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Abstract

Despite their numerous successes, there are many
scenarios where adversarial risk metrics do not
provide an appropriate measure of robustness. For
example, test-time perturbations may occur in a
probabilistic manner rather than being generated
by an explicit adversary, while the poor train–test
generalization of adversarial metrics can limit their
usage to simple problems. Motivated by this, we
develop a probabilistic robust risk framework, the
statistically robust risk (SRR), which considers
pointwise corruption distributions, as opposed to
worst-case adversaries. The SRR provides a dis-
tinct and complementary measure of robust perfor-
mance, compared to natural and adversarial risk.
We show that the SRR admits estimation and train-
ing schemes which are as simple and efficient as for
the natural risk: these simply require noising the
inputs, but with a principled derivation for exactly
how and why this should be done. Furthermore, we
demonstrate both theoretically and experimentally
that it can provide superior generalization perfor-
mance compared with adversarial risks, enabling
application to high-dimensional datasets.

1 INTRODUCTION

Since the discovery of the phenomenon of adversarial ex-
amples for neural networks [Szegedy et al., 2014, Good-
fellow et al., 2015, Papernot et al., 2016], a variety of
approaches for assessing and mitigating their impact on
decision-making systems have been proposed [Gu and
Rigazio, 2015, Moosavi-Dezfooli et al., 2016, Madry et al.,
2018]. Much of this work has focused on the formal verifi-
cation of neural network classifiers, such as the robustness
of predictions under a Lp-norm perturbation set [Gehr et al.,
2018, Wang et al., 2018], typically doing this in an input

specific manner. Motivated by explicit adversarial attacks,
these approaches are focused on worst-case robustness: they
are based on the largest loss within the perturbed region.

Though highly appropriate in a variety of cases, this general
approach is not universally applicable. Firstly, one is often
concerned about robustness to naturally occurring, or ran-
dom, input perturbations, rather than an explicit adversary.
For example, in self-driving cars we may not have access
to the exact inputs due to sensor imperfections and wish to
ensure our predictions are robust to such variations. Here
our classifier must account for these variations, but some
level of risk will usually be acceptable: it will typically be
neither feasible nor necessary to guarantee there are no pos-
sible adversarial inputs, but we instead wish to ensure the
probability of encountering such an input is sufficiently low.

Secondly, in practice, one is usually concerned with the over-
all robustness of the network, that is, its robustness across
the range of possible inputs that it will see at test-time. This
has motivated network-wide worst-case robustness defini-
tions, such as average minimal adversarial distance [Fawzi
et al., 2018] and adversarial risk [Madry et al., 2018], along
with associated training schemes [Wong and Kolter, 2018,
Madry et al., 2018]. However, whereas the motivation for
requiring worst-case robustness for individual inputs is often
clear, it is more difficult to motivate using worst-case robust-
ness for the classifier as a whole; a classifier can only be
perfectly worst-case robust if it is robust to all possible per-
turbations of all inputs, something which will very rarely be
achievable in practice. Moreover, previous work has shown
that worst-case robustness metrics can have very poor gen-
eralization from train to test time, both theoretically and
in practice for real networks, substantially reducing their
applicability [Schmidt et al., 2018, Yin et al., 2019].

To address these limitations, we suggest a class of alterna-
tive robust risk metrics, which we term statistically robust
risks (SRRs), that naturally arise when relaxing worst-case
adversaries to pointwise perturbation distributions. SRRs
can be used to assess the overall probabilistic robustness
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of a classifier by averaging a loss function over both pos-
sible inputs and an input perturbation distribution. Unlike
adversarial risks, our SRR framework naturally applies at
a network-wide level due to the law of total expectation.
We emphasize that this framework is not a replacement for
adversarial risk, or a means to learn adversarially robust
networks, but a distinct and complementary measure of ro-
bustness that will be more appropriate in some scenarios.
Our work can be viewed as an extension and generaliza-
tion of the pointwise statistical robustness work of Webb
et al. [2019], which quantifies the expected robustness of an
individual datapoint under a perturbation distribution.

Contributions Our contributions are as follows. Firstly,
we provide theoretical and empirical results showing
that SRRs have superior generalization performance to
their corresponding adversarial risks, particularly in high-
dimensions, with bounds on the generalization error respec-
tively scaling as O(log(d)) and O(

√
d) in the size of the

network. This suggests that it may be possible to obtain
statistically robust networks in a wide range of applications
where adversarial robustness is still elusive or inappropriate.
Further, we show that the SRR admits efficient estimation
and training schemes which incur no extra computational
cost over standard training. Indeed, training to a SRR re-
quires only a noising of the inputs passed to the network,
such that it encompasses, motivates, and formalizes many
commonly-used heuristics.

