Simple Combinatorial Algorithms for Combinatorial Bandits: Corruptions and Approximations (Supplementary material)

Haike Xu¹

Jian Li¹

¹Institute for Interdisciplinary Information Sciences (IIIS), Tsinghua University, {xhk18@mails,lijian83@mail}.tsinghua.edu.cn

1 MISSING PROOFS FOR SUBSECTION 4.1

1.1 PROOF OF LEMMA 4.1

Proof. Because $\Delta_i^m \geq 2^{-\frac{m-1}{4}}$, we get the desired upper bound for n_i^m by applying it to Line 4 of Algorithm 1. For N^m , the lower bound comes because $N^m \geq n_*^m = \lambda d^2 K 2^{\frac{m-1}{2}}$. For the upper bound, we have $N^m = n_*^m + (\sum_i n_i^m) \leq 2\lambda d^2 K 2^{\frac{m-1}{2}}$. Then the upper bound for M follows trivially.

1.2 PROOF OF LEMMA 4.2

Proof. The proof of this lemma is similar to the Lemma 4 in Gupta et al. [2019]. We provide it here for the sake of completeness.

For each arm *i*, we define a random variable $I_{t,i} = \mathbb{I}[Z_t = Z_i^m]$ to be the indicator of whether Z_i^m is chosen at time *t*. We define $c_{t,i}$ to be the corruption put on arm *i* on round *t*, so we have $\tilde{R}_{t,i} = R_{t,i} + c_{t,i}$ and our observed value is $I_{t,i}(R_{t,i} + c_{t,i})$. We define $E_m = [T_{m-1} + 1, T_m]$ as the set of time step within epoch *m* as an abbreviation.

In the following concentration event, we choose probability $\beta = \frac{\delta}{8K \log_2 T}$

Concentration of $A_i^m = \sum_{t \in E_m} I_{t,i} R_{t,i}$ By definition, we have $\mathbb{E}[I_{t,i} \cdot R_{t,i}] = q_i^m \cdot \mu_i$, so the expectation of the sum is $n_i^m \mu_i$. Then, by standard Chernoff-Hoeffding inequality:

$$\Pr\left\{ \left| \frac{A_i^m}{n_i^m} - \mu_i \right| \ge \sqrt{\frac{3\mu_i \ln \frac{2}{\beta}}{n_i^m}} \right\} \le \beta$$

Concentration of $B_i^m = \sum_{t \in E_m} I_{t,i}c_{t,i}$ Note that $\mathbb{E}[I_{t,i}] = q_i^m$, so $\{(I_{t,i} - q_i^m)c_{t,i}\}_{t \in E_m}$ is a martingale difference sequence, with filtration be all the random variables generated before time *t*. By calculation, we have the following bound for its sum of variance,

$$V = \mathbb{E}\left[\sum_{t \in E_m} ((I_{t,i} - q_i^m)c_{t,i})^2\right] \le q_i^m \sum_{t \in E_m} |c_{t,i}| \le q_i^m C_i^m$$

Then, we apply Freedman-type concentration inequality for martingales: With probability at least $1 - \frac{\beta}{2}$:

$$\left|\frac{B_i^m}{n_i^m}\right| \leq \frac{q_i^m C_i^m}{n_i^m} + \frac{V + \ln \frac{4}{\beta}}{n_i^m} \leq \frac{2q_i^m C_i^m}{n_i^m} + \frac{\ln \frac{4}{\beta}}{n_i^m}$$

Because $n_i^m \ge \lambda \ge \ln \frac{4}{\beta}$, we can further enlarge the second term by taking its square root, and the resulting inequality is that

$$\left|\frac{B_i^m}{n_i^m}\right| \leq \frac{2C_i^m}{N^m} + \sqrt{\frac{\ln \frac{4}{\beta}}{n_i^m}}$$

Merging these two concentration event, we can get

$$\left|\hat{\mu_i} - \mu_i\right| = \left|\frac{A_i^m + B_i^m}{n_i^m} - \mu_i\right| \le \frac{2C_i^m}{N^m} + \frac{\Delta_i^m}{16d}$$

