
Explaining Fast Improvement in Online Imitation Learning
(Supplementary Material)

Xinyan Yan1 Byron Boots2 Ching-An Cheng3

1Aurora Innovation Inc., Pittsburgh, PA
2School of Computer Science and Engineering, University of Washington, Seattle, WA

3Microsoft Research, Redmond, WA

A PROOF OF TOOL LEMMAS

A.1 PROOF OF LEMMA 1

For completeness, we provide the proof for the basic inequality that upper bounds the norm of gradients by the function
values, for smooth and nonnegative functions. This is essential for obtaining the self-bounding properties for proving
Lemma 2 and Theorem 2 later on.

Lemma 1 (Lemma 3.1 [Srebro et al., 2010]). Suppose a function f : H → R is β-smooth and non-negative, then for any
x ∈ H, ‖∇f(x)‖2∗ ≤ 4βf(x).

Proof. Fix any x ∈ H. And fix any y ∈ H satisfying ‖y − x‖ ≤ 1. Let g(u) = f(x+ u(y − x)) for any u ∈ R. Fix any
u, v ∈ R,

|g′(v)− g′(u)| = |〈∇f(x+ v(y − x))−∇f(x+ u(y − x)), y − x〉|
≤ ‖∇f(x+ v(y − x))−∇f(x+ u(y − x))‖∗‖y − x‖
≤ β|v − u|‖y − x‖2

≤ β|v − u|

Hence, g is β-smooth. By the mean-value theorem, for any u, v ∈ R, there exists w ∈ (u, v), such that g(v) = g(u) +
g′(w)(v − u). Hence

0 ≤ g(v) = g(u) + g′(u)(v − u) + (g′(w)− g′(u))(v − u)

≤ g(u) + g′(u)(v − u) + β|w − u||v − u| ≤ g(u) + g′(u)(v − u) + β(v − u)2

Setting v = u− g′(u)
2β yields that |g′(u)| ≤

√
4βg(u). Therefore, we have

|g′(0)| = |〈∇f(x), y − x〉| ≤
√

4βg(0) =
√

4βf(x)

Therefore, by the definition of dual-norm,

‖∇f(x)‖∗ = sup
y∈B,‖y−x‖≤1

〈∇f(x), y − x〉 = sup
y∈B,‖y−x‖≤1

|〈∇f(x), y − x〉| ≤
√

4βf(x)

where the second equality is due to the domain of y − x.

It’s worthy to note that f needs to be smooth and non-negative on the entire Hilbert spaceH.

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

mailto:Xinyan Yan <xyan@aurora.tech>?Subject=Your UAI 2021 paper

B PROOF OF THEOREM 1

Theorem 1. In Algorithm 1, suppose l̂n is CSN and A is admissible. Let ε̂ = 1
N minθ∈Θ

∑
l̂n(θ) be the bias, and let Ê be

an upper bound on ε̂. Choose the stepsize η in A to be 1

2
(
β+
√
β2+ 1

2βNÊR
−2
A

) . Then it holds that

E
[

1
N

∑
ln(θn)− ε̂

]
≤ 8βR2

A
N +

√
8βR2

AÊ

N (8)

The rate (8) follows from analyzing the regret and the generalization error in the decomposition in (6). First, under the
assumption of CSN loss functions and admissible online algorithms, the online regret can be bounded by an extension of the
bias-dependent regret that is stated for mirror descent in [Srebro et al., 2010, Theorem 2], whose average gives the rate in (8)
(see Appendix B.1). Second, the generalization error in (6) vanishes in expectation because it is a martingale difference
sequence (see Appendix B.2).

B.1 UPPER BOUND OF ONLINE REGRET

We show a bias-dependent regret of admissible online algorithms (Definition 2) with CSN functions (Definition 3) by
extending Theorem 2 of [Srebro et al., 2010] as follows.

Lemma 2. Consider running an admissible online algorithm A on a sequence of CSN loss functions {fn}. Let {θn} denote
the online decisions made in each round, and let ε̂ = 1

N minθ∈Θ

∑
fn(θ) be the bias, and let Ê be such that Ê ≥ ε̂ almost

surely. Choose η for A to be 1

2

(
β+

√
β2+ βNÊ

2R2
A

) . Then the following holds

Regret(fn) ≤ 8βR2
A +

√
8βR2

ANÊ.

