Structured Sparsification with Joint Optimization of
Group Convolution and Channel Shuffle (Supplementary material)

Xin-Yu Zhang*! Kai Zhao*! Taihong Xiao’ Ming-Ming Cheng' Ming-Hsuan Yang?

ITKLNDST, CS, Nankai University
2University of California, Merced

A STRUCTURED REGULARIZATION IN GENERAL FORM

Generally, we can relax the constraints that both C'™ and C°" are powers of 2, and assume both C'" and C°" have many
factors of 2. Under this assumption, the potential candidates of cardinality are still restricted to powers of 2. Specifically, if
the greatest common divisor of C™ and C°"" can be factored as

ged(C™, C™) =7 = 2" - 2, (1)

1 || import numpy as np

2

3 ||def struc_reg(diml, dim2, level=None, power=0.5):

4

5

6

7

8

9

10

11

12

13

14

15

16

17 reg = np.zeros ((diml, dim2))

18 assign_val (reg, 1., level, power)

19 return reg
20
21 ||def assign_val (arr, val, level, power):
22 diml, dim2 = arr.shape
23 if diml % 2 != 0 or dim2 % 2 != 0 or level == 0:
24 return
25 else:
26 ~1 = None if level is None else level - 1
27 arr[diml//2:, :dim2//2] = val
28 arr[:diml//2, dim2//2:] = val
29 assign_val (arr[diml//2:, dim2//2:], valxpower, _1, power)
30 assign_val (arr[:diml//2, :dim2//2], valxpower, _1, power)

“Xin-Yu Zhang (xinyuzhang @mail.nankai.edu.cn)) and Kai Zhao contribute equally to this work.

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

mailto:Xinyu Zhang <xinyuzhang@mail.nankai.edu.cn>?Subject=Structured sparsification paper

Algorithm 1: Dynamically adjust A

Initialize A\; = 0, 7o = 0, N = #epochs, r = target sparsity
fort :=1to N do train for 1 epoch
Determine the current group levels g;
Compute the current sparsity by Eq. (Z) and (3)
if e —rim < ;V_j;;i then
| Atr1 = A + Ay
else if S; > r then
| A1 = A — Ay
end

where z is an odd integer, then the potential candidates of the group level g are {1,2,--- ,u + 1}. For example, if the
minimal v is 4 among all convolutional layerﬂ the potential candidates of cardinality are {1, 2,4, 8,16}, giving adequate
flexibility of the compressed model. The structured regularization and the relationship matrix corresponding to each group
level are designed in a similar way. For clarity, we provide an exemplar implementation based on the NumPy library.

B DYNAMIC PENALTY ADJUSTMENT

As the desired compression rate is customized according to user preference, manually choosing an appropriate regularization
coefficient A in Eq. (7) of the main text for each experimental setting is extremely inefficient. To alleviate this issue, we
dynamically adjust A based on the sparsification progress. The algorithm is summarized in Alg.

Concretely, after the #*" training epoch, we first determine the current group level g; of each convolutional layer according
to Eq. (8) in the main text. Then, we define the model sparsity based on the reduction of model parameters. For the [*"
convolutional layer, the number of parameters is reduced by a factor of 29i_1, where 29:~1 is the cardinality. Thus, the
original number of parameters and the reduced one are given by

pl

1 1+1 1 U Al
p=C"xC" xk"xEk', pﬁ_ggi—f

@

Here, C' and k! denote the input channel number and the kernel size of the I*" convolutional layer. Therefore, the current
model sparsity is calculated as
_ b

rey = .
> b

Afterwards, we assume the model sparsity grows linearly, and calculate the expected sparsity gain. If the expected sparsity
gain is not met, i.e.,

3

r—=T—1

4

N-—-t+1’ @

where N is the total training epoch number and 7 is the target sparsity, we increase A by A . If the model sparsity exceeds
the target, i.e., 7+ > 7, we decrease A by A .

Tt —T—1 <

In all experiments, the coefficient is initialized from A; = 0 and A is set to 2 x 1076,

C EXPERIMENTAL DETAILS

In this section, we provide more results and details of our experiments. We provide the loss and accuracy curves along with
the performance after each stage in appendix [C.1] and analyze the compressed model architectures in appendix [C.2]

C.1 TRAINING DYNAMICS

We first provide the pre- and post-compression accuracy along with the finetune accuracy of our pipeline in Tab. [} During
compression, we use a binary search to decide the threshold p of the grouping criteria (Eq. (8) in the main text) so that the

'The standard DenseNet [Huang et al.||2017] family satisfies this condition.

Table 1: Performance along the timeline of our approach. The evaluation is performed on the ImageNet dataset.