We justify the practical utility of our statistical robustness
metric with a number of novel insights. Firstly, we demon-
strate that SRRs can differ significantly from both their
corresponding natural (i.e., non-robust) and adversarial risk,
and as such provide a unique metric for both training and
testing networks that helps ensure robustness to probabilistic
input perturbations. Secondly, we find that SRRs generalize
well across different perturbation distributions, meaning
that it is not necessary to have knowledge of the precise
test-time perturbation distribution. Finally, we show that
practical safety properties encoded through bespoke loss
functions can be tackled through SRRs, while standard train-
ing suffers from overfitting and instability.

2 BACKGROUND

2.1 ADVERSARIAL EXAMPLES

Although the general concept of adversarial examples (a
perturbed input data point that is classified poorly) is well
understood, the precise definition is often left implicit in the
literature, despite many versions being present [Diochnos
et al., 2018]. To formalize this, let fθ represent the classifier
(with parameters θ) and c label the true class. Let x be
the original input point and x′ the perturbed input point.
Three different definitions of an adversarial example are

now commonly used:

• Prediction change (PC) fθ(x′) 6= fθ(x);

• Corrupted instance (CI) fθ(x′) 6= c(x);

• Error region (ER) fθ(x′) 6= c(x′).

The distinction between PC and CI is that the former is
concerned with whether a perturbation changes the classifi-
cation (regardless of whether it is correct), while the latter
concerns whether the perturbed point is classified correctly.
The ER definition is typically not measurable, since we usu-
ally will not have labels for perturbed points x′. Since we
are interested in risk metrics, we take the CI definition.

2.2 NATURAL AND ADVERSARIAL RISKS

The risk of a classifier fθ is a measure of its average perfor-
mance with respect to the data distribution:

rD(fθ) , E(X,Y )∼pD [L(X,Y, fθ)] , (1)

where (X,Y ) is an input/target pair, pD is the true data
generating distribution, and L is some loss function. For
non-robust risks, L(X,Y, fθ) can usually be written in the
form φ(fθ(X), Y ), which we term the natural risk. An
empirical version of this, RN (fθ), can be obtained by re-
placing the expectation with a Monte Carlo average over a
training dataset {(x1, y1), ..., (xN , yN )}. Training a classi-
fier then corresponds to solving the optimization problem
minθ RN (fθ).

To model the effect of an adversary limited to additively
perturbing inputs by a vector δ within a limited set ∆ (e.g.,
an L∞-ball), adversarial risk is defined as

radv
D (fθ) , E(X,Y )∼pD

[
max
δ∈∆

φ(fθ(X + δ), Y )

]
, (2)

which is in fact a form of risk with loss function Ladv ,
maxδ∈∆ φ(fθ(X + δ), Y ). When the 0-1 loss function
φ(fθ(X), Y ) = 1arg maxi=1,··· ,M fθ(X)i 6=Y is used, this is
known as adversarial accuracy. Optimizing the empirical
adversarial risk, Radv

N (fθ), corresponds to a robust optimiza-
tion problem [Ben-Tal et al., 2009]. Adversarial training
[Goodfellow et al., 2015, Kurakin et al., 2018, Madry et al.,
2018] solves the problem by lower bounding the inner max-
imization using gradient-based methods to generate max-
imally adversarial examples, and training on this approxi-
mate loss.

2.3 STATISTICAL ROBUSTNESS

Webb et al. [2019] recently introduced a statistical robust-
ness metric that provides a probabilistic alternative to formal
verification of pointwise robustness. Standard verification
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schemes target the binary 0-1 metric on whether an adver-
sarial example exists in a perturbation region ∆ around a
point. Their statistical robustness metric instead corresponds
to the probability of drawing an adversarial example from
some perturbation distribution. Concretely, for a perturba-
tion distribution p(·|x) centred around x, they define their
statistical robustness metric as

I[p] , EX′∼p(·|x)

[
1fθ(X′) 6=fθ(x)

]
. (3)

This generalizes, and provides more information than, ver-
ification about the network’s robustness around x: if there
is no adversarial example in the support of p(·|x), then the
probability is 0, whereas if there is an adversarial example,
the metric indicates how likely we are to encounter one.