Proof. Because the online algorithm A is admissible, we have

Regret(fn) ≤ 1

η
R2
A +

η

2

∑
‖∇fn(θn)‖2∗ (11)

Let λ = 1
2η and r2 = 2R2

A, then

1

η
R2
A +

η

2

∑
‖∇fn(θn)‖2∗ = λr2 +

∑ 1

4λ
‖∇fn(θn)‖2∗ (12)

Using Lemma 1 yields a self-bounding property for Regret(fn):

Regret(fn) ≤ λr2 +
β

λ

∑
fn(θn) ≤ λr2 +

β

λ
Regret(fn) +

β

λ
NÊ (13)

By rearranging the terms, we have a bias-dependent upper bound

Regret(fn) ≤ β

λ− β
NÊ +

λ2

λ− β
r2 (14)

The upper bound can be minimized by choosing an optimal λ. Setting the derivative of the right-hand side to zero, and
computing the optimal λ (λ > 0) gives us

r2λ2 − 2βr2λ− βNÊ = 0, λ > 0 and λ = β +

√
β2 +

βNÊ

r2
(15)

which implies that the optimal η is 1

2

(
β+

√
β2+ βNÊ

2R2
A

) . Since the optimal λ satisfies βNÊ = r2λ2 − 2βr2λ implied from

(15), (14) can be simplified into:

Regret(fn) ≤ 1

λ− β
βNÊ +

λ2

λ− β
r2 =

1

λ− β
(r2λ2 − 2βr2λ) +

λ2

λ− β
r2

=
2λ2r2 − 2βλr2

λ− β
= 2λr2 (16)

Plugging in the optimal λ yields

Regret(fn) ≤ 2λr2 = 2

β +

√
β2 +

βNÊ

r2

 r2

= 2βr2 +
√

2βr2

√
2βr2 + 2NÊ

≤ 4βr2 + 2

√
βr2NÊ

= 8βR2
A +

√
8βR2

ANÊ (17)

where the last inequality uses the basic inequality:
√
a+ b ≤

√
a+
√
b.

Notably, the admissibility defined in Definition 2 is satisfied by common online algorithms, such as mirror descent
[Nemirovski et al., 2009] and Follow-The-Regularized-Leader [McMahan, 2017] under first-order or full-information
feedback, where η in Definition 2 corresponds to a constant stepsize, and RA measures the size of the decision set Θ.
More concretely, assume that the loss functions {fn} are convex. Then for mirror descent, with constant stepsize η, i.e.,
θn+1 = arg minθ∈Θ fn(θ) + 1

ηDh(θ||θn), where h is 1-strongly convex and Dh is the Bregman distance generated by h
defined by Dh(x||y) = h(x)− h(y)− 〈∇h(y), x− y〉 [Teboulle, 2018], R2

A can be set to maxx,y∈ΘDh(x||y). And for
FTRL with constant stepsize η, i.e., θn+1 = arg minθ∈Θ

∑
fn(θ) + 1

ηh(θ), where h is 1-strongly convex and non-negative,
R2
A can be set to maxθ∈Θ h(θ) [McMahan, 2017, Theorem 1].

B.2 THE GENERALIZATION ERROR VANISHES IN EXPECTATION

The generalization error in (6) vanishes in expectation because it is a martingale difference sequence.

Lemma 3. For Algorithm 1, the following holds: E[
∑
ln(θn)−

∑
l̂n(θn)] = 0.

Proof. We show this by working from the end of the sequence. For brevity, we use the symbol colon in the subscript to
represent a set that includes the start and the end indices, e.g. l̂1:N−2 stands for {l̂1, . . . , l̂N−2}.

El̂1:N

[
N∑
t=1

ln(θn)

]
= El̂1:N−1

[
N−1∑
t=1

ln(θn) + lN (θN)

]

= El̂1:N−1

[
N−1∑
t=1

ln(θn) + El̂N |l̂1:N−1

[
l̂N (θN)

]]

= El̂1:N−2

[
N−2∑
t=1

ln(θn) + lN−1(θN−1) + El̂N−1:N |l̂1:N−2

[
l̂N (θN)

]]

= El̂1:N−2

[
N−2∑
t=1

ln(θn) + El̂N−1|l̂1:N−2

[
l̂N−1(θN−1)

]
+ El̂N−1:N |l̂1:N−2

[
l̂N (θN)

]]

= El̂1:N−2

[
N−2∑
t=1

ln(θn) + El̂N−1:N |l̂1:N−2

[
N∑

t=N−1

l̂n(θn)

]]

By applying the steps above repeatedly, the desired equality can be obtained.

B.3 PUTTING TOGETHER

Finally, plugging Lemma 2 and Lemma 3 into (6) yields (8).

C PROOF OF THEOREM 2

Theorem 2. Under the same assumptions and setup of Theorem 1, further assume that there is G ∈ [0,∞) such that, for
any θ ∈ Θ, ‖∇l̂n(θ)‖∗ ≤ G. For any δ < 1/e, with probability at least 1− δ, the following holds

1
N

∑
ln(θn)− ε = O

(
CβR2

N +

√
CβR2(Ê+ε)

N

)
(9)

where RΘ = maxθ∈Θ ‖θ‖, R = max(1, RΘ, RA), C = log(1/δ) log(GRN).

