Simple Combinatorial Algorithms for Combinatorial Bandits: Corruptions and Approximations (Supplementary material)

Haike Xu ${ }^{1}$
Jian Li ${ }^{1}$
${ }^{1}$ Institute for Interdisciplinary Information Sciences (IIIS), Tsinghua University, \{xhk18@mails, lijian83@mail\}.tsinghua.edu.cn

1 MISSING PROOFS FOR SUBSECTION 4.1

1.1 PROOF OF LEMMA 4.1

Proof. Because $\Delta_{i}^{m} \geq 2^{-\frac{m-1}{4}}$, we get the desired upper bound for n_{i}^{m} by applying it to Line 4 of Algorithm 1 For N^{m}, the lower bound comes because $N^{m} \geq n_{*}^{m}=\lambda d^{2} K 2^{\frac{m-1}{2}}$. For the upper bound, we have $N^{m}=n_{*}^{m}+\left(\sum_{i} n_{i}^{m}\right) \leq$ $2 \lambda d^{2} K 2^{\frac{m-1}{2}}$. Then the upper bound for M follows trivially.

1.2 PROOF OF LEMMA 4.2

Proof. The proof of this lemma is similar to the Lemma 4 in Gupta et al. [2019]. We provide it here for the sake of completeness.

For each arm i, we define a random variable $I_{t, i}=\mathbb{I}\left[Z_{t}=Z_{i}^{m}\right]$ to be the indicator of whether Z_{i}^{m} is chosen at time t. We define $c_{t, i}$ to be the corruption put on arm i on round t , so we have $\tilde{R}_{t, i}=R_{t, i}+c_{t, i}$ and our observed value is $I_{t, i}\left(R_{t, i}+c_{t, i}\right)$. We define $E_{m}=\left[T_{m-1}+1, T_{m}\right]$ as the set of time step within epoch m as an abbreviation.
In the following concentration event, we choose probability $\beta=\frac{\delta}{8 K \log _{2} T}$
Concentration of $A_{i}^{m}=\sum_{t \in E_{m}} I_{t, i} R_{t, i} \quad$ By definition, we have $\mathbb{E}\left[I_{t, i} \cdot R_{t, i}\right]=q_{i}^{m} \cdot \mu_{i}$, so the expectation of the sum is $n_{i}^{m} \mu_{i}$. Then, by standard Chernoff-Hoeffding inequality:

$$
\operatorname{Pr}\left\{\left|\frac{A_{i}^{m}}{n_{i}^{m}}-\mu_{i}\right| \geq \sqrt{\frac{3 \mu_{i} \ln \frac{2}{\beta}}{n_{i}^{m}}}\right\} \leq \beta
$$

Concentration of $B_{i}^{m}=\sum_{t \in E_{m}} I_{t, i} c_{t, i} \quad$ Note that $\mathbb{E}\left[I_{t, i}\right]=q_{i}^{m}$, so $\left\{\left(I_{t, i}-q_{i}^{m}\right) c_{t, i}\right\}_{t \in E_{m}}$ is a martingale difference sequence, with filtration be all the random variables generated before time t. By calculation, we have the following bound for its sum of variance,

$$
V=\mathbb{E}\left[\sum_{t \in E_{m}}\left(\left(I_{t, i}-q_{i}^{m}\right) c_{t, i}\right)^{2}\right] \leq q_{i}^{m} \sum_{t \in E_{m}}\left|c_{t, i}\right| \leq q_{i}^{m} C_{i}^{m}
$$

Then, we apply Freedman-type concentration inequality for martingales: With probability at least $1-\frac{\beta}{2}$:

$$
\left|\frac{B_{i}^{m}}{n_{i}^{m}}\right| \leq \frac{q_{i}^{m} C_{i}^{m}}{n_{i}^{m}}+\frac{V+\ln \frac{4}{\beta}}{n_{i}^{m}} \leq \frac{2 q_{i}^{m} C_{i}^{m}}{n_{i}^{m}}+\frac{\ln \frac{4}{\beta}}{n_{i}^{m}}
$$

Because $n_{i}^{m} \geq \lambda \geq \ln \frac{4}{\beta}$, we can further enlarge the second term by taking its square root, and the resulting inequality is that

$$
\left|\frac{B_{i}^{m}}{n_{i}^{m}}\right| \leq \frac{2 C_{i}^{m}}{N^{m}}+\sqrt{\frac{\ln \frac{4}{\beta}}{n_{i}^{m}}}
$$