Next, for the concentration bound on \tilde{n}_i^m , note that $\mathbb{E}[\tilde{n}_i^m] = n_i^m$, and we again use standard Chernoff inequality for the random variable $\tilde{n}_i^m = \sum_{t \in E_m} I_{t,i}$:

$$\Pr\left\{\left|\sum_{t\in E_m} I_{t,i} - n_i^m\right| \ge \sqrt{3n_i^m \ln \frac{2}{\beta}}\right\} \le \beta$$

Because $n_i^m \ge \lambda \ge 12 \ln \frac{2}{\beta}$, this deviation is smaller than $\frac{n_i^m}{2}$.

1.3 PROOF OF LEMMA 4.5

Proof. We can prove it by induction. Recall that $\Delta_i^{m+1} = \max\left(2^{-\frac{m}{4}}, \overline{r}_*^m - \underline{r}_i^m, \frac{\Delta_i^m}{2}\right)$. We only need to verify the second term and the third term. We check the second term first. Here Z denotes $\underset{Z \in \mathcal{M}}{\operatorname{argmax}} \sum_{j \in Z} \left(\hat{\mu}_j^m + \frac{1}{16d} \Delta_j^m\right)$, which is different from Z_*^m and Z_*^* denotes $\underset{Z \in \mathcal{M} \land i \in Z}{\operatorname{argmax}} \mu(Z)$. Event \mathcal{E} is repeatedly used in the proof to give upper and lower bound for $\hat{\mu}$.

We apply the definition of \overline{r}_*^m and \underline{r}_i^m in Line 10 and Line 11 in Algorithm 1 and then expand them by using the induction argument.

$$\overline{r}_{*}^{m} - \underline{r}_{i}^{m} = \sum_{j \in Z} \left(\hat{\mu}_{j}^{m} + \frac{1}{16d} \Delta_{j}^{m} \right) - \sum_{j \in Z_{i}^{m+1}} \left(\hat{\mu}_{j}^{m} - \frac{1}{16d} \Delta_{j}^{m} \right) \\
\leq \left(\mu(Z) + \frac{1}{8d} \sum_{j \in Z} \Delta_{j}^{m} + \frac{2C^{m}}{N^{m}} \right) \\
- \left(\mu(Z_{i}^{*}) - \frac{1}{8d} \sum_{j \in Z_{i}^{*}} \Delta_{j}^{m} - \frac{2C^{m}}{N^{m}} \right) \\
\leq \mu(Z) + \frac{1}{8d} \sum_{j \in Z} 2(\Delta_{j} + 2^{-\frac{m-1}{4}} + \rho_{m-1}) \\
- \mu(Z_{i}^{*}) + \frac{1}{8d} \sum_{j \in Z_{i}^{*}} 2(\Delta_{j} + 2^{-\frac{m-1}{4}} + \rho_{m-1}) + \frac{4C^{m}}{N^{m}} \tag{1}$$

Then we arrange all the terms and do some straightforward calculations.

$$\overline{r}_{*}^{m} - \underline{r}_{i}^{m}$$

$$\leq \mu(Z) + \frac{\Delta(Z)}{4} + \frac{2^{-\frac{m-1}{4}}}{4} + \frac{\rho_{m-1}}{4}$$

$$-\mu(Z_{i}^{*}) + \frac{\Delta(Z_{i}^{*})}{4} + \frac{2^{-\frac{m-1}{4}}}{4} + \frac{\rho_{m-1}}{4} + \frac{4C^{m}}{N^{m}}$$
(2)

$$\leq \mu(Z) + \frac{\Delta(Z)}{4} - \mu(Z_i^*) + \frac{\Delta_i}{4} + \frac{2^{-\frac{m-1}{4}}}{2} + \frac{\rho_{m-1}}{2} + \frac{4C^m}{N^m}$$
(3)

$$\leq \frac{5}{4}\Delta_i + \frac{2^{-\frac{m-1}{4}}}{2} + 2\rho_m \tag{4}$$

$$\leq 2\Delta_i + 2 \times 2^{-\frac{m}{4}} + 2\rho_m$$

In (2), we use the property that $\forall j \in Z, \Delta_j \leq \Delta(Z)$, and in (3), we notice that $\Delta(Z_i^*) = \Delta_i$ by definition. In (4), we need the fact that $\mu(Z^*) = \mu(Z) + \Delta(Z)$.