C.1 DECOMPOSITION

The key to avoid the slow rate due to the direct application of martingale concentration analyses on the MDSs in (6) and
(7) is to take a different decomposition of the cumulative loss. Here we construct two new MDSs in terms of the gradients:
recall ε = minθ∈Θ

∑
ln(θ) and let θ? = arg minθ∈Θ

∑
ln(θ). Then by convexity of ln, we can derive∑

ln(θn)−Nε

≤
∑
〈∇ln(θn), θn − θ?〉

=
∑
〈∇ln(θn)−∇l̂n(θn), θn − θ?〉+

∑
〈∇l̂n(θn), θn − θ?〉

≤
∑
〈∇ln(θn)−∇l̂n(θn), θn〉︸ ︷︷ ︸

MDS

−
∑
〈∇ln(θn)−∇l̂n(θn)︸ ︷︷ ︸

MDS

, θ?〉+ Regret(〈∇l̂n(θn), ·〉) (18)

Our proof is based on analyzing these three terms. The two MDSs are analyzed in Appendix C.2 and the regret is analyzed
in Appendix C.3.

C.2 UPPER BOUND OF THE MARTINGALE CONCENTRATION

For the MDSs in (18), we notice that, for smooth and non-negative functions, the squared norm of the gradient can be
bounded by the corresponding function value through Lemma 1. This enables us to properly control the second-order
statistics of the MDSs in (18). By a recent vector-valued martingale concentration inequality that depends only on the
second-order statistics [Rakhlin and Sridharan, 2015], we obtain a self-bounding property for (18) to get a fast concentration
rate. The martingale concentration inequality is stated in the following lemma.

Lemma 4 (Theorem 3 [Rakhlin and Sridharan, 2015]). Let K be a Hilbert space with norm ‖ · ‖ whose dual is ‖ · ‖∗. Let
{zt} be a K-valued martingale difference sequence with respect to {yt}, i.e., Ezt|y1,...,yt−1

[zt] = 0, and let h be a 1-strongly
convex function with respect to norm ‖ · ‖ and let B2 = supx,y∈K,‖x‖=1,‖y‖=1Dh(x||y). Then for δ ≤ 1/e, with probability
at least 1− δ, the following holds∥∥∥∑ zt

∥∥∥
∗
≤ 2B

√
V +

√
2 log(1/δ)

√
1 + 1/2 log(2V + 2W + 1)

√
2V + 2W + 1

where V =
∑
‖zt‖2∗ and W =

∑
Ezt|y1,...,yt−1

‖zt‖2∗.

In order to apply Lemma 4 to the MDSs in (18), the key is to properly upper bound the statistics V and W in Lemma 4 for
these MDSs.

C.2.1 Upper Bound of the Concetration for MDS 〈∇ln(θn)−∇l̂n(θn), θn〉

Suppose that the decision set Θ is inside a ball centered at the origin inH with radius RΘ.

Assumption 1. There exists RΘ ∈ [0,∞), such that maxθ∈Θ ‖θ‖ ≤ RΘ.

Then by the definition of V and W in Lemma 4, and the definitions of the two problem-dependent policy class biases ε and
ε̂ (see Definition 1), one can obtain

V =
∑
|〈∇ln(θn)−∇l̂n(θn), θn〉|2

≤
∑

R2
Θ‖∇ln(θn)−∇l̂n(θn)‖2∗ Assumption 1

≤
∑

R2
Θ

(
2‖∇ln(θn)‖2∗ + 2‖∇l̂n(θn)‖2∗

)
triangle inequality (19)

≤
∑

R2
Θ

(
8βln(θn) + 8βl̂n(θn)

)
Lemma 1

= 8βR2
Θ(Regret(ln) + Regret(l̂n) +Nε+Nε̂) Definition 1 (20)

Similarly for W , we have

W =
∑

El̂n|θn [|〈∇ln(θn)−∇l̂n(θn), θn〉|2]

≤
∑

R2
ΘEl̂n|θn [‖∇ln(θn)−∇l̂n(θn)‖2∗] Assumption 1

≤
∑

R2
Θ

(
2‖∇ln(θn)‖2∗ + 2El̂n|θn [‖∇l̂n(θn)‖2∗]

)
triangle inequality (21)

≤
∑

R2
Θ

(
8βln(θn) + 8El̂n|θn [βl̂n(θn)]

)
Lemma 1

=
∑

R2
Θ (8βln(θn) + 8βln(θn))

= 16βR2
Θ(Regret(ln) +Nε) Definition 1 (22)

Therefore,

V +W ≤ 24βR2
Θ(Regret(ln) + Regret(l̂n) +Nε+Nε̂) (23)

Further suppose that the gradient of the sampled loss can be uniformly bounded:

Assumption 2. For any loss sequence {l̂n} that can be experienced by Algorithm 1, suppose that there is G ∈ [0,∞) such
that, for any θ ∈ Θ, ‖∇l̂n(θ)‖∗ ≤ G.

