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A  MOTIVATION FOR BNNS IN CONTROL

Here we provide further details on the motivation to use Bayesian models in a model-based control or reinforcement learning
scenario. Choosing an appropriate model when capturing unknown dynamics of a system under consideration is of critical
importance to the success of the ultimate algorithm. In particular, it is known that the introduction of slight biases can
greatly affect the learning of a good control policy [|Atkeson and Santamarial (1997, |Abbeel et al., 2006]]. Model bias can
lead to over-confident predictions in the early stages of learning which can in turn lead to unsafe exploration and to the
degradation of the learned control policy [[Abbeel et al., 2006]]. Moreover, at deployment time, being able to reason about
both out-of-distribution scenarios as well as the uncertainties about ones beliefs regarding the underlying dynamics can
enable more safe actions in principle [Michelmore et al., 2020]. This, incorporating a model which is inherently capable of
reasoning about uncertainty and which can provide the modeller with critical feedback about model choice is intuitively
desirable.

Bayesian neural networks represent a potentially powerful model for uncertainty-aware model-based reinforcement learning
Chua et al.|[2018]]. While deterministic neural networks enable greater scalability than Bayesian neural networks, they fail to
reason about uncertainty and can be a great source of model bias. Similarly, while GPs tend to be more successful in terms
of calibrated uncertainty, they fail to scale to high-dimensional, large-data regime required by many real world problems
[Deisenroth and Rasmussenl 2011]]. Bayesian Neural Networks combine the uncertainty benefits of Gaussian processes
with the scalability of neural networks. In addition, their uncertainty has been shown to make them more resistant to small
changes in their inputs [Carbone et al., 2020]] as well as more sample-efficient during model-based learning |Chua et al.
[2018].

B AGENT DESCRIPTIONS AND DYNAMICS

2D Kinematic Car Both the 2D kinematic car dynamics and the Zigzag environment given in the first row of Figure
are benchmarks from [Fan et al., 2018]]. The agent dynamics model is a planar version of a single rear wheel kinematic
vehicle and has three state space variables: two for its position in the plane and one for the rotation status of the wheel. The
controller chooses how to change the angle of the wheel as well as the magnitude of its movement vector. We only use the
2D kinematic car in the Zigzag environment where the agent starts below a trench created by a set of five equilateral triangle
obstacles. We further consider a ‘harder’ variant of this problem with a more challenging placement of the triangles. For this
environment, we use the negative /; distance from your current position as the reward function, meaning the agent’s action
is rewarded proportional to its improvement to the goal region. In the standard instance, no information about the obstacles
is given and thus must be learned via trial and error at train time. In the harder instance the reward function is modified to
compute the [; distance of the agent to the point of each triangle and the reward is penalized according to this.
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Figure 1: Analysis of the harder variant of Zigzag. Left: Layout of the state-space and 25 simulations from the BNN control loop
demonstrates that we learn to solve the problem. Center: The uncertainty lines up well with what is considered in the main text and
displays that the model is uncertain in states it is unable to visit. Right: Here we see that unlike what is presented in the main text, the
controller has a bias toward navigating the agent upward and thus it is easier to verify the region below the goal.

2D Puck The Puck environment is derived from a classical control problem of controlling a vehicle from an initial
condition to a goal state or way point [Astrom and Murray}, 2008]]. This scenario is slightly more challenging than Zigzag not
only due to the increase state-space dimension but also due to the introduction of momentum and reduced control. The state
space of the agent is a four vector containing the position in the plane as well as a vector representing the current velocity.
The control signal is a two vector representing a change in the velocity (i.e. an acceleration vector). We study this agent in
both the ‘Simple Navigation” and ‘Obstacle Avoidance’ scenarios as visualized in Figure 2rows (I) and (II), respectively.
For the former, an [, reward signal is used, and for the latter an [5 reward penalized by the [ distance to the obstacle is used.

In Table[T| we report that our synthesis algorithm not only improves the certification but also the empirical performance
of the controller. In Figure[5] we give a visual explanation for how this is the case. The original controller learned by the
PE-TS algorithm did not, under certain conditions, apply enough velocity in the negative x direction thus not only making
certification difficult, but also adversely affecting the performance. We see that our synthesis algorithm corrects for this and
enables us to not only improve performance, as reported in Table([I] but also improve the certification.