2.4 GENERALIZATION

The problem of generalization is fundamental in machine
learning: we want classifiers to perform well on not just
training points but unseen test points. It is well known in
statistical learning theory that we can probabilistically upper
bound the generalization error rD(f)−RN (f) of a learning
algorithm using notions of complexity on the admissible set
of classifiers (e.g. all parameterizations of a neural network)
and loss function [Shalev-Shwartz and Ben-David, 2014].
Intuitively, if the admissible set of functions is less complex,
then there is less capacity to overfit to the training data.

To be more precise, we define the empirical Rademacher
complexity (ERC) for function class F : Rd → R and sam-
ple set S = {x1, ..., xN}, xi ∈ Rd to be [Shalev-Shwartz
and Ben-David, 2014]:

RadS(F) :=
1

N
Eσ

[
sup
f∈F

N∑
n=1

σnf(xn)

]
, (4)

where σ1, ..., σN are independent Rademacher random vari-
ables, which take either the value −1 or +1, each with
probability 1/2. Intuitively, this measures the complexity of
the class by determining how many different ways functions
f ∈ F can classify the sample S.

3 FROM ADVERSARIAL TO
STATISTICAL RISKS

Adversarial examples originally captured the attention of the
machine learning community by demonstrating a discrep-
ancy between the behaviour of NNs and human reasoning.
Given that, in domains such as computer vision and nat-
ural language processing, the long-term goal is to attain
models which can reason as humans do, it is natural to
define robustness in terms of all semantically meaningful
perturbations. However, given the rapid adoption of machine
learning systems in applications such as autonomous vehi-
cles and medical diagnosis, robustness is now also a vital

practical requirement: brittleness to input perturbations can
have severe consequences. These goals, while seemingly
aligned, can in fact sometimes be conflicting. We argue that
the latter agenda requires its own treatment and develop an
associated robustness framework that arises naturally when
considering how ideas from adversarial robustness can be
transferred to probabilistic settings.

3.1 THE SHORTFALLS OF ADVERSARIAL
APPROACHES

Obtaining fully adversarially robust networks (in the sense
of being robust to all meaningful perturbations to all possible
points) is a typically infeasible task, even for simple datasets
such as MNIST and when the set of semantically consistent
perturbations is known [Schott et al., 2019, Schmidt et al.,
2018, Yin et al., 2019]. As such, one must rely on robustness
metrics, such as adversarial risk/accuracy.

However, this can have significant issues. First, adversar-
ial risk loses information about how robust a point is. By
taking the worst point within a perturbation set, adversarial
risk is by definition independent of performance on the vast
majority of the perturbed input space (so long as it is better
than the worst point). Adversarial risk thus places stringent
0/1 requirements on each point from the data distribution,
such that it favors a greater number of adversarially (com-
pletely) robust points, without guarantees of any degree of
robustness on other points. When considering applications
where perturbations are randomly generated, this can be
very misleading, or even dangerous.

Consider, for instance, a network trained to classify dis-
ease based on medical imaging. Due to imperfections in the
imaging equipment, as well as variation in equipment across
different hospitals, random noise may be introduced to the
test dataset. Optimising for adversarial risk might make the
network adversarially robust on 80% of test points; how-
ever, if it is often fooled by random noise on the remaining
20%, this could result in misdiagnoses for many patients. In
contrast, a network is robust against 95% of random pertur-
bations overall would be preferable, even if it is adversarially
robust on many fewer points. In these cases, somewhat coun-
terintuitively, adversarial risk does not correspond well with
the required notion of safety or robustness.

Second, learning with adversarial risk has proven to be very
difficult from a statistical learning perspective due to poor
generalization. Though adversarial training is effective for
reducing the adversarial risk of neural networks on small
datasets like MNIST, success has been limited in scaling up
to higher-dimensional datasets. Schmidt et al. [2018] show
this is due to a generalization gap, whereby, for CIFAR-10,
it is possible to achieve adversarial accuracy of 97% on the
training set, yet just 47% on the test set. This overfitting is
in contrast to the natural case, where well-tuned networks
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rarely overfit on CIFAR-10 [Yin et al., 2019].

In view of this, in the practical robustness agenda there is
thus a need for robustness metrics which are not as conser-
vative as adversarial risk, taking into account performance
on a larger subset of input space, whilst also being amenable
to training and tractable in the sense of generalization.