Then due to (23), V ≤ 4G2R2
ΘN and W ≤ 4G2R2

ΘN . Now we are ready to invoke Lemma 4 by letting the Hilbert space
K in Lemma 4 be R, and denoting the corresponding B in Lemma 4 by BR. Then, for δ > 1/e, with probability at least
1− δ, the following holds

|
∑
〈∇ln(θn)−∇l̂n(θn), θn〉|

≤ 2BR

√
8βR2

Θ

√
Regret(ln) + Regret(l̂n) +Nε+Nε̂ +√

96βR2
Θ log(1/δ)

√
1 + 1/2 log(16G2R2

ΘN + 1)

√
Regret(ln) +Nε+ Regret(l̂n) +Nε̂+ 1/(48βR2

Θ) (24)

C.2.2 Upper Bound of the Concetration for MDS∇ln(θn)−∇l̂n(θn)

To bound ‖
∑
∇ln(θn)−∇l̂n(θn)‖∗ that appears in∑

〈∇ln(θn)−∇l̂n(θn), θ?〉 ≤ RΘ‖
∑
∇ln(θn)−∇l̂n(θn)‖∗ (25)

We use Lemma 4 again in a similar way of deriving (24), except that this time the MDS∇ln(θn)−∇l̂n(θn) is vector-valued.
Akin to showing (20) and (22), the statistics V can be bounded as

V ≤
∑(

2‖∇ln(θn)‖2∗ + 2‖∇l̂n(θn)‖2∗
)

(26)

≤ 8β(Regret(ln) + Regret(l̂n) +Nε+Nε̂) (27)

and similarly for W :

W ≤
∑(

2‖∇ln(θn)‖2∗ + 2El̂n|θn [‖∇l̂n(θn)‖2∗]
)

(28)

≤ 16β(Regret(ln) +Nε) (29)

Therefore,

V +W ≤ 24β(Regret(ln) + Regret(l̂n) +Nε+Nε̂) (30)

Furthermore, by Assumption 2, it can be shown from (26) and (28) that V ≤ 4G2N and W ≤ 4G2N . To invoke Lemma 4,
let K in Lemma 4 beH, and denote the corresponding B in Lemma 4 by BH. Then, for δ < 1/e, with probability at least
1− δ, the following holds

‖
∑
∇ln(θn)−∇l̂n(θn)‖∗

≤ 2BH
√

8β

√
Regret(ln) + Regret(l̂n) +Nε+Nε̂ +√

96β log(1/δ)
√

1 + 1/2 log(16G2N + 1)

√
Regret(ln) +Nε+ Regret(l̂n) +Nε̂+ 1/(48β) (31)

C.3 UPPER BOUND OF THE REGRET

Besides analyzing the MDSs, we need to bound the regret to the linear functions defined by the gradients (the last term in
(18)). Since this last term is linear, not CSN, the bias-dependent online regret bound in the proof of Theorem 1 does not
apply. Nonetheless, because these linear functions are based on the gradients of CSN functions, we discover that their regret
rate actually obeys the exact same rate as the regret to the CSN loss functions. This is notable because the regret to these
linear functions upper bounds the regret to the CSN loss functions.

Lemma 5. Under the same assumptions and setup in Lemma 2,

Regret(〈∇fn(θn), ·〉) ≤ 8βR2
A +

√
8βR2

ANÊ. (32)

Proof. It suffices to show a self-bounding property for Regret(〈∇fn(θn), ·〉) as (13). Once this is established, the rest
resembles how (17) follows from (13) through algebraic manipulations. As in Lemma 2, define λ = 1

2η and r2 = 2R2
A. Due

to the property of admissible online algorithms, one can obtain

Regret(〈∇fn(θn), ·〉) ≤ 1

η
R2
A +

η

2

∑
‖∇fn(θn)‖2∗ = λr2 +

∑ 1

4λ
‖∇fn(θn)‖2∗ (33)

To proceed, as in Lemma 2, let ε̂ = 1
N minθ∈Θ

∑
l̂n(θ) be the bias, and let Ê be such that Ê ≥ ε̂ almost surely. Using

Lemma 1 and the admissibility of online algorithm A yields a self-bounding property for Regret(〈∇fn(θn), ·〉):

Regret(〈∇fn(θn), ·〉) ≤ λr2 +
β

λ

∑
fn(θn)

≤ λr2 +
β

λ
Regret(fn) +

β

λ
NÊ

≤ λr2 +
β

λ
Regret(〈∇fn(θn), ·〉) +

β

λ
NÊ

This self-bounding property is exactly like what we have seen in the self-bounding property for Regret(fn). After rearranging
and computing the optimal λ (which coincides with the optimal λ in Lemma 2), (32) follows.

Lemma 5 provides a bias-dependent regret to the linear functions defined by the gradients when the (stepsize) constant η is
set optimally in the online algorithm A (used in Algorithm 1). Interestingly, the optimal η that achieves the bias-dependent
regret coincides with the one for achieving a bias-dependent regret to CSN functions. Therefore, a bias-dependent bound for
Regret(l̂n) and Regret(〈∇l̂n(θn), ·〉) can be achieved simultaneously.