Merging these two concentration event, we can get

$$
\left|\hat{\mu}_{i}-\mu_{i}\right|=\left|\frac{A_{i}^{m}+B_{i}^{m}}{n_{i}^{m}}-\mu_{i}\right| \leq \frac{2 C_{i}^{m}}{N^{m}}+\frac{\Delta_{i}^{m}}{16 d}
$$

Next, for the concentration bound on \tilde{n}_{i}^{m}, note that $\mathbb{E}\left[\tilde{n}_{i}^{m}\right]=n_{i}^{m}$, and we again use standard Chernoff inequality for the random variable $\tilde{n}_{i}^{m}=\sum_{t \in E_{m}} I_{t, i}$:

$$
\operatorname{Pr}\left\{\left|\sum_{t \in E_{m}} I_{t, i}-n_{i}^{m}\right| \geq \sqrt{3 n_{i}^{m} \ln \frac{2}{\beta}}\right\} \leq \beta
$$

Because $n_{i}^{m} \geq \lambda \geq 12 \ln \frac{2}{\beta}$, this deviation is smaller than $\frac{n_{i}^{m}}{2}$.

1.3 PROOF OF LEMMA 4.5

Proof. We can prove it by induction. Recall that $\Delta_{i}^{m+1}=\max \left(2^{-\frac{m}{4}}, \bar{r}_{*}^{m}-\underline{r}_{i}^{m}, \frac{\Delta_{i}^{m}}{2}\right)$. We only need to verify the second term and the third term. We check the second term first. Here Z denotes $\underset{Z \in \mathcal{M}}{\operatorname{argmax}} \sum_{j \in Z}\left(\hat{\mu}_{j}^{m}+\frac{1}{16 d} \Delta_{j}^{m}\right)$, which is different from Z_{*}^{m} and Z_{i}^{*} denotes $\underset{Z \in \mathcal{M} \wedge i \in Z}{\operatorname{argmax}} \mu(Z)$. Event \mathcal{E} is repeatedly used in the proof to give upper and lower bound for $\hat{\mu}$.

We apply the definition of \bar{r}_{*}^{m} and \underline{r}_{i}^{m} in Line 10 and Line 11 in Algorithm 1 and then expand them by using the induction argument.

$$
\begin{align*}
& \bar{r}_{*}^{m}-\underline{r}_{i}^{m} \\
= & \sum_{j \in Z}\left(\hat{\mu}_{j}^{m}+\frac{1}{16 d} \Delta_{j}^{m}\right)-\sum_{j \in Z_{i}^{m+1}}\left(\hat{\mu}_{j}^{m}-\frac{1}{16 d} \Delta_{j}^{m}\right) \\
\leq & \left(\mu(Z)+\frac{1}{8 d} \sum_{j \in Z} \Delta_{j}^{m}+\frac{2 C^{m}}{N^{m}}\right) \\
& -\left(\mu\left(Z_{i}^{*}\right)-\frac{1}{8 d} \sum_{j \in Z_{i}^{*}} \Delta_{j}^{m}-\frac{2 C^{m}}{N^{m}}\right) \\
\leq & \mu(Z)+\frac{1}{8 d} \sum_{j \in Z} 2\left(\Delta_{j}+2^{-\frac{m-1}{4}}+\rho_{m-1}\right) \\
& -\mu\left(Z_{i}^{*}\right)+\frac{1}{8 d} \sum_{j \in Z_{i}^{*}} 2\left(\Delta_{j}+2^{-\frac{m-1}{4}}+\rho_{m-1}\right)+\frac{4 C^{m}}{N^{m}} \tag{1}
\end{align*}
$$

Then we arrange all the terms and do some straightforward calculations.

$$
\begin{align*}
& \bar{r}_{*}^{m}-\underline{r}_{i}^{m} \\
\leq & \mu(Z)+\frac{\Delta(Z)}{4}+\frac{2^{-\frac{m-1}{4}}}{4}+\frac{\rho_{m-1}}{4} \\
& -\mu\left(Z_{i}^{*}\right)+\frac{\Delta\left(Z_{i}^{*}\right)}{4}+\frac{2^{-\frac{m-1}{4}}}{4}+\frac{\rho_{m-1}}{4}+\frac{4 C^{m}}{N^{m}} \tag{2}\\
\leq & \mu(Z)+\frac{\Delta(Z)}{4}-\mu\left(Z_{i}^{*}\right)+\frac{\Delta_{i}}{4}+\frac{2^{-\frac{m-1}{4}}}{2}+\frac{\rho_{m-1}}{2}+\frac{4 C^{m}}{N^{m}} \tag{3}\\
\leq & \frac{5}{4} \Delta_{i}+\frac{2^{-\frac{m-1}{4}}}{2}+2 \rho_{m} \tag{4}\\
\leq & 2 \Delta_{i}+2 \times 2^{-\frac{m}{4}}+2 \rho_{m}
\end{align*}
$$

