A PROOFS

A.1 THEOREMS
A.1.1 Proof of Theorem

Theorem. With oracle estimates PS(c,y) for all ¢ € C,
Alg.[T)is sound and complete.

Proof. Soundness and completeness follow directly from the
specification of (P1) C and (P2) < in the algorithm’s input
B, along with (P3) access to oracle estimates P.S(c,y) for
all ¢ € C. Recall that the partial ordering must be complete
and transitive, as noted in Sect.

Assume that Alg. [I] generates a false positive, i.e. outputs
some c that is not 7-minimal. Then by Def. 4] either the algo-
rithm failed to properly evaluate PS(c, y), thereby violating
(P3); or failed to identify some ¢’ such that (i) PS(¢/,y) >
7 and (ii) ¢ < c. (i) is impossible by (P3), and (ii) is impos-
sible by (P2). Thus there can be no false positives.

Assume that Alg. [I] generates a false negative, i.e. fails to
output some c that is in fact 7-minimal. By (P1), this ¢ can-
not exist outside the finite set C. Therefore there must be
some ¢ € C for which either the algorithm failed to properly
evaluate P.S(c,y), thereby violating (P3); or wrongly iden-
tified some ¢’ such that (i) PS(¢/,y) > 7 and (i) ¢/ < ¢
Once again, (i) is impossible by (P3), and (ii) is impossible
by (P2). Thus there can be no false negatives.

A.1.2 Proof of Theorem@

Theorem. With sample estimates PS(c,y) for all ¢ € C,
Alg. [T)is uniformly most powerful.

Proof. A testing procedure is uniformly most powerful
(UMP) if it attains the lowest type II error /3 of all tests with
fixed type I error . Let O, ©; denote a partition of the pa-
rameter space into null and alternative regions, respectively.
The goal in frequentist inference is to test the null hypoth-
esis Hy : 0 € ©g against the alternative H; : 6 € ©; for
some parameter 6. Let ¢)(X) be a testing procedure of the
form 1[T'(X) > ¢,], where X is a finite sample, T'(X) is a
test statistic, and c,, is the critical value. This latter param-
eter defines a rejection region such that test statistics inte-
grate to o under Hy. We say that t»(X) is UMP iff, for any
other test 1)’ (X) such that

sup Byl (X)] < o,
ASSH)

we have
(V0 € ©1) Ep[y)'(X)] < Eo[th(X)],

where Egce, [#/(X)] denotes the power of the test to de-
tect the true 6, 1 — 3, (6). The UMP-optimality of Alg.

follows from the UMP-optimality of the binomial test (see
[Lehmann and Romano, 2005, Ch. 3]), which is used to de-
cide between Hy : PS(c,y) < 7and Hy : PS(c,y) > 7
on the basis of observed proportions PS (c,y), estimated
from n samples for all ¢ € C. The proof now takes the same
structure as that of Thm. (I} with (P3) replaced by (P3'): ac-
cess to UMP estimates of P.S(c,y). False positives are no
longer impossible but bounded at level «; false negatives
are no longer impossible but occur with frequency (. Be-
cause no procedure can find more 7-minimal factors for any
fixed o, Alg.[I]is UMP.

A.2 PROPOSITIONS
A.2.1 Proof of Proposition

Proposition. Let cg(z) = 1iff ¢ C z was constructed by
holding x* fixed and sampling X # according to D(-|S).
Then v(S) = PS(cs, y).

As noted in the text, D(z|S) may be defined in a variety of
ways (e.g., via marginal, conditional, or interventional dis-
tributions). For any given choice, let cg(z) = 1 iff « is con-
structed by holding =7 fixed and sampling X #* according
to D(x|S). Since we assume binary Y (or binarized, as dis-
cussed in Sect. [3]), we can rewrite Eq.[2]as a probability:

v(S) = Ppa|s)(f(xi) = f(z)),

where x; denotes the input point. Since conditional sam-
pling is equivalent to conditioning after sampling, this value
function is equivalent to PS(cg,y) by Def.

A.2.2 Proof of Proposition

Proposition. Let ca(z) = 1. Then

prec(A) = PS(ca,y).

