for CNN and RNN models and 400 for BERT,
SEM can achieve good enough robustness, and the best re-
sult on CNN models is even better than that of IBP. When
we completely traverse the word dictionary according to
the word frequency, SEM can achieve the best robustness
on LSTM, Bi-LSTM and BERT. Therefore, the word fre-
quency indeed has an impact on the performance of SEM.
The higher frequency the word has, the more significant
impact it has on the performance.

In summary, different orders to traverse words can influence
the resulting encoding, and the order by word frequency can
help improve the stability and robustness of SEM.
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(a) Word-CNN under attacks (b) LSTM under attacks (c) Bi-LSTM under attacks (d) BERT under attacks

Figure 4: The impact of word frequency on the performance of SEM for four models on IMDB. We report the classification
accuracy (%) of each model with various number of words ordered by word frequency.

(a) Word-CNN under attacks (b) LSTM under attacks (c) Bi-LSTM under attacks (d) BERT under attacks

Figure 5: Classification accuracy (%) of SEM on various values of δ ranging from 0 to 1.2 for four models on IMDB where
k is fixed to 10.

(a) Word-CNN under attacks (b) LSTM under attacks (c) Bi-LSTM under attacks (d) BERT under attacks

Figure 6: Classification accuracy (%) of SEM on various values of k ranging from 5 to 15 for four models on IMDB where δ
is fixed to 0.5.

4.5 HYPER-PARAMETERS STUDY

Moreover, we explore how the hyper-parameters δ and k in
Syn(w, δ, k) of SEM influence its performance, using four
models on IMDB with or without adversarial attacks. We try
different δ ranging from 0 to 1.2 and k ranging from 5 to
15. The results are illustrated in Figure 5 and 6 respectively.

On benign data, as the red lines shown in Figure 5 and 6,
the classification accuracy decreases slightly when δ or k in-
creases, because a larger δ or k indicates that we need fewer
words to train the model. Nevertheless, the classification
accuracy only degrades slightly, as SEM could maintain the
semantic invariance of the original text after encoding.

Then, we investigate how δ, the distance we use to consider
synonyms for a word, influences the defense performance of
SEM empirically on the four models, as shown in Figure 5a-

5d where k is fixed to 10. When δ = 0, we have the original
models, and the accuracy is the lowest under all attacks
except for GA and GSA on BERT which achieve the lowest
when δ = 0.1. As δ increases, the accuracy rises rapidly,
peaks when δ = 0.5, and then starts to decay because too
large δ introduces semantic drifts. Thus, we choose δ = 0.5
for a proper trade-off to maintain the accuracy of benign data
and improve the robustness against adversarial examples.

Similarly, we investigate the influence of k, the number of
synonyms that we consider for each word, on the defense ef-
fectiveness of SEM on the four models, as shown in Figure
6a-6d where δ is fixed to 0.5. For BERT, k has little impact
on the performance of SEM that could always effectively
defend the attacks. For CNN and RNN models, when k = 5,
some close synonyms cannot be encoded into the same code.
However, we still observe that SEM improves the accuracy
better than that of adversarial training obtained in previous
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experiments. As k increases, more synonyms are encoded
into the same code, and thus SEM could defend the attacks
more effectively. After peaking when k = 10, the classi-
fication accuracy decays slowly and becomes stable if we
continue to increase k. Thus, we set k = 10 to achieve the
trade-off on the classification accuracy of benign examples
and adversarial examples.

In summary, small δ or k results in some synonyms not
being encoded correctly and leads to weak defense perfor-
mance, while large δ or k might cause SEM to cluster words
that are not synonyms and degrade the defense performance.
Therefore, we choose δ = 0.5 and k = 10 to have a good
trade-off.

5 CONCLUSION

In this work, we propose a new word-level adversarial de-
fense method called Synonym Encoding Method (SEM) for
the text classification task in NLP. SEM encodes the syn-
onyms of each word and embeds the encoder in front of the
input layer of the neural network model. Compared with
existing adversarial defense methods, adversarial training
and IBP, SEM can effectively defend synonym substitution
based attacks and block the transferability of adversarial ex-
amples, while maintaining good classification accuracy on
the benign data. Besides, SEM is efficient and easy to scale
to large models and big datasets. Further discussions are
also provided on the traverse order of the synonym words,
and the impact of hyper-parameters of SEM.

We observe that SEM not only promotes the model robust-
ness, but also accelerates the training process due to the
simplicity of encoding space. Considering the semantic con-
sistency after replacing the words with synonyms, SEM has
the potential to be adopted to other NLP tasks for adversarial
defense, as well as for simplifying the training process.
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