3.2 TOTAL STATISTICAL ROBUSTNESS METRIC

The pointwise statistical robustness framework introduced
in Section 2.3 provides an indication of how we might con-
struct some form of robust statistical risk. However, it is
not directly applicable as a) we require a mechanism for
assessing the overall robustness of a network; b) it only
examines changes in predictions (PC), such that it can be
satisfied by trivial networks which always make the same
incorrect prediction; and c) it does not provide any practical
mechanism for training networks.

To address the first two issues, we now introduce the total
statistical robustness metric (TSRM) as follows:

Itotal[p] = E(X,Y )∼pD
[
EX′∼p(·|X)

[
1fθ(X′) 6=Y

]]
, (5)

where pD is the true data generating distribution and Y =
c(X) is the true label of X . As it includes an expectation
over the data, the TSRM is a measure for the overall robust-
ness of the network. Intuitively, it can be thought of as the
classification error under test-time input corruptions p(·|X).

Notice that the TSRM also varies from (3) in that it com-
pares fθ(X ′) to Y instead of fθ(X). That is, we now con-
sider CI examples. This is because we want to assess how the
network performs over distribution D. Analogously, while
pointwise adversarial metrics are usually defined in terms
of prediction change (PC), adversarial accuracy is defined
in terms of misclassification (CI).

3.3 STATISTICALLY ROBUST RISK

The TSRM forms a useful metric for pre-trained networks,
but it is not suitable as a training objective due to the dif-
ficulty of taking gradients through the identity function.
Further, it explicitly assumes we are interested in probabil-
ity of failure, rather than a more general loss. To address
this, we note that it can be thought of as a specific risk and
thus generalized to

rstat
D (fθ) , E(X,Y )∼pD

[
EX′∼p(·|X) [φ(fθ(X

′), Y )]
]

(6)

where φ represents a natural, pointwise, loss function as per
Section 2.2.1 We refer to rstat

D (fθ) as a statistically robust
risk (SRR). The TSRM now constitutes the special case

1In certain cases, we may further require φ to also take X
directly as an input. This potential dependency is not problematic
and omitted simply for notational clarity.

of φ(fθ(X
′), Y ) = 1fθ(X′) 6=Y . Note that the SRR corre-

sponds to using the loss function

Lstat(X,Y, fθ) , Ep(X′|X) [φ(fθ(X
′), Y )] . (7)

Given a dataset {(x1, y1), (x2, y2), ..., (xN , yN )}, we can
also define the empirical SRR:

Rstat
N (fθ) ,

1

N

N∑
n=1

Ep(X′|xn) [φ(fθ(X
′), yn)] . (8)

The SRR framework provides a mechanism for linking sta-
tistical robustness back to the conventional notions of nat-
ural and adversarial risk, as well as a basis for theoretical
analysis (see Section 4). The natural risk can be viewed as
a special case of a SRR for which p(X ′|X) collapses to a
Dirac delta measure about X , such that it does not take into
account robustness to perturbations. On the other hand, by
using the expected loss over p(·|X), instead of just the sin-
gle worst-classified perturbation, a SRR contains important
information that is not captured by an adversarial risk.

At a high-level, training using a SRR has the effect of
“smoothing” the decision boundaries relative to using the
corresponding natural risk. This can be useful when we
want to be sensitive to certain classes or events, as it allows
us to train our classifier to take conservative actions when
the input is close to potentially problematic regions. For
example, a self-driving car needs to ensure it avoids false
negatives when predicting the presence of a pedestrian.

3.4 ESTIMATION AND TRAINING

The empirical SRR cannot be evaluated exactly as it contains
an expectation over a perturbation distribution. A simple
approximation approach is to use Monte Carlo estimation
for each inner expectation, that is:

RstatMC
N,C (fθ) =

1

N

N∑
n=1

1

C

C∑
m=1

φ(fθ(x
′
n,m), yn) (9)

where {x′n,m} is a sample from the perturbation dis-
tribution p(·|xn) for m ∈ {1, . . . , C}. Estimating
Ep(X′|xn) [φ(fθ(X

′), yn)] in this way can be a challenging
task when this expectation is very small (i.e. when the point
is very robust), typically requiring specialist rare-event esti-
mation methodology to avoid large relative errors [Webb
et al., 2019].

Perhaps surprisingly though, this difficulty actually resolves
itself when considering the empirical SRR as an overall
estimation problem. This is firstly because, for practical net-
works and tasks, the empirical SRR is typically dominated
by a small subset of the inputs xn for which the pointwise
statistical robustness loss is large (“non-robust” points), as
opposed to the majority of inputs where the pointwise sta-
tistical robustness loss is very small (“robust” points). Con-
sequently, large relative errors for these robust points do
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not significantly impact on the overall error. Secondly, we
usually have relatively large datasets (N > 105) for tasks in-
volving neural networks, meaning that we do not necessarily
need accurate estimates of pointwise robustness around each
individual datapoint to obtain an accurate average: by the
law of large numbers, the errors in our (unbiased) estimates
will cancel each other when averaged.

