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1 MISSING PROOFS FOR SUBSECTION 4.1

1.1 PROOF OF LEMMA 4.1

Proof. Because ∆m
i ≥ 2−

m−1
4 , we get the desired upper bound for nmi by applying it to Line 4 of Algorithm 1. For Nm,

the lower bound comes because Nm ≥ nm∗ = λd2K2
m−1

2 . For the upper bound, we have Nm = nm∗ + (
∑
i n

m
i ) ≤

2λd2K2
m−1

2 . Then the upper bound for M follows trivially.

1.2 PROOF OF LEMMA 4.2

Proof. The proof of this lemma is similar to the Lemma 4 in Gupta et al. [2019]. We provide it here for the sake of
completeness.

For each arm i, we define a random variable It,i = I[Zt = Zmi ] to be the indicator of whether Zmi is chosen at time
t. We define ct,i to be the corruption put on arm i on round t, so we have R̃t,i = Rt,i + ct,i and our observed value is
It,i(Rt,i + ct,i). We define Em = [Tm−1 + 1, Tm] as the set of time step within epoch m as an abbreviation.

In the following concentration event, we choose probability β = δ
8K log2 T

Concentration of Ami =
∑
t∈Em

It,iRt,i By definition, we have E [It,i ·Rt,i] = qmi · µi, so the expectation of the sum is

nmi µi. Then, by standard Chernoff-Hoeffding inequality:

Pr


∣∣∣∣Aminmi − µi

∣∣∣∣ ≥
√

3µi ln 2
β

nmi

 ≤ β
Concentration of Bmi =

∑
t∈Em

It,ict,i Note that E[It,i] = qmi , so {(It,i − qmi )ct,i}t∈Em
is a martingale difference

sequence, with filtration be all the random variables generated before time t. By calculation, we have the following bound
for its sum of variance,

V = E[
∑
t∈Em

((It,i − qmi )ct,i)
2] ≤ qmi

∑
t∈Em

|ct,i| ≤ qmi Cmi

Then, we apply Freedman-type concentration inequality for martingales: With probability at least 1− β
2 :∣∣∣∣Bminmi

∣∣∣∣ ≤ qmi C
m
i

nmi
+
V + ln 4

β

nmi
≤ 2qmi C

m
i

nmi
+

ln 4
β

nmi
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Because nmi ≥ λ ≥ ln 4
β , we can further enlarge the second term by taking its square root, and the resulting inequality is that

∣∣∣∣Bminmi
∣∣∣∣ ≤ 2Cmi

Nm
+

√
ln 4

β

nmi

Merging these two concentration event, we can get

|µ̂i − µi| =
∣∣∣∣Ami +Bmi

nmi
− µi

∣∣∣∣ ≤ 2Cmi
Nm

+
∆m
i

16d

Next, for the concentration bound on ñmi , note that E[ñmi ] = nmi , and we again use standard Chernoff inequality for the
random variable ñmi =

∑
t∈Em

It,i:

Pr

{∣∣∣∣∣ ∑
t∈Em

It,i − nmi

∣∣∣∣∣ ≥
√

3nmi ln
2

β

}
≤ β

Because nmi ≥ λ ≥ 12 ln 2
β , this deviation is smaller than nm

i

2 .

1.3 PROOF OF LEMMA 4.5

Proof. We can prove it by induction. Recall that ∆m+1
i = max

(
2−

m
4 , rm∗ − rmi ,

∆m
i

2

)
. We only need to verify the second

term and the third term. We check the second term first. Here Z denotes argmax
Z∈M

∑
j∈Z

(
µ̂mj + 1

16d∆m
j

)
, which is different

from Zm∗ and Z∗i denotes argmax
Z∈M∧i∈Z

µ(Z). Event E is repeatedly used in the proof to give upper and lower bound for µ̂.

We apply the definition of rm∗ and rmi in Line 10 and Line 11 in Algorithm 1 and then expand them by using the induction
argument.

rm∗ − rmi

=
∑
j∈Z

(
µ̂mj +

1

16d
∆m
j

)
−

∑
j∈Zm+1

i

(
µ̂mj −

1

16d
∆m
j

)

≤

µ(Z) +
1

8d

∑
j∈Z

∆m
j +

2Cm

Nm


−

µ(Z∗i )− 1

8d

∑
j∈Z∗

i

∆m
j −

2Cm

Nm


≤ µ(Z) +

1

8d

∑
j∈Z

2(∆j + 2−
m−1

4 + ρm−1)

− µ(Z∗i ) +
1

8d

∑
j∈Z∗

i

2(∆j + 2−
m−1

4 + ρm−1) +
4Cm

Nm
(1)



Then we arrange all the terms and do some straightforward calculations.

rm∗ − rmi

≤ µ(Z) +
∆(Z)

4
+

2−
m−1

4

4
+
ρm−1

4

− µ(Z∗i ) +
∆(Z∗i )

4
+

2−
m−1

4

4
+
ρm−1

4
+

4Cm

Nm
(2)

≤ µ(Z) +
∆(Z)

4
− µ(Z∗i ) +

∆i

4
+

2−
m−1

4

2
+
ρm−1

2
+

4Cm

Nm
(3)

≤ 5

4
∆i +

2−
m−1

4

2
+ 2ρm (4)

≤ 2∆i + 2× 2−
m
4 + 2ρm

In (2), we use the property that ∀j ∈ Z,∆j ≤ ∆(Z), and in (3), we notice that ∆(Z∗i ) = ∆i by definition. In (4), we need
the fact that µ(Z∗) = µ(Z) + ∆(Z).

