
Statistically Robust Neural Network Classification (Supplementary material)

Benjie Wang1 Stefan Webb2 Tom Rainforth3

1Department of Computer Science, University of Oxford
2Twitter Cortex, San Francisco

3Department of Statistics, University of Oxford

A PROOFS

Recall the risk definitions:

rstat
D (fθ) , E(X,Y)∼pD

[
EX′∼p(·|X) [φ(fθ(X

′), Y)]
]

(6)

RstatMC
N,C (fθ) =

1

N

N∑
n=1

1

C

C∑
m=1

φ(fθ(x
′
n,m), yn) (9)

Theorem 0. Suppose φ is bounded in [0, c], and γ-Lipschitz
in the first argument. For m = 1, ..., C, define S′m =
{(x′1,m, y1), ..., (x′N,m, yN)}. In other words, S′m contains
the mth perturbed point from each of the N original input
points. For any δ ∈ (0, 1), with probability at least 1 − δ,
the following holds for all f ∈ F:

rstat
D (f)−RstatMC

N,C (f)

≤ 2cγRadS′(F) + 3c
√

log(2/δ)/(2N)

where

RadS′(F) , 1

C

C∑
m=1

RadS′
m
(F)

Proof. We can rewrite the SRR as a single expectation over
(X ′, Y) using the law of total expectation:

rstat
D (f) = E(X,Y)∼pD,X′∼p(·|X) [φ(fθ(X

′), Y)]

= E(X′,Y)∼qD [φ(fθ(X
′), Y)]

where qD((X ′, Y)) ∝
∫
X pD(X,Y)p(X ′|X)dX .

For C = 1, we can apply the ERC generalization bound
from Theorem 1 (on the distribution qD).

For C > 1 this is not directly possible because the x′n,m are
not i.i.d. with respect to this distribution: for a fixed n, the
{x′n,m : m = 1, ..., C} are dependent as they come from
the same point xn.

In the general case, we will use the idea of independent
blocks [Mohri and Rostamizadeh, 2008]. That is, the fact
that while the variables within each block {x′n,m : m =
1, ..., C} dependent, the blocks themselves are independent.
To work at the block level, we need to rework our loss and
risk definitions.

Recall the definition of the loss function class LF =
{(X,Y) → φ(f(X), Y) : f ∈ F}. Now we will define
the "aggregate" loss function class LCF : XC × Y → R to
include, for each function l ∈ LF , the following function:

l′((xn,1, ..., xn,C), yn) =
1

C

C∑
m=1

l(xn,m, yn)

That is, functions in this class compute the average loss for
a neural network in F on the C different points forming a
block.

Note that if LF is bounded in [0, c], then so is LCF . Further,
notice that there is a 1-to-1 correspondence between NN
functions f ∈ F and loss functions l′ ∈ LCF . Thus we
can define the SRR and MC estimate of the SRR in terms
of l′: RstatMC

N,C (l′) = 1
N

∑N
n=1 l

′((xn,1, ..., xn,C), yn), and

rstat
D (l′) = E

[
RstatMC
N,C (l′)

]
, and these are the same as for the

corresponding f .

As noted by Mohri and Rostamizadeh [2008], by viewing
each block as an i.i.d. point and applying McDiarmid’s
inequality, the excess risk has the standard probabilistic
bound. That is, with probability at least 1−δ, for all l′ ∈ LCF :

rstat
D (l′)−RstatMC

N,C (l′)

≤ 2cRadN (LCF) + c
√
log(1/δ)/(2N)

where RadN (LCF) is the (non-empirical) Rademacher com-
plexity of LCF over N inputs.

Once again applying McDiarmid’s inequality in the stan-
dard way, we can convert to a bound involving the em-
pirical Rademacher complexity over the sample S′ =

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

mailto:Benjie Wang <benjie.wang@cs.ox.ac.uk>?Subject=SRNNC Paper

{((x1,1, ..., x1,C), y1), ..., ((xN,1, ..., xN,C), yN)}:

rstat
D (l′)−RstatMC

N,C (l′)

≤ 2cRadS′(LCF) + 3c
√

log(2/δ)/(2N)

It remains to determine RadS′(LCF).