The dynamics of the puck can be given as a the following system of equations where 7 determines friction, m determines
the mass of the puck, and h determines the size of the time discretization.
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3D Hovercraft The dynamics of the 3D hovercraft are similar to those of the 2D kinematic car, save for the fact that it
exists in 3D and must also learn a policy which maintains altitude. This vehicle is taken from [2020] and amended

with a gravity term that makes learning slightly harder, but more realistic. We consider the task of learning to navigate to the
goal in the presence of an infinitely tall triangular obstacle placed directly in the path of the agent.
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Figure 2: Far Left: A render of the Ball robot in the Mujoco simulator. Center Left: 25 simulations of the Ball roboto control loop.
Center Right: The uncertainty of the BNN for the Ball robot does not show an interpretable pattern indicating that it may not be very

well calibrated. Right: Despite the higher dimensionality of the Ball robot problem we are still able to compute good lower-bounds for a
portion of the state-space.

Ball Robot For the 3D Ball Robot environment we consider a simple locomotive task inside of the OpenAl gym RL suite
[Brockman et al.} 2016]]. The agent observes a set of noisy sensor outputs involving the center of mass of the robot, the
status of its wheel, velocity, and the location of its sensor (red cube seen in [TODO]). The challenge of this task is not only
the dimensional of the robots state-space but also noise injected into the observations. Due to this, the BNN dynamics model
takes longer to converge and it makes it challenging for the PE-TS algorithm to quickly identify a strong strategy. Despite
this, after 20 episodes of learning, the BNN fits the dynamics of the system well and is able to reliably navigate to the goal.
The dynamics of this agent are wholly defined by the Mujoco physics simulator and thus are too complex to be listed in
closed form here.
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Figure 3: Far Left: A render of the Car robot in the Mujoco simulator. Center Left: A visualization of the control policy learned by the
car robot. Center Right: The uncertainty of the BNN for the Car robot does not show an interpretable pattern indicating that it may not be

very well calibrated. Right: Similarly to what is shown in Figure@we are able to obtain high probability certificates for the one-step
forward invariance property.

Car Robot The Car Robot poses a locomotion problem in which the controller must navigate a vehicle with two
independently-driven parallel wheels and a free rolling rear wheel into a goal region. Just as with the ball robot, the Car
is not fixed to the 2D-plane, and observations are taken from noisy sensors about the state of the robot in space. This
problem is significantly more challenging than the previous robots as moving forward and turning require coordination of
the independently actuated wheels. Due to the large dimensionality of the state space of this robot, reach properties cannot
be easily handled due to the explosion of the state space discretization needed. Instead, we compute a probabilistic lower

bound on the one step forward invariance property presented in 2014]. Similar to the Ball robot, the dynamics
of the physics simulator are too complex to be listed in closed form here.

C LEARNING PARAMETERS

In this section, we use Table [T to report the parameters of our learning set up. We report the state-space and control
dimensions (n and m respectively) as well as the architectures used for both the dynamics model (BNN) and controller
(DNN). We give the number of episodes of PE-TS that are used in these scenarios as well as the number of samples and time
horizon considered during the trajectory sampling stage of PE-TS. During the trajectory sampling stage we have a set of
3-10 different discrete control signals which can be picked for each control dimension (see dynamics above). In order to
pick the best action for the current time step, one simple randomly samples a series of actions over a finite time horizon and
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Figure 4: Left: Simulated trajectories from the hovercraft control loop demonstrates that it successfully solves the task well and navigates
around the obstacle. Center: The uncertainty of this BNN is interpretable but may not be considered well-calibrated. Right: The
reach-avoid property shows that we are able to verify a large portion of the state-space, here we are considering negative altitude as the
avoid region of the state-space.

uses the sum of discounted rewards in order to pick the most promising action sequence. From this, only the first action is
taken and then the process is repeated. For more details see |(Chua et al.| [2018]] and for the exact sampling parameters for our
settings we reference Table|[T]

All BNN posteriors are approximately inferred with the VOGN algorithm [Khan et al| [2018].
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Figure 5: Left Column: Actions given by DNN controller trained with PE-TS (I) do not properly account for movement in the negative
direction compared to synthesized actions (II). Right Column: Verification of learned controller (I) has worse certified bounds compared
to that of synthesized control actions (II).

