
PROVIDE: A Probabilistic Framework for Unsupervised Video Decomposition
(Supplementary Material)

Polina Zablotskaia1,2,3* Edoardo A. Dominici2 Leonid Sigal1,2,3,4 Andreas M. Lehrmann1

1Borealis AI, Vancouver, Canada
2University of British Columbia, Vancouver, Canada

3Vector Institute for Artificial Intelligence, Toronto, Canada
4CIFAR AI Chair

A DATASETS

Bouncing Balls. Bouncing Balls is a dataset provided by the
authors of R-NEM [Van Steenkiste et al., 2018]. The dataset
contains balls with different masses corresponding to their
radii. The balls are initialized with random initial positions,
masses and velocities. Balls bounce elastically against each
other(without occlusions) and the image window. We use the
train and test splits of this dataset in two different versions:
binary and color. For the color version, we randomly choose
4 colors for the 4-balls (sub-)dataset. For the 6-8 balls test
data, we color them in 2 different ways: 4 colors (same as
train) and 8 colors (4 from train, 4 new ones). Note that the
former results in identical colors for multiple objects, while
the latter guarantees unique colors for each object.

CLEVRER. Each video in the CLEVRER dataset contains
at least one collision and (dis)appearence event making
occlusions possible and frequent. Objects’ initial velocities
are approximately ±2.5m/s2. Each object has one of eight
distinct colors and one of 38 two materials (metal or rubber).
In addition, two objects can have the same color but different
material.

The version of the CLEVRER dataset [Yi et al., 2020] used
in this work was processed as follows:

• Train split, validation split and validation annotations
were obtained from the official website: http://
clevrer.csail.mit.edu/. We use the valida-
tion set as test set, because the test set does not contain
annotations.

• For training, we use the original train split. Our min-
imal preprocessing consists of cropping the frames
along the width axis by 40 pixels on both sides, fol-
lowed by a uniform downscaling to 64x64 pixels. Since
the length of each video is 128 frames and the max-
imum number of frames during training was 40, we
split the videos into multiple sequences to obtain a

*Now at Google Research, Berlin, Germany

larger number of training samples.

• For testing, we trim the videos to a subsequence
containing at least 3 objects and object motion. We
compute these subsequences by running the script
(slice_videos_from_annotations.py in the attached
code) from the folder with the validation split and vali-
dation annotations.

• The test set ground truth masks can be downloaded
from here. The masks and the preprocessed test videos
will be grouped into separate folders based on the num-
ber of objects in a video.

B HYPERPARAMETERS

Initialization. We initialize the parameters of the poste-
rior λ by sampling from U(−0.5, 0.5). In all experiments,
we use a latent dimensionality dim(z) = 64, such that
dim(λ) = 128. Horizontal and vertical hidden states and
cell states are of size 128, initialized with zeros. qλ is the
posterior probability per slot of the likelihood p(x|z), which
is a Gaussian mixture model. The variance of the likelihood
is set to σ = 0.3 in all experiments.

Experiments on Bouncing Balls. For this experiment, we
have explored several values of R (refinement steps) and
empirically found R = 6 to be optimal in terms of accuracy
and efficiency. Refining the posterior more than 6 times does
not lead to any substantial improvement, however, the time
and memory consumption is significantly increased. For the
4-balls dataset, we use K = 5 slots for train and test. For
our tests on 6-8 balls, we use K = 9 slots. This protocol is
identical to the one used in R-NEM [Van Steenkiste et al.,
2018]. Furthermore, we set β = 100.0 and scale the KL
term by ψ = 10. The weight of the entropy term is set to
γ = 0.1 in the binary case. As expected, the effect of the
entropy term is most pronounced with binary data, so we
set γ = 0 in all experiments with RGB data.

Experiments on CLEVRER. We keep the default number
of iterative refinements at R = 5, because we did not ob-

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

mailto:<pzablots@gmail.com>?Subject=Your UAI 2021 paper
http://clevrer.csail.mit.edu/
http://clevrer.csail.mit.edu/
https://drive.google.com/file/d/1dRnBKRJXsEyKe0EaNq3SHK1KMiJOv71v/view


serve any substantial improvements from a further increase.
We use K = 6 slots during training, K = 6 slot when
testing on 3-5 objects and K = 7 slots when testing on 6
objects.

C BASELINES

C.1 R-NEM

We use the R-NEM [Van Steenkiste et al., 2018] authors’
original implementation and their publicly available models:
https://github.com/sjoerdvansteenkiste/
Relational-NEM.