C.4 PUTTING THINGS TOGETHER

We now have all the pieces to prove Theorem 2. Plugging (24), (25), and (31) into the decomposition (18), we have, for
δ < 1/e, with probability at least 1− 2δ

Regret(ln)

≤ 2BR

√
8βR2

Θ

√
Regret(ln) + Regret(l̂n) +Nε+Nε̂

+
√

96βR2
Θ log(1/δ)

√
1 + 1/2 log(16G2R2

ΘN + 1)

√
Regret(ln) +Nε+ Regret(l̂n) +Nε̂+ 1/(48βR2

Θ)

+ 2BH

√
8βR2

Θ

√
Regret(ln) + Regret(l̂n) +Nε+Nε̂

+
√

96β log(1/δ)
√

1 + 1/2 log(16G2N + 1)

√
Regret(ln) +Nε+ Regret(l̂n) +Nε̂+ 1/(48β)

+ Regret(〈∇l̂n(θn), ·〉)

To simplify it, we denote

A1 = 8 max(BR, BH)
√

2βR2
Θ,

A2 = 8
√

6βR2
Θ log(1/δ)

√
1 + 1/2 log(16G2 max(1, R2

Θ)N + 1),

R̃ = min(1, RΘ)

Plugging them into the above upper bound on Regret(ln) and using the basic inequality
√
a+ b ≤

√
a+
√
b yield

Regret(ln) ≤ (A1 +A2)

√
Regret(ln) + Regret(l̂n) + (A1 +A2)

√
Nε+Nε̂

+
A2√

48βR̃2

+ Regret(〈∇l̂n(θn), ·〉)

To further simplify, using the basic inequality
√
ab ≤ (a+ b)/2 yields

Regret(ln) ≤ Regret(ln)

2
+

Regret(l̂n)

2
+ (A1 +A2)

√
Nε+Nε̂

+
(A1 +A2)2

2
+

A2√
48βR̃2

+ Regret(〈∇l̂n(θn), ·〉)

Rearranging terms and invoking the bias-dependent rate in Lemma 2 and Lemma 5 give

Regret(ln) ≤ Regret(l̂n) + 2(A1 +A2)
√
Nε+Nε̂+ (A1 +A2)2 +

A2√
12βR̃2

+ 2Regret(〈∇l̂n(θn), ·〉)

≤ 2(A1 +A2)
√
Nε+Nε̂+ 6

√
2βR2

ANÊ + (A1 +A2)2 +
A2√

12βR̃2

+ 24βR2
A (34)

Finally, to derive a big-O bound, denote

R = max(1, RΘ, RA), C = log(1/δ) log(GRN)

then one can obtain the rate in terms of N in big-O notation, while keeping R̃, R, BR, BH, log(1/δ), G, ε, and Ê as
multipliers:

Regret(ln) = O

(
CβR2 +

√
CβR2N(Ê + ε)

)
Therefore

1

N

∑
ln(θn)− ε = O

CβR2

N
+

√
CβR2(Ê + ε)

N

D ONLINE IL WITH ADAPTIVE STEPSIZES

In Appendix B and Appendix C, we proved new bias-dependent rates in expectation (Theorem 1) and in high-probability
(Theorem 2). However, these rates hold only provided that the stepsize of the online algorithm A in Algorithm 1 is constant
and properly tuned; this requires knowing in advance the smoothness factor β, an upper bound of the bias ε̂, and the number
of rounds N . Therefore, these theorems are not directly applicable to practical online IL algorithms that update the stepsize
adaptively without knowing the constants beforehand.

Fortunately, Theorem 1 and Theorem 2 can be adapted to online IL algorithms that utilize online algorithms with adaptive
stepsizes in a straightforward manner, which we shall show next. The key insight is that online algorithms with adaptive
stepsizes obtain almost the same guarantee as they would have known the optimal constant stepsize in advance. For example,
Orabona [2019, Theorem 4.14] shows that for Online Subgradient Descent [Zinkevich, 2003], the difference between the
guarantees of using the optimal constant stepsize and the guarantee of using adaptive stepsizes ηn =

√
2D

2
√∑n

i=1 ‖gi‖22
is only a

factor of
√

2.

Lemma 6 (Theorem 4.14 [Orabona, 2019]). Let V ⊆ Rd a closed non-empty convex set with diameter D, i.e.,
maxx,y∈V ‖x−y‖2 ≤ D. Let f1, . . . , fN be an arbitrary sequence of non-negative convex functions fn : Rd → (−∞,+∞]

differentiable in open sets containing V for t = 1, . . . , T . Pick any x1 ∈ V and stepsize ηn =
√

2D

2
√∑n

i=1 ‖∇fi(xi‖22
,

n = 1, . . . , N . Then the following regret bound holds for online subgradient descent:

Regret(fn) ≤
√

2 min
η>0

(
D2

2η
+
η

2

T∑
n=1

‖∇fn(xn)‖22

)
(35)

Inspired by this insight, we propose a more general definition of admissible online algorithms (cf. Definition 2) and a notion
of proper stepsizes:

Definition 4 (General admissible online algorithm). We say an online algorithm A is admissible on a parameter space Θ,
if there exists RA ∈ [0,∞) such that given any sequence of differentiable convex functions fn and stepsizes ηn, A can
achieve Regret(fn) ≤ Regret(〈∇fn(θn), ·〉) ≤ 1

ηR
2
A + 1

2

∑
ηn‖∇fn(θn)‖2∗, where θn is the decision made by A in round

n.