D LIMITATIONS OF THE APPROACH

The limitations of our approach come from a few places: approximation of Bayesian inference, approximation in certification,
and the reliance on discretization of the state space.

Approximate Inference In both theory and practice, an overly approximate inference method can hamper our framework.
While it makes perfect sense to verify with respect to ones posterior beliefs about an underlying system’s unknown dynamics,
if those posterior beliefs are flawed (e.g. due to overly approximate inference) then the probabilities of safety may not match
the true probability of safety due to a gap between posterior belief and reality. We do note, however, that recent works in
approximate inference have shown that with a larger computational budget that BNNs inferred (even with MCMC) can
reliably scale to inputs with tens of thousands of dimensions.



Benchmark: n,m | BNN Arch. | Control Arch. | Property Episodes | Action Samples | Time Horizon
Zigzag 3,2 FCN-1-64 FCN-1-32 Reach-Avoid 8 4096 5
Zigzag-Hard 3.2 FCN-1-64 FCN-1-64 Reach-Avoid 12 8000 3

PointMass (Simple) 42 FCN-1-64 FCN-1-64 Reach 10 2048 9

PointMass (Obstacle) | 4,2 FCN-1-64 FCN-1-32 Reach-Avoid 10 7500 10

Hovercraft 53 FCN 1-64 FCN 1-32 Reach-Avoid 15 10000 5

Ball Robot 8,2 FCN-1-128 | FCN-1-64 Reach 20 10000 10

Car Robot 23,2 | FCN-1-128 | FCN-1-64 Forward Invariance | 25 5000 5

Table 1: Here we report the parameters of our learning environments. Episodes referes to the number of learning episodes performed
before the policy was successful at solving the task. Action Samples and Time Horizon refer to the trajectory sampling required by PE-TS.

Reliance on Discretization While modern certification and bound propagation techniques for NNs and BNNs have shown
remarkable scalability, being able to scale to images with thousands of input dimensions, we remark that formal reach-avoid
certification of an input space can only be done by fully considering the potential interdependence of different dimensions of
the state space. As such, while single-step certification may be able to scale to large inputs, our method incurs a complexity
exponential in the number of state space variables that one discretizes over. Finally we note that, as in our experiments, one
can chose to only discretize safety critical variables while also providing certification for single-step constraints over other
variables.

E PROOFS

Proof of Proposition [ In what follows, we omit 7 (which is given and held constant) from the probabilities for a more
compact notation. The proof is by induction. The base case is k = IV, for which we have

Vj{[r(i) = ]-G(-T) = P’r‘each(Ga Sv z, [Na N])7
which holds trivially. Under the assumption that, for any given k& € [0, N — 1], it holds that
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we show the induction step for time step k. In particular,
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Now in order to conclude the proof we want to show that
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This can be done as follow
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where the third step holds by application of Bayes rule over multiple events.

Proof of Theorem [T] The proof is by induction. The base case is k = N, for which we have

inf Vi (z) = inf 1¢(z) = 1a(q) = KX (q)-

rEq req

Next, under the assumption that for any k¥ € {0, N — 1} it holds that
inf V,7. > K]
ey Vilpi () = K (q),

we can work on the induction step: in order to derive it, it is enough to show that for any € > 0
[ Vi @p(e | @), D)ds =
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where F([—¢, €]|o?) = erf(—=

) is the cumulative function distribution for a normal random variable with zero mean and
variance o2 being within [—e, €]. This can be argued by rewriting the first term in parameter space (recall that the stochastic




kernel T is induced by py (w|D)) and providing a lower bound, as follows:
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where the last step concludes the proof because, by the induction hypothesis, we know that for ¢/ C R™

iig;f/ Vil () > K (d)

and by the construction of sets H;" & for each of its weights K7 (f*(Z, 7 (x, k)) is lower bounded by v;_1.
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