C.2 IODINE

Our IODINE experiments are based on the follow-
ing PyTorch implementation: https://github.com/
MichaelKevinKelly/IODINE. We use the same pa-
rameters as in this code, with the exceptions of β = 10
(weight factor) and, for the Bouncing Balls experiments,
R = 6 (refinement steps). The majority of the hyperparame-
ters shared between PROVIDE and IODINE are identical.

C.3 SEQ-IODINE

In order to test the sequential version of IODINE, we use
the regularly trained IODINE model but change the number
of refinement steps to the number of video frames during
testing. During each refinement step, instead of computing
the error between the reconstructed image and the ground
truth image, we use the next video frame. Since the IODINE
model was trained on R = 6 refinement steps, extending
the number of refinement steps to the video length leads to
exploding gradients. This effect is especially problematic in
the binary Bouncing Balls dataset with 20, 30 and 40 frames
per video, because the scores of the static model are already
low. We deal with this issue by clamping with max = 10
and min = −10 the gradients and the δ refinement value in
this experiment1. SEQ-IODINE’s weak performance, espe-
cially w.r.t. the ARI, reflect the gradual divergence from the
optimum as the number of frames increases.

D TRAINING

We use ADAM [Kingma and Ba, 2014] for all experiments,
with a learning rate of 0.0003 and default values for all re-
maining parameters. During training, we gradually increase
the number of frames per video, as we have found this to
make the optimisation more stable. We start with sequences

1Please note that clamping was done only when applied to
binary Bouncing Balls for 20, 30 and 40 frames.

of length 4 and train the model until we observe a stag-
nant loss or posterior collapse. At the beginning of training,
the batch size is 32 and is gradually decreased negatively
proportional to the number of frames in the video.

D.1 INFRASTRUCTURE AND RUNTIME

We train our models on 8 GeForce GTX 1080 Ti GPUs,
which takes approximately one day per model.

E DISCUSSION AND FUTURE WORK

Introduction of a temporal component not only enables mod-
elling of dynamics inside the amortized iterative inference
framework but also improves the quality of the results over-
all. From our quantitative and qualitative comparisons with
IODINE and SEQ-IODINE, we see that our model shows
more accurate results on the decomposition task. We can
detect new objects faster and are less sensitive to color,
because our model can leverage the objects’ motion cues.
The ability to work with complex colored data, a property
inherited from IODINE, means that we significantly out-
perform R-NEM. However, R-NEM is a stronger model
when it comes to prediction of longer sequences, owing to
its ability to model the relations between the objects in the
scene. Similar ideas were used in SQAIR [Kosiorek et al.,
2018] and GENESIS [Engelcke et al., 2020] by adding a
relational RNN [Santoro et al., 2017]. Integration of these
concepts into our framework is a promising direction for
future research. Another possible route is an application of
PROVIDE to complex real-world scenarios. However, given
that such datasets typically contain a much higher number
of objects, as well as intricate interactions and spatially vary-
ing materials, we consider the resulting scalability questions
as a separate line of research.

F ADDITIONAL EXPERIMENTS

F.1 ABLATIONS

The performance of PROVIDE is governed by the function
R̂ = max(R − t, 1), where R is the free parameter. In
Table 1 we explore values of R ranging from 2 to 10. We
see performance saturation at R ≈ 4. We also explore an
alternative choice R̂alt. (Table 2), which shows decreased
performance compared to R̂. The number of slots K could
be determined via cross-validation, but for comparability to
other SOTA methods we assume it to be given.

F.2 ADDITIONAL QUALITATIVE RESULTS

Figure 2 and Figure 3 show PROVIDE applied to both
versions of the Bouncing Balls dataset.

https://github.com/sjoerdvansteenkiste/Relational-NEM
https://github.com/sjoerdvansteenkiste/Relational-NEM
https://github.com/MichaelKevinKelly/IODINE
https://github.com/MichaelKevinKelly/IODINE


3 5 7 10
Simulation steps

0.5

1.0

1.5

2.0

2.5

3.0

M
SE

1e 2 Bouncing Balls
Our
Our (color)
R-NEM

3 5 7 10
Simulation steps

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

M
SE

1e 3 CLEVRER
Our

Figure 1: Mean Squared Error for the prediction experiment.
We have computed MSE for the same experimental setup
as Fig. 5 in the main paper. As expected the MSE increases
with number of simulation steps. Similarly to ARI and F-
ARI scores our model outperforms R-NEM on a first steps of
simulation, however the error function of our model grows
faster comparatively to R-NEM and we sooner diverge from
the accurate simulation.