The admissible online algorithms that we discussed in the last paragraph of Appendix B.1 also belong to this category of
genearal admissible algorithms.

Definition 5 (Proper stepsizes). A stepsize adaptation rule is proper if there exists K ∈ (0,∞) such that for any admissible
online algorithm A (Definition 4) with the stepsize ηn chosen according to the rule based on the information till round n can
achieve Regret(fn) ≤ Regret(〈∇fn(θn), ·〉) ≤ K minη>0

(
1
ηR

2
A + 1

2

∑
η‖∇fn(θn)‖2∗

)
.

With the general definition of admissible online algorithms (Definition 4) and the definition of proper stepsizes (Definition 5),
we can now extend the bias-dependent regret (Lemma 2) which assumes optimal constant stepsize to adaptive online
algorithms with proper stepsizes. This lemma will be the foundation of extending Theorem 1 and Theorem 2.

Lemma 7. Consider running an admissible online algorithm A on a sequence of CSN loss functions {fn} with adaptive
stepsizes that are proper. Let {θn} denote the online decisions made in each round, and let ε̂ = 1

N minθ∈Θ

∑
fn(θ) be the

bias, and let Ê be such that Ê ≥ ε̂ almost surely. Then the following holds

Regret(fn) ≤ 8K2βR2
A +

√
8K2βR2

ANÊ.

Proof. Because the online algorithm A is admissible and the stepsizes are proper, we have, for any η > 0

Regret(fn) ≤ K

η
R2
A +

Kη

2

∑
‖∇fn(θn)‖2∗ (36)

Let λ = 1
2η and r2 = 2R2

A, then

K

η
R2
A +

Kη

2

∑
‖∇fn(θn)‖2∗ = Kλr2 +

∑ K

4λ
‖∇fn(θn)‖2∗ (37)

Using Lemma 1 yields a self-bounding property for Regret(fn):

Regret(fn) ≤ Kλr2 +
Kβ

λ

∑
fn(θn) ≤ Kλr2 +

Kβ

λ
Regret(fn) +

Kβ

λ
NÊ (38)

Let β̂ = Kβ and r̂2 = Kr2, and by rearranging the terms, we have a bias-dependent upper bound (cf. (14)) that for any
η > 0,

Regret(fn) ≤ β̂

λ− β̂
NÊ +

λ2

λ− β̂
r̂2 (39)

The upper bound can be minimized by choosing an optimal λ. Setting the derivative of the right-hand side to zero, and
computing the optimal λ (λ > 0) gives us

r̂2λ2 − 2β̂r̂2λ− β̂NÊ = 0, λ > 0 and λ = β̂ +

√
β̂2 +

β̂NÊ

r̂2
(40)

which implies that the optimal η is 1

2

(
β̂+

√
β̂2+ β̂NÊ

2R2
A

) . Because (39) holds for any η, it holds for the optimal η too. Next, we

simplify (39). Since the optimal λ satisfies the equality β̂NÊ = r̂2λ2 − 2β̂r̂2λ implied from (40), (39) can be written as

Regret(fn) ≤ 1

λ− β̂
β̂NÊ +

λ2

λ− β̂
r̂2 =

1

λ− β̂
(r̂2λ2 − 2β̂r̂2λ) +

λ2

λ− β̂
r̂2

=
2λ2r̂2 − 2β̂λr̂2

λ− β̂
= 2λr̂2 (41)

Plugging in the optimal λ yields

Regret(fn) ≤ 2λr̂2 = 2

β̂ +

√
β̂2 +

β̂NÊ

r̂2

 r̂2

= 2β̂r̂2 +

√
2β̂r̂2

√
2β̂r̂2 + 2NÊ

≤ 4β̂r̂2 + 2

√
β̂r̂2NÊ

= 8K2βR2
A +

√
8K2βR2

ANÊ (42)

where the last inequality uses the basic inequality:
√
a+ b ≤

√
a+
√
b.

Provided the bias-dependent regret Lemma 7 (cf. Lemma 2), a bias-dependent rate in expectation for online IL with an
additional constant K due to the adaptive stepsizes (cf. Theorem 1) follows directly, because Lemma 3 still holds even if
the stepsizes of the online algorithm in Algorithm 1 become adaptive. In order to extend Theorem 2 to admissible online
algorithm with adaptive stepsizes, we first need to derive a bias-dependent regret to the linear functions defined by the
gradients (cf. Lemma 5) based on the proof of Lemma 7.