Lemma 1. RadS′(LCF) ≤ 1
C

∑C
m=1 RadS′

m
(LF)

Proof. Consider the following function class UCF : XC ×
Y → R:

UCF ((xn,1, ..., xn,C), yn)

= { 1
C

C∑
m=1

lm(xn,m, yn) : l1, ..., lC ∈ LF}

Since UCF is a linear combination of C classes LF
divided by C, its ERC is given by RadS′(UCF) =
1
C

∑C
m=1 RadS′

m
(LF). This can be seen as follows:

RadS′(UCF) =
1

N
Eσ

[
sup
u∈UF

N∑
n=1

σnu((xn,1, ..., xn,C), yn)

]

=
1

N
Eσ

[
sup

l1,...,lC∈LF

N∑
n=1

σn
1

C

C∑
m=1

lm(xn,m, yn)

]

=
1

N
Eσ

[
sup

lm∈LF

1

C

C∑
m=1

(
N∑
n=1

σnlm(xn,m, yn)

)]

=
1

C

C∑
m=1

1

N
Eσ

[
sup
l∈LF

N∑
n=1

σnl(xn,m, yn)

]

=
1

C

C∑
m=1

RadS′
m
(LF)

Further, since LCF is a subset of UCF (the former is UCF with
the restriction that all the constituent loss functions are the
same), it has ERC at most RadS′(UCF).

The result follows using the Ledoux-Talagrand contraction
lemma to bound the ERC of the loss function class in terms
of the ERC of the neural network function class.

B EFFECT OF STATISTICALLY ROBUST
TRAINING

In Section 3.1, we discussed one of the major shortfalls of
adversarial risk: namely, that it loses information about how
robust points are. We now demonstrate that this can be seen
in practice with trained networks.

We analyse networks trained on CIFAR-10 either using
corruption training (uniform over ε = 0.157 L∞ ball) or
PGD/adversarial training (over ε L∞ ball). As we saw in
Section 6.2 and Table 1, the former attains 92.4% on the
TSRM metric, while the latter attains 88.1%. We thus wish
to examine to what the additional robust performance of the
corruption trained network is attributable to.

Recall that the pointwise statistical robustness of
a point (x, y) can be defined as PSR(x, y) =
EX′∼p(·|x)

[
1fθ(x′)6=y

]
(note that, as throughout this paper,

we have swtiched to using the CI rather than PC definition
of adversarial examples). This expresses how robust the
point is; if this is 0, the network almost always predicts in-
correctly, while if it is 1, it almost always predicts correctly.
In Figure 1, we plot the empirical CDF of PSR(x, y) over
the 10000 points in the CIFAR-10 dataset, for both trained
networks.

We see that both networks have PSR(x, y) = 1 for the
majority of points (more than 80%). The main difference,
then, is in that fact that the corruption trained network has a
large number of points with PSR(x, y) between 0 and 1. In
contrast, the adversarially trained network is very polarized,
with the vast majority of points having PSR(x, y) = 0 or
1. That is to say, the former achieves better TSRM not by
being fully robust on more points, but rather by ensuring as
many points as possible have some robustness. Returning
to the medical imaging analogy in Section 3.1, this means
correct diagnoses for more patients, under random noise
corruptions.

C ESTIMATION AND TRAINING

In Section 3.4, we discussed a simple Monte Carlo estima-
tion/training scheme, which involves sampling C perturbed
points around each input:

RstatMC
N,C (fθ) =

1

N

N∑
n=1

1

C

C∑
m=1

φ(fθ(x
′
n,m), yn) (9)

C.1 EFFECT OF C

As we justified in Section 3.4, taking C = 1 is, somewhat
surprisingly, sufficient to estimate the SRR accurately, mean-
ing that we can evaluate test loss/accuracy for a network by
simply perturbing each sample once. We found that this also
holds true for training: rather than taking multiple samples
around each datapoint, as is often done in e.g. Gaussian data
augmentation, we find that perturbing each sample once
doing training is sufficient, achieving similar performance
to taking more samples (e.g. C = 5) while reducing training
time to the same as standard training.

0.0 0.2 0.4 0.6 0.8 1.0

Pointwise Robustness

0.0

0.2

0.4

0.6

0.8

1.0
P

ro
p

or
ti

on
of

D
at

ap
oi

nt
s

(a)
Corruption trained (ε = 0.157)

0.0 0.2 0.4 0.6 0.8 1.0

Pointwise Robustness

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
or

ti
on

of
D

at
ap

oi
nt

s

(b)
Adversarially trained (ε = 0.157)

Figure 1: Empirical cumulative distribution function (ECDF) for the pointwise statistical robustness (CI definition), over all
10000 images in the CIFAR-10 test dataset.