Next, the third term also meets the upper bound because $\frac{\rho_{m-1}}{2} \leq \rho_m$

1.4 PROOF OF LEMMA 4.6

Proof. We use induction to prove the second term. Again, here Z denotes $\underset{Z}{\operatorname{argmax}} \sum_{j \in Z} \left(\hat{\mu}_j^m + \frac{1}{16d} \Delta_j^m \right)$.

$$\overline{r}_{*}^{m} - \underline{r}_{i}^{m} = \sum_{j \in \mathbb{Z}} \left(\hat{\mu}_{j}^{m} + \frac{1}{16d} \Delta_{j}^{m} \right) - \sum_{j \in \mathbb{Z}_{i}^{m+1}} \left(\hat{\mu}_{j}^{m} - \frac{1}{16d} \Delta_{j}^{m} \right)$$

$$\geq \sum_{j \in \mathbb{Z}^{*}} \left(\hat{\mu}_{j}^{m} + \frac{1}{16d} \Delta_{j}^{m} \right) - \left(\mu(\mathbb{Z}_{i}^{m+1}) + \frac{2C^{m}}{N^{m}} \right)$$

$$\geq \left(\mu(\mathbb{Z}^{*}) - \frac{2C^{m}}{N^{m}} \right) - \left(\mu(\mathbb{Z}_{i}^{m+1}) + \frac{2C^{m}}{N^{m}} \right)$$

$$= \mu(\mathbb{Z}^{*}) - \mu(\mathbb{Z}_{i}^{m+1}) - \frac{4C^{m}}{N^{m}}$$

$$= \Delta(\mathbb{Z}_{i}^{m+1}) - \frac{4C^{m}}{N^{m}}$$

$$\geq \Delta_{i} - \frac{4C^{m}}{N^{m}}$$
(5)

Note that in Line (5) $\Delta_i \leq \Delta(Z_i^{m+1})$, because $i \in Z_i^{m+1}$.

1.5 PROOF OF LEMMA 4.7

Proof.

$$\sum_{j \in Z_i^*} \left(\hat{\mu}_j^{m-1} - \frac{1}{16d} \Delta_j^{m-1} \right) \le \sum_{j \in Z_i^m} \left(\hat{\mu}_j^{m-1} - \frac{1}{16d} \Delta_j^{m-1} \right)$$
$$\mu(Z_i^*) - \frac{1}{8d} \sum_{j \in Z_i^*} \Delta_j^{m-1} - \frac{2C^{m-1}}{N^{m-1}} \le \mu(Z_i^m) + \frac{2C^{m-1}}{N^{m-1}}$$

We rearrange this inequality and use the equality $\Delta(Z_i^m) = \Delta_i + \mu(Z_i^*) - \mu(Z_i^m)$.

$$\Delta(Z_i^m) \le \frac{4C^{m-1}}{N^{m-1}} + \Delta_i + \frac{2}{8d} \sum_{j \in Z_i^*} \left(\Delta_j + 2^{-\frac{m-2}{4}} + \rho_{m-2} \right)$$

$$\le \frac{4C^{m-1}}{N^{m-1}} + \Delta_i + \frac{\Delta_i}{4} + \frac{2^{-\frac{m-2}{4}}}{4} + \frac{\rho_{m-2}}{4}$$

$$\le \frac{5}{4} \Delta_i + 2\rho_{m-1} + \frac{2^{-\frac{m-2}{4}}}{4}$$
 (6)

In Line (6), because $j \in Z_i^*$, by Proposition 4.4, $\Delta_j \leq \Delta(Z_i^*) = \Delta_i$.