Table 1: Performance as a Function of Parameter R.

ARI (↑) F-ARI (↑) MSE (↓)(×10−4)

R 2 4 8 10 2 4 8 10 2 4 8 10

BB bin. 0.34 0.71 0.73 0.73 0.93 0.99 0.99 0.99 424 6 5 8

BB col. 0.48 0.72 0.73 0.73 0.93 0.99 1.0 1.0 148 3 3 4

CLEVRER 0.21 0.24 0.23 0.22 0.84 0.92 0.93 0.94 11 3 3 3

Table 2: Ablation on the Form of the Function R̂. R̂alt. = R,
when t = 0, and R̂alt. = 1, when t > 0.

ARI (↑) F-ARI (↑) MSE (↓)(×10−4)

R̂ R̂alt R̂ R̂alt R̂ R̂alt

BB bin. 0.73 0.43 1.0 0.95 4 33.2

BB col. 0.73 0.57 1.0 0.97 2 11.9

CLEVRER 0.24 0.21 0.93 0.88 3 9

F.3 PREDICTION

Qualitative results for the prediction experiment are shown
in Figure 4 for Bouncing Balls and Figure 5 for CLEVRER.

F.4 GRAND CENTRAL STATION DATASET

PROVIDE shows consistency in separating human figures
in the video across the whole sequence, despite increased
number of objects compare to the training set.

F.5 DISENTANGLEMENT

In Figure 8 we demonstrate that introducing a new temporal
hidden state and an additional MLP in front of the spatial
broadcast decoder has not impacted its ability to separate
each object’s representations and disentangles them based
on color, position, size and other features, similar to results
shown in Greff et al. [2019].

F.6 ANIMATIONS

Attached animations include the following files:

• bb_binary_4_balls.gif Animation of the segmenta-
tions of 4 binary Bouncing Balls. 50 frames. Here and
everywhere else, unless explicitly specified, we also
included full scene decomposition and each object’s
individual reconstruction.

• bb_binary_6_8_balls.gif Animation of the ability to
generalize to 6-8 binary Bouncing Balls. 40 frames.

• bb_colored_4_balls.gif Animation of the 4 colored
Bouncing Balls. 50 frames.

• bb_colored_6_8_balls.gif Animation of the ability to
generalize to 6-8 colored Bouncing Balls. 40 frames.

• bb_colored_predict.gif Prediction on the Bouncing
Balls colored data. With 40 normal steps of inference
and 10 predicted masks and frames. Here we only
included predicted masks and ground truth masks.

• clevrer_5obj.gif Animation of the segmentations of 5
objects CLEVRER dataset. 50 frames.

• clevrer_6obj.gif Animation of the ability to generalize
to 6 objects CLEVRER dataset. 45 frames.



Figure 2: Video decomposition using PROVIDE applied on Bouncing Balls dataset with 4 balls.

Figure 3: Video decomposition using PROVIDE applied on Bouncing Balls dataset with 6-8 balls.

Figure 4: Prediction on Bouncing Balls (colored) dataset.

Figure 5: Prediction on CLEVRER dataset.



(a)

(b)

Figure 6: Qualitative results for PROVIDE vs. IODINE vs. SEQ-IODINE decomposition experiment. (a) From the figure
it is clear that our model can much sooner detect new objects emerging to the frame, while SEQ-IODINE struggles to
properly reconstruct and decompose them. And IODINE doesn’t have any temporal consistence and reshuffles the slot order.
(b). Here we can see that our model is much more stable with time and it does not fail to detect objects, unlike IODINE and
SEQ-IODINE.

Figure 7: Qualitative evaluation on real-world data. Qualitative Evaluation (Grand Central Station). We can observe that PROVIDE
is very consistent in separating the image regions belonging to different objects as they move in the scene. This dataset is particularly
challenging for its background texture, complex lighting and shadows. Please zoom in to allow better clarity.



(a) (b)

Figure 8: Disentanglement of the latent representations corresponding to distinct interpretable features. CLEVRER latent
walks along three different dimensions: color, size and position. We chose a random frame and for each object’s representation
in the scene dimensions were traversed independently.


	Appendices
	Datasets
	Hyperparameters
	Baselines
	R-NEM
	IODINE
	SEQ-IODINE

	Training
	Infrastructure and Runtime

	Discussion and Future work
	Additional Experiments
	Ablations
	Additional qualitative results
	Prediction
	Grand Central Station Dataset
	Disentanglement
	Animations