1iff A(z) =

The proof for this proposition is essentially identical, except
in this case our conditioning event is A(x) = 1. Letc4 =
1 iff A(x) = 1. Precision prec(A), given by the lhs of
Eq. 3] is defined over a conditional distribution D(x|A).
Since conditional sampling is equivalent to conditioning
after sampling, this probability reduces to PS(ca,y).

A.2.3 Proof of Proposition

Proposition. Let cost be a function representing =<, and
let ¢ be some factor spanning reference values. Then the
counterfactual recourse objective is:

¢* = argmin cost(c) s.t. PS(e,1—y)>71, (1)
ceC

where 7 denotes a decision threshold. Counterfactual out-
puts will then be any z ~ D such that ¢*(z) = 1.



There are two closely related ways of expressing the counter-
factual objective: as a search for optimal points, or optimal
actions. We start with the latter interpretation, reframing ac-
tions as factors. We are only interested in solutions that flip
the original outcome, and so we constrain the search to fac-
tors that meet an I12R sufficiency threshold, PS(c,1 —y) >
7. Then the optimal action is attained by whatever factor
(i) meets the sufficiency criterion and (ii) minimizes cost.
Call this factor c*. The optimal point is then any z such that
c*(z)=1.

A.2.4 Proof of PropositionEI

Proposition. Consider the bivariate Boolean setting, as in
Sect.[2] We have two counterfactual distributions: an input
space Z, in which we observe z, y but intervene to set X =
z'; and a reference space R, in which we observe z’, 3/ but
intervene to set X = z. Let D denote a uniform mixture
over both spaces, and let auxiliary variable W tag each sam-
ple with a label indicating whether it comes from the origi-
nal (W = 1) or contrastive (W = 0) counterfactual space.
Define ¢(z) = w. Then we have suf(z,y) = PS(c,y) and
nec(z,y) = PS(1 —¢,v/).

Recall from Sect. 2] that [Pear] [2000, Ch. 9] defines
suf(z,y) := P(y,|2’,y’) and nec(z,y) := P(y./|x,y).
We may rewrite the former as Pr (y), where the reference
space R denotes a counterfactual distribution conditioned on
a',y’, do(x). Similarly, we may rewrite the latter as Pz (y’),
where the input space Z denotes a counterfactual distribu-
tion conditioned on x, y, do(z"). Our context D is a uniform
mixture over both spaces.

The key point here is that the auxiliary variable 1 indicates
whether samples are drawn from Z or R. Thus condition-
ing on different values of W allows us to toggle between
probabilities over the two spaces. Therefore, for ¢(z) = w,
we have suf(z,y) = PS(c,y) and nec(z,y) = PS(1 —

oY)

B ADDITIONAL DISCUSSIONS OF
METHOD

B.1 7-MINIMALITY AND NECESSITY

As a follow up to Remark [2]in Sect. we expand here
upon the relationship between 7 and cumulative probabili-
ties of necessity, which is similar to a precision-recall curve
quantifying and qualifying errors in classification tasks. In
this case, as we lower 7, we allow more factors to be taken
into account, thus covering more pathways towards a desired
outcome in a cumulative sense. We provide an example of
such a precision-recall curve in Fig.[I] using an R2I view of
the German credit dataset. Different levels of cumulative
necessity may be warranted for different tasks, depending on

how important it is to survey multiple paths towards an out-
come. Users can therefore adjust 7 to accommodate desired
levels of cumulative PN over successive calls to LENS.
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Figure 1: An example curve exemplifying the relationship
between 7 and cumulative probability necessity attained by
selected 7-minimal factors.

C ADDITIONAL DISCUSSIONS OF
EXPERIMENTAL RESULTS

C.1 DATA PRE-PROCESSING AND MODEL
TRAINING

German Credit Risk. We first download the dataset from
KaggleE] which is a slight modification of the UCI version
[Dua and Graft},2017]. We follow the pre-processing steps
from a Kaggle tutorialE] In particular, we map the categori-
cal string variables in the dataset (Savings, Checking,
Sex, Housing, Purpose and the outcome Risk) to nu-
meric encodings, and mean-impute values missing values
for Savings and Checking. We then train an Extra-Tree
classifier [Geurts et al., [2006| using scikit-learn, with ran-
dom state 0 and max depth 15. All other hyperparameters
are left to their default values. The model achieves a 71%
accuracy.