C.2 ALTERNATIVE METHODS

Nonetheless, other schemes may sometimes be more effi-
cient in different situations, such as when our dataset is
small, or when the number of "non-robust" points is small.

For example, suppose that we wish to evaluate the TSRM
(φ(fθ(X ′), Y) = 1fθ(X′)6=Y) given a relatively small num-
ber of datapoints, say N = 100. This can be achieved using
our previous Monte Carlo method:

RstatMC
100,C(fθ) =

1

100

N∑
n=1

1

C

C∑
m=1

φ(fθ(x
′
n,m), yn) (9)

However, sinceN is much smaller, the law of large numbers
over N (datapoints) no longer applies and we must estimate
the robustness of each point precisely:

Lstat(X,Y, f) , Ep(X′|X) [φ(fθ(X
′), Y)] (7)

For TSRM, 0 ≤ Lstat(xn, yn, f) ≤ 1 for all n. However,
many such points will have Lstat(xn, yn, f) close to 0 or
1 (i.e. almost all of the perturbation region is classified
correctly, or almost all is classified incorrectly), in which
case sampling from p(·|xn) to estimate this quantity will
have very low variance. Thus it can be more efficient not
to uniformly increase the number of samples for each point
xn by increasing C in the Monte Carlo estimator, but to
adaptively select which points to sample from based on the
variance observed thus far.

This is a stratified sampling problem which has connec-
tions to multi-armed bandits, where the ultimate goal is to
produce a low-variance estimate of rstat(p, fθ). Carpentier
et al. [2015] suggested an algorithm (adaptive stratified

1.0 1.5 2.0 2.5 3.0
log10(epochs)

0.000

0.002

0.004

0.006

0.008

0.010
S

ta
n

d
ar

d
d

ev
ia

ti
on

of
es

ti
m

at
e

adaptive stratified

monte carlo

Figure 2: Standard deviation over 100 runs of the adaptive
stratified and Monte Carlo algorithms for estimating TSRM.
The horizontal axis represents the number of forward passes
allowed.

sampling) for this purpose. In Fig 2 we investigated the vari-
ance of adaptive stratified sampling for estimating TSRM,
and found that it was somewhat lower given the same num-
ber of epochs (i.e. same number of forward passes using
the network) compared to Monte Carlo. For larger datasets,
however, adaptive sampling provides no noticeable advan-
tage, which is why we employ Monte Carlo in our other
experiments.

Alternative methods for training networks with respect to
the SRR are also possible, and also could potentially be
beneficial particularly when we have limited data. To this
end we applied an importance sampling scheme to the set-
ting in Experiment 6.3, but found that this did not provide
noticeable improvements. Investigation of adaptive train-

ing methods, perhaps borrowing ideas from active learning,
could comprise interesting avenues for future work.

D COMPARISON TO RANDOMIZED
SMOOTHING

Randomized smoothing is a recently proposed technique
that applies post-hoc to a classifier in order to improve
its adversarial robustness. Given a base classifier f , a new
"smoothed classifier" g is defined as follows:

g(x) , argmax
c

PX′∼p(·|x)(f(X
′) = c) (1)

Here, p(·|x) is some perturbation distribution, usually taken
to be additive Gaussian noise, i.e. X ′ ∼ N(x, σ2I). For a
given input point x, g picks the class c which is predicted
most often by f in the perturbation region. In practice, since
it is not possible to evaluate predictions over the whole dis-
tribution, we sample from the distribution, and choose the
class which is predicted most frequently (majority vote).
This naturally leads to more smooth/invariant predictions,
and in fact it is possible to directly obtain certified adver-
sarial robustness (accuracy) guarantees in l2 norm for each
point: that is, a radius Rx such that:

g(xpert) = g(x) ∀xpert s.t. ||xpert − x||2 < Rx

The size of this radius Rx depends on both the probabilities
of the most likely classes predicted by f in N(x, σ2I), as
well as the standard deviation σ of the Gaussian distribution.
Intuitively, if xpert is sufficiently close to x, then the distribu-
tions N(xpert, σ

2I) and N(x, σ2I) overlap sufficiently that
the most likely predictions of f on both are the same. There
exists a tradeoff between smoothness and precision here:
increasing σ increases the certified adversarial radius, but
can also make the classifier "too smooth" and lose standard
accuracy. It can be seen that in the limit σ → ∞, g will
simply predict the same class for all input points x.