Next, the third term also meets the upper bound because ρm−1

2 ≤ ρm

1.4 PROOF OF LEMMA 4.6

Proof. We use induction to prove the second term. Again, here Z denotes argmax
Z

∑
j∈Z

(
µ̂mj + 1

16d∆m
j

)
.

rm∗ − rmi =
∑
j∈Z

(
µ̂mj +

1

16d
∆m
j

)
−

∑
j∈Zm+1

i

(
µ̂mj −

1

16d
∆m
j

)

≥
∑
j∈Z∗

(
µ̂mj +

1

16d
∆m
j

)
−
(
µ(Zm+1

i ) +
2Cm

Nm

)

≥
(
µ(Z∗)− 2Cm

Nm

)
−
(
µ(Zm+1

i ) +
2Cm

Nm

)
= µ(Z∗)− µ(Zm+1

i )− 4Cm

Nm

= ∆(Zm+1
i )− 4Cm

Nm

≥ ∆i −
4Cm

Nm
(5)

Note that in Line (5) ∆i ≤ ∆(Zm+1
i ), because i ∈ Zm+1

i .

1.5 PROOF OF LEMMA 4.7

Proof.

∑
j∈Z∗

i

(
µ̂m−1
j − 1

16d
∆m−1
j

)
≤
∑
j∈Zm

i

(
µ̂m−1
j − 1

16d
∆m−1
j

)

µ(Z∗i )− 1

8d

∑
j∈Z∗

i

∆m−1
j − 2Cm−1

Nm−1
≤ µ(Zmi ) +

2Cm−1

Nm−1



We rearrange this inequality and use the equality ∆(Zmi ) = ∆i + µ(Z∗i )− µ(Zmi ).

∆(Zmi ) ≤ 4Cm−1

Nm−1
+ ∆i +

2

8d

∑
j∈Z∗

i

(
∆j + 2−

m−2
4 + ρm−2

)

≤ 4Cm−1

Nm−1
+ ∆i +

∆i

4
+

2−
m−2

4

4
+
ρm−2

4
(6)

≤ 5

4
∆i + 2ρm−1 +

2−
m−2

4

4

In Line (6), because j ∈ Z∗i , by Proposition 4.4, ∆j ≤ ∆(Z∗i ) = ∆i.

1.6 PROOF OF LEMMA 4.8

Proof. ∑
j∈Z∗

(
µ̂m−1
j − 1

16d
∆m−1
j

)
≤
∑
j∈Zm

∗

(
µ̂m−1
j − 1

16d
∆m−1
j

)

µ(Z∗)− 1

8d

∑
j∈Z∗

∆m−1
j − 2Cm−1

Nm−1
≤ µ(Zm∗ ) +

2Cm−1

Nm−1

µ(Z∗)− µ(Zm∗ ) ≤ 4Cm−1

Nm−1
+

2−
m−2

4

4
+
ρm−2

4
(7)

∆(Zm∗ ) ≤ 2ρm−1 +
2−

m−2
4

4

In (7), no ∆j term exists because for j ∈ Z∗, ∆j = 0.

1.7 PROOF OF PROPOSITION 4.9

Proof.

M∑
m=1

λd2K2
m−1

2 ρm =

M∑
m=1

λd2K2
m−1

2

m∑
s=1

2Cs

2m−sNs

=

M∑
s=1

Cs

Ns

M∑
m=s

λd2K2
m+1

2

2m−s

≤
M∑
s=1

Cs

λd2K2
s−1
2

M∑
m=s

λd2K2
m+1

2

2m−s

≤
M∑
s=1

2Cs
M∑
m=s

1

2
m−s

2

≤
M∑
s=1

Cs
2

1− 1√
2

≤ O(C)

1.8 PROOF OF LEMMA 4.10

Proof. The proof is almost the same as Lemma 4.1. Note Nm ≤ 4Nm−1 because Nm = nm∗ +
∑
i∈[K] n

m
i where

nm∗ =
√

2nm−1
∗ and nmi ≤ 4nm−1

i (by applying the third term in Line 14 of algorithm 1 to Line 4).



1.9 PROOF OF LEMMA 4.13

Proof. For epoch m ≤ m1, Z∗ ∈ {0, 1}Km is admissible for the oracle A, so

µ(Zm∗ ) ≥ µ̂m(Zm∗ )− 2−m

16
≥ αµ̂m(Z∗)− 2−m

16
≥ αOPT− 2−m

8

1.10 PROOF OF LEMMA 4.16

Proof.

µ(Zm+1
i ) ≥ µ̂m(Zm+1

i )− 2−m

16

≥ µ̂m(Zm+1
∗ )− 2−m

16
− 2−m

4
(8)

≥ µ(Zm+1
∗ )− 2−m

16
− 2−m

16
− 2−m

4

≥ αOPT− 2−m

2
(Apply Corollary 4.15)

Line (8) holds because Line 8 in Algorithm 2 provides a lower bound for any arm i still in Km+1.
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