Because of these effects, we found that Monte Carlo estima-
tion with C = 1 (sampling a single point x′n from p(·|xn),
then averaging the loss over these points) is often sufficiently
accurate in practice for training and evaluation.

To use the SRR as a training objective, we need to use
a differentiable loss φ, such as the cross-entropy, so that
we can perform stochastic gradient descent. We can then
iterate through the training data by taking mini-batchesB ⊂
{1, . . . , N}, drawing corresponding sample perturbations
x′n,m ∼ p(·|X = xn), and updating the network using the
unbiased gradient updates

∇θrstat(p, fθ) ≈
1

‖B‖∇θ
∑
n∈B

1

C

C∑
m=1

φ(fθ(x
′
n,m), yn),

(10)

noting that this is equivalent to conventional training but
with the inputs randomly perturbed.

These insights mean that we can estimate and train on SRRs
accurately with no additional cost to standard neural network
training. This also provides justification for data augmenta-
tion schemes which sample a single perturbation for each
datapoint, as accurately minimizing a statistically robust risk
(without needing to sample many different perturbations, or
use the original datapoint). Though this scheme is simple
and efficient, our framework is itself agnostic to how we
estimate/train (see Appendix C for discussion).

3.5 CHOICE OF PERTURBATION DISTRIBUTION

The aim of the perturbation distribution used in a SRR is not
to be a completely accurate model of test-time perturbations;
finding such a perturbation distribution is typically infea-
sible. Instead, it should be chosen to reflect what kind of
perturbations we wish to be robust to. For example, if we are
concerned about large-magnitude perturbations, we might
use a heavy-tailed distribution such as a Cauchy. We may
instead have known invariances in our inputs (e.g. rotations
of an image) and construct our perturbation distribution to
encapsulate these. Generally speaking, the most important
consideration is to ensure that the perturbation distribution
places mass over any test-time perturbations of concern; our
results will later demonstrate that we generally achieve good
test-time robustness when we train with higher–variance per-
turbations than those we consider at test–time.

4 THEORETICAL GENERALIZATION
ANALYSIS

The poor generalization properties of adversarial risk in
high-dimensions are a fundamental limitation on its ap-
plicability and utility: regardless of the tractability of the
optimization procedure of training, we are left with no guar-
antees (or even an expectation) that our classifier will be
robust at test-time. We will now show that SRRs do not
suffer from the same limitation.

Given a neural network function class F and loss function
class LF , {(X,Y ) → L(X,Y, f) : f ∈ F}, we can
bound the generalization error of a classifier using the fol-
lowing theorem [Mohri et al., 2012]:

Theorem 1. Suppose 0 ≤ L(X,Y, f) ≤ c for
all X,Y, f . Suppose further that the samples S =
{(x1, y1), ..., (xN , yN )} are i.i.d. from a distribution pD.
Then for any δ ∈ (0, 1), with probability at least 1− δ the
following holds for all f ∈ F:

rD(f)−RN (f)

≤ 2c RadS(LF ) + 3c
√

log(2/δ)/(2N).
(11)

This bound is probabilistic, data-dependent and uniform
over all f ∈ F . This means it holds for all f ∈ F , including
those trained on the dataset S. Informally, this means that
with high probability (in the formal sense) the empirical risk
on the training dataset will be “close” to the true risk (i.e.
difference bounded by the term on the RHS).

To take advantage of this bound, we need to be able to com-
pute RadS(LF ). The ERC (see Eq. 4) of the neural network
function class RadS(F) can be upper bounded [Bartlett
et al., 2017, Yin et al., 2019] by an expression O(log(dmax))
in dimension, where dmax is the maximal number of nodes
in a single layer. Thus we simply need to relate RadS(LF )
to RadS(F).

Consider first the natural case, for which Lnat(X,Y, f) ,
φ(f(X), Y ). If φ(·, ·) is γ−Lipschitz in the first argument,
we can use the Talagrand Contraction Lemma [Ledoux
and Talagrand, 2013], which gives that RadS(LF ) ≤
γ RadS(F). Thus, substituting this inequality into (11), we
have

rD(f)−RN (f)

≤ 2cγ RadS(F) + 3c
√

log(2/δ)/(2N)
(12)

such that our generalization error bound scales as
O(log(dmax)) in dimension (as RadS(F) is O(log(dmax))).