In (2), we use the property that $\forall j \in Z, \Delta_{j} \leq \Delta(Z)$, and in (3), we notice that $\Delta\left(Z_{i}^{*}\right)=\Delta_{i}$ by definition. In (4), we need the fact that $\mu\left(Z^{*}\right)=\mu(Z)+\Delta(Z)$.
Next, the third term also meets the upper bound because $\frac{\rho_{m-1}}{2} \leq \rho_{m}$

1.4 PROOF OF LEMMA 4.6

Proof. We use induction to prove the second term. Again, here Z denotes $\underset{Z}{\operatorname{argmax}} \sum_{j \in Z}\left(\hat{\mu}_{j}^{m}+\frac{1}{16 d} \Delta_{j}^{m}\right)$.

$$
\begin{align*}
\bar{r}_{*}^{m}-\underline{r}_{i}^{m} & =\sum_{j \in Z}\left(\hat{\mu}_{j}^{m}+\frac{1}{16 d} \Delta_{j}^{m}\right)-\sum_{j \in Z_{i}^{m+1}}\left(\hat{\mu}_{j}^{m}-\frac{1}{16 d} \Delta_{j}^{m}\right) \\
& \geq \sum_{j \in Z^{*}}\left(\hat{\mu}_{j}^{m}+\frac{1}{16 d} \Delta_{j}^{m}\right)-\left(\mu\left(Z_{i}^{m+1}\right)+\frac{2 C^{m}}{N^{m}}\right) \\
& \geq\left(\mu\left(Z^{*}\right)-\frac{2 C^{m}}{N^{m}}\right)-\left(\mu\left(Z_{i}^{m+1}\right)+\frac{2 C^{m}}{N^{m}}\right) \\
& =\mu\left(Z^{*}\right)-\mu\left(Z_{i}^{m+1}\right)-\frac{4 C^{m}}{N^{m}} \\
& =\Delta\left(Z_{i}^{m+1}\right)-\frac{4 C^{m}}{N^{m}} \\
& \geq \Delta_{i}-\frac{4 C^{m}}{N^{m}} \tag{5}
\end{align*}
$$

Note that in Line (5) $\Delta_{i} \leq \Delta\left(Z_{i}^{m+1}\right)$, because $i \in Z_{i}^{m+1}$.

1.5 PROOF OF LEMMA 4.7

Proof.

$$
\begin{aligned}
\sum_{j \in Z_{i}^{*}}\left(\hat{\mu}_{j}^{m-1}-\frac{1}{16 d} \Delta_{j}^{m-1}\right) & \leq \sum_{j \in Z_{i}^{m}}\left(\hat{\mu}_{j}^{m-1}-\frac{1}{16 d} \Delta_{j}^{m-1}\right) \\
\mu\left(Z_{i}^{*}\right)-\frac{1}{8 d} \sum_{j \in Z_{i}^{*}} \Delta_{j}^{m-1}-\frac{2 C^{m-1}}{N^{m-1}} & \leq \mu\left(Z_{i}^{m}\right)+\frac{2 C^{m-1}}{N^{m-1}}
\end{aligned}
$$

We rearrange this inequality and use the equality $\Delta\left(Z_{i}^{m}\right)=\Delta_{i}+\mu\left(Z_{i}^{*}\right)-\mu\left(Z_{i}^{m}\right)$.

$$
\begin{align*}
\Delta\left(Z_{i}^{m}\right) & \leq \frac{4 C^{m-1}}{N^{m-1}}+\Delta_{i}+\frac{2}{8 d} \sum_{j \in Z_{i}^{*}}\left(\Delta_{j}+2^{-\frac{m-2}{4}}+\rho_{m-2}\right) \\
& \leq \frac{4 C^{m-1}}{N^{m-1}}+\Delta_{i}+\frac{\Delta_{i}}{4}+\frac{2^{-\frac{m-2}{4}}}{4}+\frac{\rho_{m-2}}{4} \tag{6}\\
& \leq \frac{5}{4} \Delta_{i}+2 \rho_{m-1}+\frac{2^{-\frac{m-2}{4}}}{4}
\end{align*}
$$

In Line (6), because $j \in Z_{i}^{*}$, by Proposition 4.4, $\Delta_{j} \leq \Delta\left(Z_{i}^{*}\right)=\Delta_{i}$.