Lemma 8. Under the same assumptions and setup in Lemma 7,

Regret(〈∇fn(θn), ·〉) ≤ 8K2βR2
A +

√
8K2βR2

ANÊ. (43)

Proof. It suffices to show a self-bounding property for Regret(〈∇fn(θn), ·〉) as (38). Once this is established, the rest
resembles how (42) follows from (38) through algebraic manipulations. As in Lemma 7, define λ = 1

2η and r2 = 2R2
A. Due

to the property of admissible online algorithms, one can obtain, for any η

Regret(〈∇fn(θn), ·〉) ≤ K

η
R2
A +

Kη

2

∑
‖∇fn(θn)‖2∗ = Kλr2 +

∑ K

4λ
‖∇fn(θn)‖2∗ (44)

To proceed, as in Lemma 2, let ε̂ = 1
N minθ∈Θ

∑
l̂n(θ) be the bias, and let Ê be such that Ê ≥ ε̂ almost surely. Using

Lemma 1 and the admissibility of online algorithm A yields a self-bounding property for Regret(〈∇fn(θn), ·〉):

Regret(〈∇fn(θn), ·〉) ≤ Kλr2 +
Kβ

λ

∑
fn(θn)

≤ Kλr2 +
Kβ

λ
Regret(fn) +

Kβ

λ
NÊ

≤ Kλr2 +
Kβ

λ
Regret(〈∇fn(θn), ·〉) +

Kβ

λ
NÊ

This self-bounding property is exactly like what we have seen in the self-bounding property for Regret(fn). After rearranging
and computing the optimal λ (which coincides with the optimal λ in Lemma 2), (43) follows.

Given the bias-dependent rates in online learning (Lemma 7 and Lemma 8), a high-probability bias-dependent rate for
online IL with an additional constant K due to adaptive stepsizes (cf. Theorem 2) can the derived in the same way as the
proof of Theorem 2, except that Lemma 7 and Lemma 8 will be invoked in (34) in place of Lemma 2 and Lemma 5.

Interestingly, Orabona [2019, Theorem 4.21] provides a bias-dependent regret for Online Subgradient Descent with adaptive
stepsizes ηn =

√
2D

2
√∑n

i=1 ‖gi‖22
(cf. Lemma 7). Although that regret bound would help more directly prove Theorem 1 in

the adaptive stepsize setting, but it does not directly imply a bias-dependent regret to the linear functions defined by the
gradients (cf. Lemma 8).

E EXPERIMENT DETAILS

Although the main focus of this paper is the new theoretical insights, we conduct experiments to provide evidence that the
fast policy improvement phenomena indeed exist, as our theory predicts. We verify the change of the policy improvement rate
due to policy class capacity by running an online IL experiment in the CartPole balancing task in OpenAI Gym [Brockman
et al., 2016] with DART physics engine [Lee et al., 2018]. Details of reproducing the experimental results can be found in
the README file in the supplementary materials.

E.1 MDP SETUP

The goal of the CartPole balancing task is to keep the pole upright by controlling the acceleration of the cart. This MDP has
a 4-dimensional continuous state space (the position and the velocity of the cart and the pole), and 1-dimensional continuous
action space (the acceleration of the cart). The initial state is a configuration with a small uniformly sampled offset from
being static and vertical, and the dynamics is deterministic. This task has a maximum horizon of 1000. In each time step, if
the pole is maintained within a threshold from being upright, the learner receives an instantaneous reward of one; otherwise,
the learner receives zero reward and the episode terminates. Therefore, the maximum sum of rewards for an episode is 1000.

E.2 EXPERT POLICY REPRESENTATION AND TRAINING

To simulate the online IL task, we consider a neural network expert policy (with one hidden layer of 64 units and tanh
activation), and the inputs to the neural network is normalized using a moving average over the samples. The expert policy is
trained using a model-free policy gradient method (ADAM [Kingma and Ba, 2014] with GAE [Schulman et al., 2015]). And
the value function used by GAE is represented by a neural network with two hidden layers of 128 units and tanh activation.
To compute the policy gradient during training, additional Gaussian noise (with zero mean and a learnable variance that does
not depend on the state) is added to the actions, and the gradient is computed through log likelihood ratio. After 100 rounds
of training, the expert policy can consistently achieve the maximum sum of rewards both with and without the additional
Gaussian noise. After the expert policy is trained, during online IL, Gaussian noise is not added in order to reduce the
variance in the experiments.

E.3 LEARNER POLICY REPRESENTATION

We let the learner policy be another neural network that has exactly the same architecture as the expert policy with no
Gaussian noise added. In the setting of only training the output layer, we copy the weights for the hidden layer and the input

normalizer from those of the expert policy and randomly initialize the weights of the output layer. During training, only
the weights of the learner’s output layer were updated. In this way, we can view the learner as a linear policy using the
representation of the expert policy. In the setting of training the full network, we still copy the input normalizer from that of
the expert policy but we randomly initialize all the variables in the network, i.e., weights and biases of the hidden and output
layers. During training, all of these variables were updated.

E.4 ONLINE IL SETUP

Policy class We conduct online IL with unbiased and biased policy classes. One one hand, we define the unbiased class
as all the policies satisfying the representation in Appendix E.3. On the other hand, we define the biased policy classes
by imposing an additional `2-norm constraint with different sizes on the learner’s weights in the output layer so that the
learner cannot perfectly mimic the expert policy. More concretely, in the experiments, the `2-norm constraint has sizes
{0.1, 0.12, 0.15}. This set of constraints was chosen based on the observation that the `2-norm of the final policy trained
without the constraint is about 0.18 when training the output layer only and about 0.23 when training the full network.