German Credit Risk - Causal. We assume a partial or-
dering over the features in the dataset, as described in Fig.
[Bl We use this DAG to fit a structural causal model (SCM)
based on the original data. In particular, we fit linear regres-
sions for every continuous variable and a random forest clas-
sifier for every categorical variable. When sampling from
D, we let variables remain at their original values unless ei-
ther (a) they are directly intervened on, or (b) one of their
ancestors was intervened on. In the latter case, changes are
propagated via the structural equations. We add stochastic-
ity via Gaussian noise for continuous outcomes, with vari-
ance given by each model’s residual mean squared error.
For categorical variables, we perform multinomial sampling
over predicted class probabilities. We use the same f model
as for the non-causal German credit risk description above.

'See https://www.kaggle.com/kabure/
german—-credit-data-with-risk?select=german_
credit_data.csv.

“See https://www.kaggle.com/vigneshj6/
german-credit-data-analysis—pythonl
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SpamAssassins. The original spam assassins dataset comes
in the form of raw, multi-sentence emails captured on
the Apache SpamAssassins project, 2003-2015 We seg-
mented the emails to the following “features”: From
is the sender; To is the recipient; Subject is the
email’s subject line; Urls records any URLs found in
the body; Emails denotes any email addresses found
in the body; First Sentence, Second Sentence,
Penult Sentence, and Last Sentence refer to the
first, second, penultimate, and final sentences of the email,
respectively. We use the original outcome label from the
dataset (indicated by which folder the different emails were
saved to). Once we obtain a dataset in the form above, we
continue to pre-process by lower-casing all characters, only
keeping words or digits, clearing most punctuation (except
for *-> and ‘_’), and removing stopwords based on nltk’s pro-
vided list [Bird et al.l [2009]. Finally, we convert all clean
strings to their mean 50-dim GloVe vector representation
[Pennington et al.,2014]]. We train a standard MLP classi-
fier using scikit-learn, with random state 1, max iteration
300, and all other hyperparameters set to their default val-
ues['| This model attains an accuracy of 98.3%.

IMDB. We follow the pre-processing and modeling steps
taken in a standard tutorial on LSTM training for sentiment
prediction with the IMDB datasetE] The CSV is included in
the repository named above, and can be additionally down-
loaded from Kaggle or ai.standfordE] In particular, these
include removal of HTML-tags, non-alphabetical charac-
ters, and stopwords based on the the list provided in the ntlk
package, as well as changing all alphabetical characters to
lower-case. We then train a standard LSTM model, with 32
as the embedding dimension and 64 as the dimensionality
of the output space of the LSTM layer, and an additional
dense layer with output size 1. We use the sigmoid activa-
tion function, binary cross-entropy loss, and optimize with
Adam [Kingma and Ba, [2015]]. All other hyperparameters
are set to their default values as specified by Kerasﬂ The
model achieves an accuracy of 87.03%.

Adult Income. We obtain the adult income dataset via
DiCE’s implementatiorﬁ and followed Haojun Zhu’s pre-

3See https:
//spamassassin.apache.org/old/credits.htmll

*See https://scikit-learn.org/stable/
modules/generated/sklearn.\neural_network.
MLPClassifier.html.

>See https://github.com/hansmichaels/
sentiment-analysis-IMDB-Review-using-LSTM/
blob/master/sentiment_analysis.py.ipynbl

°See
https://www.kaggle.com/lakshmi25npathi/
imdb-dataset-of-50k-movie-reviews/orhttp:
//ai.stanford.edu/~amaas/data/sentiment/

’Seelhttps://keras.io

8Seehttps://github.com/interpretml/DiCE,

processing stepsﬂ For our recourse comparison, we use a
pretrained MLP model provided by the authors of DiCE,
which is a single layer, non-linear model trained with Ten-
sorFlow and stored in their repository as ‘adult.h5’.

C.2 TASKS

Comparison with attributions. For completeness, we also
include here comparison of cumulative attribution scores
per cardinality with probabilities of sufficiency for the I2R
view (see Fig.[2).
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Figure 2: Comparison of degrees of sufficiency in I2R set-
ting, for top k features based on SHAP scores, against the
best performing subset of cardinality % identified by our
method. Results for German are averaged over 50 inputs;
results for SpamAssassins are averaged over 25 inputs.