1.6 PROOF OF LEMMA 4.8

Proof.

$$
\begin{align*}
\sum_{j \in Z_{*}}\left(\hat{\mu}_{j}^{m-1}-\frac{1}{16 d} \Delta_{j}^{m-1}\right) & \leq \sum_{j \in Z_{*}^{m}}\left(\hat{\mu}_{j}^{m-1}-\frac{1}{16 d} \Delta_{j}^{m-1}\right) \\
\mu\left(Z^{*}\right)-\frac{1}{8 d} \sum_{j \in Z^{*}} \Delta_{j}^{m-1}-\frac{2 C^{m-1}}{N^{m-1}} & \leq \mu\left(Z_{*}^{m}\right)+\frac{2 C^{m-1}}{N^{m-1}} \\
\mu\left(Z^{*}\right)-\mu\left(Z_{*}^{m}\right) & \leq \frac{4 C^{m-1}}{N^{m-1}}+\frac{2^{-\frac{m-2}{4}}}{4}+\frac{\rho_{m-2}}{4} \tag{7}\\
\Delta\left(Z_{*}^{m}\right) & \leq 2 \rho_{m-1}+\frac{2^{-\frac{m-2}{4}}}{4}
\end{align*}
$$

In (7), no Δ_{j} term exists because for $j \in Z^{*}, \Delta_{j}=0$.

1.7 PROOF OF PROPOSITION 4.9

Proof.

$$
\begin{aligned}
\sum_{m=1}^{M} \lambda d^{2} K 2^{\frac{m-1}{2}} \rho_{m} & =\sum_{m=1}^{M} \lambda d^{2} K 2^{\frac{m-1}{2}} \sum_{s=1}^{m} \frac{2 C^{s}}{2^{m-s} N^{s}} \\
& =\sum_{s=1}^{M} \frac{C^{s}}{N^{s}} \sum_{m=s}^{M} \frac{\lambda d^{2} K 2^{\frac{m+1}{2}}}{2^{m-s}} \\
& \leq \sum_{s=1}^{M} \frac{C^{s}}{\lambda d^{2} K 2^{\frac{s-1}{2}}} \sum_{m=s}^{M} \frac{\lambda d^{2} K 2^{\frac{m+1}{2}}}{2^{m-s}} \\
& \leq \sum_{s=1}^{M} 2 C^{s} \sum_{m=s}^{M} \frac{1}{2^{\frac{m-s}{2}}} \\
& \leq \sum_{s=1}^{M} C^{s} \frac{2}{1-\frac{1}{\sqrt{2}}} \\
& \leq O(C)
\end{aligned}
$$

1.8 PROOF OF LEMMA 4.10

Proof. The proof is almost the same as Lemma 4.1. Note $N^{m} \leq 4 N^{m-1}$ because $N^{m}=n_{*}^{m}+\sum_{i \in[K]} n_{i}^{m}$ where $n_{*}^{m}=\sqrt{2} n_{*}^{m-1}$ and $n_{i}^{m} \leq 4 n_{i}^{m-1}$ (by applying the third term in Line 14 of algorithm 1 to Line 4 .

1.9 PROOF OF LEMMA 4.13

Proof. For epoch $m \leq m_{1}, Z^{*} \in\{0,1\}^{K_{m}}$ is admissible for the oracle A, so

$$
\mu\left(Z_{*}^{m}\right) \geq \hat{\mu}^{m}\left(Z_{*}^{m}\right)-\frac{2^{-m}}{16} \geq \alpha \hat{\mu}^{m}\left(Z^{*}\right)-\frac{2^{-m}}{16} \geq \alpha \mathrm{OPT}-\frac{2^{-m}}{8}
$$

1.10 PROOF OF LEMMA 4.16

Proof.

$$
\begin{align*}
\mu\left(Z_{i}^{m+1}\right) & \geq \hat{\mu}^{m}\left(Z_{i}^{m+1}\right)-\frac{2^{-m}}{16} \\
& \geq \hat{\mu}^{m}\left(Z_{*}^{m+1}\right)-\frac{2^{-m}}{16}-\frac{2^{-m}}{4} \tag{8}\\
& \geq \mu\left(Z_{*}^{m+1}\right)-\frac{2^{-m}}{16}-\frac{2^{-m}}{16}-\frac{2^{-m}}{4} \\
& \geq \alpha \mathrm{OPT}-\frac{2^{-m}}{2}
\end{align*}
$$

(Apply Corollary 4.15)

Line (8) holds because Line 8 in Algorithm 2 provides a lower bound for any arm i still in K_{m+1}.