At first glance, the smoothing operation (1) appears to resem-
ble the pointwise statistical robustness metric from Section
2.3:

I[p] , EX′∼p(·|x)
[
1f(X′) 6=f(x)

]
(3)

as both involve probabilistic perturbations around point x.
However, notice that the former is an operation, which pro-
duces a new classifier, while the latter is a metric for the
original classifier f . In particular, the smoothing f → g
does not directly minimize or target the statistical robustness
metric in any meaningful way. That said, we could of course
apply the metric to g, which would involve a "double aver-
aging". The inner component of (3) would be 1g(X′) 6=g(x),
which tests whether the smoothed classifier classifies X ′, x
the same, or, in other words, whether f agrees sufficiently
on N(X ′, σ2I) and N(x, σ2I). For similar reasons to the

adversarial robustness guarantees above, we would expect
the pointwise statistical robustness metric to be small on
g (in fact, 0 if p(·|x) is chosen such that its support lies
entirely within the l2 ball of radius Rx around x).

We now consider our total statistical robustness metric de-
fined in Section 3.2, which extends to the whole data distri-
bution pD. Recall that, crucially, when moving to the TSRM
from the pointwise metric, we changed to the "corrupted
instance" (CI) definition of adversarial examples; that is,
we compare the perturbed prediction to the true class label,
rather than the original prediction:

Itotal[p] = E(X,Y)∼pD
[
EX′∼p(·|X)

[
1f(X′) 6=Y

]]
, (5)

The CI definition requires that the classifier is not just
"smooth" in the sense of producing the same prediction at
nearby points, but also that this prediction matches the true
label Y . Now consider applying randomised smoothing to
the base classifier f , in addition to or in lieu of SRR training.
As before, the randomized smoothed classifier g does not
directly target TSRM. However, unlike the pointwise metric,
we would not necessarily even expect g to obtain a better
TSRM than f . This is because g makes f smoother, but this
can come at the cost of making the correct prediction.

We empirically tested applying randomized smoothing to
our classifiers, and as we expected, this provided no ben-
efit in terms of SRR/TSRM, usually performing slightly
worse on these metrics. The smoothed classifiers did exhibit
greater adversarial robustness, as randomized smoothing
is designed to achieve. Thus, while randomized smoothing
makes use of probabilistic perturbations, it does so in a very
different way to SRR training.

E IMPLEMENTATION DETAILS

All experiments were performed using Python 3 with the
PyTorch framework, using a single NVIDIA Tesla T4 GPU.

In Experiment 6.1, we used the MNIST dataset with the
standard train/test split (60000/10000), with pixels scaled
to [0, 1]. We used a dense ReLU network architecture with
an input layer of size 784, a hidden layer of size 256, and
an output layer of size 10. Training was performed for 50
epochs, each time using default initialization and with the
Adam optimizer with learning rate 1e−3.

In Experiment 6.2, we used the CIFAR-10 dataset with
the standard train/test split (50000/10000), with pixels nor-
malized by per-channel mean and standard deviation. We
use a wide residual network architecture [Zagoruyko and
Komodakis, 2016] with depth 28, widening factor 10, and
dropout rate 0.3. Training was performed using SGD with a
staggered learning rate, starting at 0.01 and ending at 0.0004.
We report the train/test scores after 30 epochs (averaged over
5 runs) in Table 1. Adversarial training was applied using

7-step PGD to find the most adversarial perturbation for
each training point; this took significantly longer (approx. 6
times) compared to natural or corruption training.

In Experiment 6.3, we again used the MNIST dataset with
the same train/test split and the same network architecture.
However, we instead trained for 1000 epochs in each run,
and used a learning rate of 5e−5 for the Adam optimizer.

References

Alexandra Carpentier, Remi Munos, and András Antos.
Adaptive strategy for stratified monte carlo sampling.
Journal of Machine Learning Research, 16(68):2231–
2271, 2015.

Mehryar Mohri and Afshin Rostamizadeh. Rademacher
complexity bounds for non-i.i.d. processes. In Proceed-
ings of the 21st International Conference on Neural In-
formation Processing Systems, page 1097–1104, 2008.

Sergey Zagoruyko and Nikos Komodakis. Wide residual
networks. In Proceedings of the British Machine Vision
Conference (BMVC), 2016.

	Proofs
	Effect of Statistically Robust Training
	Estimation and Training
	Effect of C
	Alternative Methods

	Comparison to Randomized Smoothing
	Implementation Details