1.6 PROOF OF LEMMA 4.8

Proof.

$$\sum_{j \in \mathbb{Z}_{*}} \left(\hat{\mu}_{j}^{m-1} - \frac{1}{16d} \Delta_{j}^{m-1} \right) \leq \sum_{j \in \mathbb{Z}_{*}^{m}} \left(\hat{\mu}_{j}^{m-1} - \frac{1}{16d} \Delta_{j}^{m-1} \right)$$
$$\mu(\mathbb{Z}^{*}) - \frac{1}{8d} \sum_{j \in \mathbb{Z}^{*}} \Delta_{j}^{m-1} - \frac{2C^{m-1}}{N^{m-1}} \leq \mu(\mathbb{Z}_{*}^{m}) + \frac{2C^{m-1}}{N^{m-1}}$$
$$\mu(\mathbb{Z}^{*}) - \mu(\mathbb{Z}_{*}^{m}) \leq \frac{4C^{m-1}}{N^{m-1}} + \frac{2^{-\frac{m-2}{4}}}{4} + \frac{\rho_{m-2}}{4}$$
$$\Delta(\mathbb{Z}_{*}^{m}) \leq 2\rho_{m-1} + \frac{2^{-\frac{m-2}{4}}}{4}$$
(7)

In (7), no Δ_j term exists because for $j \in Z^*$, $\Delta_j = 0$.

1.7 PROOF OF PROPOSITION 4.9

Proof.

$$\sum_{m=1}^{M} \lambda d^{2} K 2^{\frac{m-1}{2}} \rho_{m} = \sum_{m=1}^{M} \lambda d^{2} K 2^{\frac{m-1}{2}} \sum_{s=1}^{m} \frac{2C^{s}}{2^{m-s} N^{s}}$$
$$= \sum_{s=1}^{M} \frac{C^{s}}{N^{s}} \sum_{m=s}^{M} \frac{\lambda d^{2} K 2^{\frac{m+1}{2}}}{2^{m-s}}$$
$$\leq \sum_{s=1}^{M} \frac{C^{s}}{\lambda d^{2} K 2^{\frac{s-1}{2}}} \sum_{m=s}^{M} \frac{\lambda d^{2} K 2^{\frac{m+1}{2}}}{2^{m-s}}$$
$$\leq \sum_{s=1}^{M} 2C^{s} \sum_{m=s}^{M} \frac{1}{2^{\frac{m-s}{2}}}$$
$$\leq \sum_{s=1}^{M} C^{s} \frac{2}{1-\frac{1}{\sqrt{2}}}$$
$$\leq O(C)$$

1.8 PROOF OF LEMMA 4.10

Proof. The proof is almost the same as Lemma 4.1. Note $N^m \leq 4N^{m-1}$ because $N^m = n^m_* + \sum_{i \in [K]} n^m_i$ where $n^m_* = \sqrt{2}n^{m-1}_*$ and $n^m_i \leq 4n^{m-1}_i$ (by applying the third term in Line 14 of algorithm 1 to Line 4).

1.9 PROOF OF LEMMA 4.13

Proof. For epoch $m \leq m_1, Z^* \in \{0, 1\}^{K_m}$ is admissible for the oracle A, so

$$\mu(Z^m_*) \ge \hat{\mu}^m(Z^m_*) - \frac{2^{-m}}{16} \ge \alpha \hat{\mu}^m(Z^*) - \frac{2^{-m}}{16} \ge \alpha \text{OPT} - \frac{2^{-m}}{8}$$

1.10 PROOF OF LEMMA 4.16

Proof.

$$\mu(Z_i^{m+1}) \ge \hat{\mu}^m(Z_i^{m+1}) - \frac{2^{-m}}{16}$$

$$\ge \hat{\mu}^m(Z_*^{m+1}) - \frac{2^{-m}}{16} - \frac{2^{-m}}{4}$$

$$\ge \mu(Z_*^{m+1}) - \frac{2^{-m}}{16} - \frac{2^{-m}}{16} - \frac{2^{-m}}{4}$$

$$\ge \alpha \text{OPT} - \frac{2^{-m}}{2}$$
(Apply Corollary 4.15)

Line (8) holds because Line 8 in Algorithm 2 provides a lower bound for any arm i still in K_{m+1} .