Sentiment sensitivity analysis. We identify sentences in
the original IMDB dataset that are up to 10 words long. Out
of those, for the first example we only look at wrongly pre-
dicted sentences to identify a suitable example. For the other
example, we simply consider a random example from the
10-word maximum length examples. We noted that Anchors
uses stochastic word-level perturbations for this setting. This
leads them to identify explanations of higher cardinality for
some sentences, which include elements that are not strictly
necessary. In other words, their outputs are not minimal, as
required for descriptions of “actual causes” [Halpern and
Pearl| 2005} |[Halpern, |2016].

Comparison with Anchors. To complete the picture of
our comparison with Anchors on the German Credit Risk
dataset, we provide here additional results. In the main text,
we included a comparison of Anchors’s single output pre-
cision against the mean degree of sufficiency attained by
our multiple suggestions per input. We sample 100 differ-
ent inputs from the German Credit dataset and repeat this
same comparison. Here we additionally consider the mini-
mum and maximum PS¢, y) attained by LENS against An-
chors. Note that even when considering minimum P.S sug-
gestions by LENS, i.e. our worst output, the method shows
more consistent performance. We qualify this discussion by
noting that Anchors may generate results comparable to our
own by setting the § hyperparameter to a lower value. How-
ever, Ribeiro et al.|[2018]] do not discuss this parameter in

°Seehttps://rpubs.com/H_zhu/235617,
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Table 1: Recourse options for a single input given by DiCE and our method. We report targets of interventions as suggested
options, but they could correspond to different values of interventions. Our method tends to propose more minimal and
diverse intervention targets. Note that all of DiCE’s outputs are already subsets of LENS’s two top suggestions, and due to
T-minimality LENS is forced to pick the next factors to be non-supersets of the two top rows. This explains the higher cost

of LENS’s bottom three rows.

| input | DiCE output LENS output |
| Age | Wrkels | Edu. | Marital | Occp. | Race  Sex | Hrs/week | Targets of intervention Cost  Targets of intervention | Cost |
Age, Edu., Marital, Hrs/week 8.13 Edu. 1
Age, Edu., Marital, Occp., Sex, Hrs/week 5.866 Martial 1
42 Govt. HS-grad Single  Service White Male 40 Age, Wrkcls, Educ., Marital, Hrs/week 5.36  Occp., Hrs/week 19.3
Age, Edu., Occp., Hrs/week 32 Wrkcls, Ocep., Hrs/week 12.6
Edu., Hrs/week 11.6  Age, Wrkcls, Occp., Hrs/week  12.2

detail in either their original article or subsequent notebook
guides. They use default settings in their own experiments,
and we expect most practitioners will do the same.
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Figure 3: We compare degree of sufficiency against preci-
sion scores attained by the output of LENS and Anchors for
examples from German. We repeat the experiment for 100
sampled inputs, and each time consider the single output
by Anchors against the min (left) and max (right) PS(c, y)
among LENS’s multiple candidates. Dotted line indicates
7 = 0.9, the threshold we chose for this experiment.

Recourse: DiCE comparison First, we provide a single
illustrative example of the lack of diversity in intervention
targets we identify in DiCE’s output. Let us consider one
example, shown in Table[T} While DiCE outputs are diverse
in terms of values and target combinations, they tend to
have great overlap in intervention targets. For instance, Age
and Education appear in almost all of them. Our method
would focus on minimal paths to recourse that would involve
different combinations of features.

DICE cost
DICE cost

LENS cost LENS cost

Figure 4: We show results over 50 input points sampled
from the original dataset, and all possible references of the
opposite class, across two metrics: the min cost (left) of
counterfactuals suggested by our method vs. DiCE, and the
max cost (right) of counterfactuals.

Next, we also provide additional results from our cost com-

parison with DiCE’s output in Fig. [3] While in the main text
we include a comparison of our mean cost output against
DiCE’s, here we additionally include a comparison of min
and max cost of the methods’ respective outputs. We see that
even when considering minimum and maximum cost, our
method tends to suggest lower cost recourse options. In par-
ticular, note that all of DiCE’s outputs are already subsets of
LENS’s two top suggestions. The higher costs incurred by
LENS for the next two lines are a reflection of this fact: due
to 7-minimality, LENS is forced to find other interventions
that are no longer supersets of options already listed above.
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