We now introduce an analogous result for SRRs. In this case,
the empirical risk we will use is the MC estimate RstatMC

N,C

in (9) since this is what we actually compute.

Theorem 2. Suppose φ is bounded in [0, c], and γ-Lipschitz
in the first argument. For m ∈ {1, ..., C}, define S′m =
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{(x′1,m, y1), ..., (x′N,m, yN )}, such that it contains the m-th
perturbed point from each of the N original input points.
For any δ ∈ (0, 1), with probability at least 1 − δ, the
following holds for all f ∈ F:

rstat
D (f)−RstatMC

N,C (f)

≤ 2cγ RadS′(F) + 3c
√

log(2/δ)/(2N)
(13)

where

RadS′(F) ,
1

C

C∑
m=1

RadS′m(F) (14)

Proof. See Appendix A.

Thus the SRR generalization error is upper bounded by an
expression that varies as O(log(dmax)).

In contrast, for the adversarial risk, where (in binary clas-
sification) Ladv(X,Y, f) , maxδ∈∆ φ(fθ(X + δ), Y ),
RadS(LadvF ) is lower bounded by an expression containing
explicit dependence on

√
din, where din is the dimension of

the input layer to the NN [Yin et al., 2019]. While this lower
bound does not allow us to directly bound the generalization
error using (11), it does suggest that in high dimensions the
adversarial generalization error can be much greater than
the natural and statistically robust generalization error. This
indicates it will typically be difficult to train networks that
are adversarially robust at test time for high-dimensional
datasets. Our analysis thus shows that statistically robust
networks may be easier to obtain.

5 RELATED WORK

Probabilistic robustness Compared to the vast body of
work on adversarial metrics for neural network robustness,
there has been relatively little work examining robustness to
probabilistic perturbations. Fawzi et al. [2018] introduced
a risk metric based on finding the largest possible uniform
perturbation distribution that still maintains a target level
of accuracy. Hendrycks and Dietterich [2019] experimen-
tally evaluated different network architectures by averaging
their accuracy over a discrete set of common image corrup-
tions. Weng et al. [2019] and Webb et al. [2019], suggested
probabilistic metrics for pointwise robustness based on ver-
ification and statistical sampling approaches respectively.
Our work extends these ideas to provide a comprehensive
robust risk framework that applies to the whole network and
which can be used for training networks.

Use of noise in achieving adversarial robustness Some
recent papers [Zantedeschi et al., 2017, Li et al., 2019, Co-
hen et al., 2019] have examined the use of noise/random
corruptions as a mechanism for achieving adversarial robust-
ness. For instance, randomized smoothing [Gilmer et al.,

2019] can be used to harden modes against adversarial at-
tack post-hoc with guarantees. Our work instead focuses on
statistical robustness as the goal in its own right.

Distributional shift Defining metrics for—and obtaining
classifiers robust to—distributional shift from train to test
is a related problem [Quionero-Candela et al., 2009, Duchi
and Namkoong, 2018, Lipton et al., 2018]. We instead are
not assuming uncertainty in the population distribution, but
that individual datapoints are probabilistically corrupted.

Data augmentation for generalization Training neural
networks with randomly perturbed inputs is, of course, not
a new concept. Many works examine this form of data aug-
mentation as a means for improving generalization [Elman
and Zipser, 1988, An, 1996]. Other work has investigated
training neural networks by perturbing other components
of the neural network such as weights [An, 1996, Graves
et al., 2013], targets [Szegedy et al., 2016, Vaswani et al.,
2017], and gradients [Neelakantan et al., 2015], with similar
motivations. Chapelle et al. [2001] introduced an empirical
metric—vicinal risk—as a means to better approximate the
true natural risk by using a kernelized density estimate for
the data distribution pD, rather than just taking the standard
MC approximation (empirical risk). This leads to training
schemes equivalent to randomly perturbing the inputs.

Our work differs from these in that training with random
perturbations emerges from a principled risk minimization
framework, rather than being taken as the starting point of
algorithmic development. Moreover, we use input perturba-
tions not only during training but also as a means of evaluat-
ing the robustness at test–time. We have also drawn novel
connections and comparisons between existing adversar-
ial/robustness methods and probabilistic input perturbations,
providing conceptual, theoretical, and empirical arguments
for why the latter is an important component in the greater
arsenal of robust classification approaches.