Loss functions We select ln(θ) = Es∼dπθn [Hµ(πθ(s)− πe(s))] as the online IL loss (see Section 2.2), where Hµ is the
Huber function defined as Hµ(x) = 1

2x
2 for |x| ≤ µ and µ|x| − 1

2µ
2 for |x| > µ. In the experiments, µ is set to 0.05; as a

result, Hµ is linear when its function value is larger than 0.00125. Because the learner’s policy is linear, this online loss is
CSN in the unknown weights of the learner.

Policy update rule We choose AdaGrad [McMahan and Streeter, 2010, Duchi et al., 2011] as the online algorithm in
Algorithm 1; AdaGrad is a first-order mirror descent algorithm and well matches the assumptions made in our theorems
(Appendix D), When the `2-norm constraint is imposed, an additional projection step is taken after taking a gradient step
using AdaGrad. The final algorithm is a special case of the DAgger algorithm [Ross et al., 2011] (called DAggereD in [Cheng
et al., 2018]) with only first-order information and continuous actions [Cheng et al., 2018]. In the experiments, the stepsize is
set to 0.01. In each round, for updating the learner policy, 1000 samples, i.e., state and expert action pairs, are gathered, and
for computing the loss ln(θn), more samples (5000 samples) are used due to the randomness in the initial state of the MDP.
The total number of iterations is 500 for both the training output layer and the training full network experiments. Due to the
randomness in the initial state of the MDP and the initialization of the policy, we averaged the results over 4 random seeds.

Hyperparameter tuning The hyperparameters are tuned in a very coarse manner. We eliminated the ones that are
obviously not proper. Here are the hyperparameters we have tried. The stepsize in online IL: 0.1, 0.01, 0.001. The Huber
function parameter µ: 0.05.

E.5 OTHER DETAILS

Computing infrastructure All the experiments were conducted on a desktop with Intel(R) Core(TM) i7-4770 CPU @
3.40GHz, 32GB memory, and no GPU. The operating system is Ubuntu 16.04.

Average runtime On the aforementioned desktop, it took 15 min to train the expert, 45 min to do online IL.

References

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba.
OpenAI Gym. arXiv preprint arXiv:1606.01540, 2016.

Ching-An Cheng, Xinyan Yan, Nolan Wagener, and Byron Boots. Fast policy learning through imitation and reinforcement.
In Proceedings of the 34th Conference on Uncertanty in Artificial Intelligence, pages 845–855, 2018.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization.
Journal of machine learning research, 12(7), 2011.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

Jeongseok Lee, Michael X. Grey, Sehoon Ha, Tobias Kunz, Sumit Jain, Yuting Ye, Siddhartha S. Srinivasa, Mike Stilman,
and C. Karen Liu. DART: Dynamic animation and robotics toolkit. The Journal of Open Source Software, 3(22):500, feb
2018.

H Brendan McMahan. A survey of algorithms and analysis for adaptive online learning. The Journal of Machine Learning
Research, 18(1):3117–3166, 2017.

H Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex optimization. arXiv preprint
arXiv:1002.4908, 2010.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic approximation approach to
stochastic programming. SIAM Journal on optimization, 19(4):1574–1609, 2009.

Francesco Orabona. A modern introduction to online learning. arXiv preprint arXiv:1912.13213, 2019.

Alexander Rakhlin and Karthik Sridharan. On equivalence of martingale tail bounds and deterministic regret inequalities.
arXiv preprint arXiv:1510.03925, 2015.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured prediction to no-regret
online learning. In Proceedings of the fourteenth international conference on artificial intelligence and statistics, pages
627–635, 2011.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional continuous control
using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015.

Nathan Srebro, Karthik Sridharan, and Ambuj Tewari. Smoothness, low noise and fast rates. In Advances in neural
information processing systems, pages 2199–2207, 2010.

Marc Teboulle. A simplified view of first order methods for optimization. Mathematical Programming, 170(1):67–96, 2018.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Proceedings of the 20th
international conference on machine learning (icml-03), pages 928–936, 2003.

	PROOF OF TOOL LEMMAS
	Proof of Lemma 1

	PROOF OF THEOREM 1
	Upper Bound of Online Regret
	The Generalization Error Vanishes in Expectation
	Putting Together

	PROOF OF THEOREM 2
	Decomposition
	Upper Bound of the Martingale Concentration
	Upper Bound of the Concetration for MDS ln(n)- n(n), n
	Upper Bound of the Concetration for MDS ln(n)- n(n)

	Upper Bound of the Regret
	Putting Things Together

	ONLINE IL WITH ADAPTIVE STEPSIZES
	EXPERIMENT DETAILS
	MDP Setup
	Expert Policy Representation and Training
	Learner Policy Representation
	Online IL Setup
	Other Details