6 EXPERIMENTS

To empirically investigate our SRR framework, we now
present experiments comparing it with natural and adversar-
ial approaches. For SRR training, we follow the approach
from Section 3.4, generating perturbations X ′n to points
Xn in the training dataset and then using a mini-batch ver-
sion of the gradient update in (10). Unless otherwise stated,
we train using the cross-entropy loss, φCE(fθ(X

′), Y ) ,
− log(fθ(X

′)Y ), referring to training on the resulting SRR
as corruption training. Analogously to testing on accuracy
in natural settings, we evaluate using the TSRM , i.e. (5).

For Experiments 6.1 and 6.3, we used a dense ReLU network
architecture with one hidden layer, while for Experiment 6.2,
we use a wide residual network architecture [Zagoruyko and
Komodakis, 2016]. Full details are provided in Appendix E.
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Table 1: Train/test set evaluations of different networks on CIFAR-10, scores given in % and averaged over 5 runs. The best
test set performance for each evaluation metric is highlighted in bold.

Training Method
Natural,
ε = 0

Corruption
ε = 0.157

Corruption
ε = 0.5

PGD
ε = 0.157

Evaluation
Metric

Natural, δ = 0 98.7/92.9 98.0/92.2 93.7/87.9 96.3/88.1

TSRM, δ = 0.157 94.9/89.4 98.1/92.4 94.1/88.1 96.3/88.1

TSRM, δ = 0.5 60.0/57.6 79.9/76.0 95.6/89.9 94.9/86.1

Adversarial, δ = 0.157 0.0/0.0 0.2/0.2 3.1/3.0 67.3/40.1
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Figure 1: TSRM computed on the MNIST test set for differ-
ent uniform perturbations ε. Each line represents a different
training objective. Results are averaged over 5 runs (error
bars are imperceptibly small).

6.1 COMPARISON TO NATURAL ACCURACY

First, we show that naturally trained networks are vulnerable
under the TSRM metric and that corruption training can
alleviate this. We train separate networks using 6 methods:
corruption training with a Cauchy distribution with scale
γ = 0.5, corruption training with the uniform perturbations
over radius-ε L∞ balls (ε = 0.1, 0.3, 0.5, 0.7), and natural
training (ε = 0). We evaluate these networks using natural
accuracy, and TSRM with uniform perturbation distributions
on radius-δ L∞ balls with δ from 10−3 to 0.7.

The results, shown in Figure 1, provide several interesting in-
sights. Firstly, as expected, networks corruption trained with
more severe perturbations (larger ε) performed better when
evaluated on more severe perturbations (larger δ), though
this comes at the cost of a lower natural accuracy. Secondly,
these gains are often more than an order of magnitude in
size, confirming that TSRM can be highly distinct from nat-
ural accuracy (δ = 0), and corruption training can provide
significant benefits under this robust metric. Finally, training
with a qualitatively distinct distribution (Cauchy) provided

decent performance when evaluated on TSRM with uniform
perturbations, supporting our intuition in Section 3.5.

6.2 EMPIRICAL GENERALIZATION ERROR

As previously noted, it has proved challenging to train net-
works to achieve high test-time adversarial accuracy on
higher-dimensional datasets such as CIFAR-10 due to poor
generalization from training. By contrast, our analysis in
Section 4 suggests that the gap will be more similar to natu-
ral accuracy for SRR approaches. We thus investigate the
generalization gap experimentally for TSRM on CIFAR-10.
Additionally, we compare corruption training with the PGD
adversarial training method of Madry et al. [2018], which is
designed to maximize adversarial accuracy.

We train using four different methods: natural training, cor-
ruption training with ε = 0.157 and ε = 0.5, and PGD
adversarial training (7 gradient steps) with ε = 0.157. Cor-
respondingly, we then evaluate these networks using natural
accuracy, TSRM with δ = 0.157 and δ = 0.5, and ad-
versarial accuracy with δ = 0.157 (computed using 7-step
PGD). Here 0.157 corresponds roughly 8/255 in pixel val-
ues, which is used as the corruption set by Madry et al.
[2018] for adversarial training, while 0.5 represents a more
extreme corruption model.

The results in Table 1 demonstrate generalization per-
formance in line with our theoretical analysis: the natu-
ral/TSRM evaluation metrics have fairly small generaliza-
tion gaps (up to about 8%), while we see a much larger
27.2% gap for adversarial accuracy (on the PGD trained
network). To reiterate, this is a limitation of adversarial risk
compared to SRR, regardless of the training method.

Regarding training methods, for the natural and TSRM
metrics, we notice that the best test-set performance was
achieved using the corresponding natural/corruption training
method. As can be expected, corruption training does not
perform well on adversarial risk, since it targets SRR rather
than adversarial risk. However, as discussed previously, ad-
versarial risk is not a relevant or accurate metric to use for
probabilistic perturbations. We also see that PGD training
is fairly effective for improving the TSRM, recording con-
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Figure 2: Learning curves using weighted cross-entropy loss on MNIST withw(8) = 100. Each plot represents a combination
of training method and evaluation metric. For the bottom left plot, note the different y-axis scaling, and that the training and
test SRR almost exactly overlap.

sistently good test-set TSRM for all values of δ. However,
there is still a consistent gap of 3− 4% between PGD train-
ing and corruption training on these statistical risk metrics.
This shows that adversarial risk can indeed be non-optimal
for average-case performance, as we argued in Section 3.1
(even if it can be a reasonable approximation). Further, PGD
training incurs significant additional computational expense
(∼6 times slower). We thus see that corruption training can
be the better choice due to its simplicity and efficiency, when
we are concerned with probabilistic perturbations.

6.3 TAILORED LOSS FUNCTIONS

In risk frameworks, we often wish to tailor the loss function
φ to better represent a particular problem, such as a safety
property. For example, a self-driving car predicting the road
is clear when there is actually a pedestrian will be far more
damaging than predicting there is a pedestrian when the
road is clear. The SRR can be particularly useful in such
situations, as networks need to be robust to noise in their
inputs to fully incorporate all uncertainty present in the
decision making process. To demonstrate this, we consider
training and evaluating using a weighted cross-entropy loss

φ(fθ(X
′), Y ) = −w(Y ) log fθ(X

′)Y . (15)

By taking w(Y ∗) >> 1 for a particular problem class Y ∗

andw(Y ) = 1 for others, the classifier will be heavily penal-
ized if it fails to correctly identify with high-confidence all
occurrences of Y ∗. In turn, this heavy penalty can increase
the sensitivity to perturbations in the inputs: the classifier
should not confidently predict that Y 6= Y ∗ if our input is
close to points for which Y = Y ∗, as this risks incurring the
penalty if our inputs are noisy or our classifier is imperfect.

To make comparisons, we trained on MNIST using the same
network as in Experiment 6.1, but with this weighted CE loss
where w(8) = 100 and w(Y ) = 1 otherwise, i.e. penalizing
classifiers which fail to confidently identify images of the
number 8. We also use a Gaussian perturbation distribution,
taking p(X ′|X) ∼ N (X,σ2I) with σ = 0.3.

The results, shown in Figure 2, exhibit several interesting
traits. Firstly, we see that natural training is extremely vul-
nerable to noisy input perturbations (bottom left), producing
SRR values at both train and test time that are multiple
orders of magnitude worse than those achieved when cor-
ruption training (bottom right). This highlights both the
importance of considering noisy inputs at test-time, and also
the ability of SRRs to provide effective robust training.

Secondly, we see that while training with natural risk quickly
overfits (top left), corruption training with the SRR provides
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far better generalization (bottom right). In fact, the final test
SRR of the corruption trained network is lower than the
final test natural risk on the natural risk trained network,
a powerful result given that the former evaluation metric
is a corrupted version of the latter. Thus even when the
inputs are not corrupted, we can achieve a better loss by
artificially adding noise to both the training procedure and
at test-time. This indicates that for the weighted loss, the
SRR can provide robustness not only by accounting for
potential input noise, but also by better accounting for the
imperfect nature of the network to avoid overconfidently
dismissing the potential for a test-time datapoint to belong
to the problem class.

7 CONCLUSIONS

Motivated by applications where test-time corruptions are
not generated adversarially but probabilistically, we intro-
duced a statistically robust risk (SRR) framework, providing
a class of metrics for evaluating robust performance under
probabilistic input perturbations that are amenable to effi-
cient training. We showed that SRRs can differ significantly
from both natural and adversarial risk, and that networks
with low test-time SRRs can be achieved through training
with corrupted inputs. Unlike adversarial risk, our results
suggest that SRRs generalize from the training data similarly
to, and potentially even better than, natural risks, meaning
that they have more general practical applicability to high-
dimensional datasets and complex architectures. Thus, for
probabilistic corruption threat settings, robust neural net-
works may be within reach for a wide range of applications.
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