Backbone ResNet-50 ResNet-101 DenseNet-201
Compression Rate 35% 65% 85% 40% 65% 80% 38% 60%

Pre-compression Acc. 69.07 6636 6430 69.56 67.13 6420 69.10 66.26
Post-compression Acc. 60.92 4278 8.82 6578 58.63 1857 66.15 17.35

Finetune Acc. 76.82 75.10 72,47 78.16 77.62 7573 7743 75.86
threshold p 0.127 0.115 0.125 0.095 0.090 0.103 0.098 0.115
8o 61 0.10 -
70
. 5 0.08
g a g
< 3 44- o
§50 . o g0,0B
§ 401 % T % 0.04
©
=% Fay ~ o002
20 ¢-
14
20 4ecteceens eeeccfeccceaBoceanadhanecoskenasnshon e . : : : H H H H H H 0.00 -+ : H 3 3 3 3 5
0 20 409roup 20 40 60 80 100 120 0 20 40g9roup 20 40 60 80 100 120 0 20 409roup 20 40 60 80 100 12
Train Epoch Finetune Epoch Train Epoch Finetune Epoch Train Epoch Finetune Epoch

Figure 1: Training dynamics of the full structured sparsification pipeline. We plot the training and finetune curves of the
DenseNet-201 backbone with a compression rate of 38%. At the end of the 60" epoch of the training stage, we compress
the network following our criteria. Then, we finetune for 120 epochs to recover performance.

network can be compressed at the desired compression rate. The searched thresholds are also illustrated. Apart from this, we
further provide the training and finetune curves in Fig.[I} In the training stage, the accuracy gradually increases till saturation,
and then the compression leads to a slight performance drop. Finally, the performance is recovered in the finetune stage.

C.2 COMPRESSED ARCHITECTURES

We illustrate the compressed architectures by showing the cardinality of each convolution layer in Fig. [ZJand Fig. 3] Note that
our method is applied to all convolution operators, i.e., both 3 x 3 convolutions and 1 x 1 convolutions, so a high compression

41 3 ResNet-50-65%] M — . S —r— -
[ResNet-50-35%

w

[N}

Number of Groups

=

D P 2L DN D200 0DV D28 D200 0000003008 00000000 030000000000080000
S T e T S S T e T e T € O o e el T € e T P P S I B
E € TN EEENENE EEE G EE EEEEEEEEEEITEEEEEE,EEEEEEEEEEEERNEEE

Y Y A N N A A A AT A A A A A A AT AT A S S B Y Y o Y Y o 52 52 52 2 Y Y 52 52 52 4O aS 5 e e
S EEEEFFFFEEEE S EEELEEELELLEEEEEEEE L EEEEEE &S E

O & > S
L £ £ A\
\’5\0\"ﬁ \,5\ \’5\ \’0* \’5‘ \’5\ \5\2 \'ﬁ \’5\ \’5\ \’0A \’5‘ \’5\ \’5\ \17* \’5\ \’5\ \’0A \’0* \’5\ e \’0* \’5\ \’5\ \’0A \’0* \’5\ \’5\ \’0* \’5‘ \’5\ \5\ \17* \,5\ \’5\ \’OA \’5‘ \’5\ \’5\2 \'ﬁ \’5\ \’5\ \’OAQ’\@*

& .*?5 &
AN

&
& @ K\
o

£
@@ KNG

Figure 2: Learned cardinalities of the ResNet-50 backbone with the compression rates of 35% and 65%.

£ Reshet-101:80% _— S— P — P — P — P— S - S— e _— _—
3 Reshet 10140%

oF et

Figure 3: Learned cardinalities of the ResNet-101 backbone with the compression rates of 40% and 80%.

Table 2: Confusion matrices of the adjacent GroupConvs. Here, the neuron connectivity between “Layer4-Bottleneck1-conv1”
and “Layer4-Bottleneck1-conv2” of the ResNet-50-85% model is demonstrated. Left: the learned neuron connectivity;
Right: the neuron connectivity of the ShuffleNet [Zhang et al.,[2018]].

G1]G2|G3[G4|Gs|Ge|G7[Gs G1]G62[G3]G4]G5|G6|G7[Gs
Gl| 6| 6|10/ 8] 9] 6 6 G| 8| 88| 8|s|s]s]s
G2 9] 8| 7[9l11] 8| 4|8 G2l 8| 88| 8|s|s]s8]s
G311 8|11l 6| 48] 7] 9 G388/ 8]8|8]8|s]s
GAJ8 9| 5| 9]0 4] 6] 5 G4 88| 8] 8|8]8|s]s
Gs| 70 9] 7] 7] 810 9] 7 Gs| 8| 8| 8| 8|s|s]s8]s
Go|l 5| 7010 6] 7] 11] 7[11 Go| 8| 8] 8] 8|8|s]s8]s
G7| 4] 8|7 6| 8] 710 G7] 8| 8| 8] 8|s8|s]s8]s
sl 6|9l 7|s]9loltll s Gs| 8| 8| 8] 8|s8|s]s8]s

rate, e.g., 80%, can be achieved. As discussed in Sec. 4.4, the learned cardinality distribution is prone to uniformity, but there
are still certain patterns. For example, shallow layers are relatively more difficult to be compressed. A possible explanation
is that shallow layers have fewer filters, so a large cardinality will inevitably eliminate the communication between certain
groups. Moreover, we observe 3 x 3 convolutions are generally more compressible than 1 x 1 convolutions. This is intuitive
as 3 x 3 convolutions have more parameters, thus leading to heavier redundancy.

Furthermore, we illustrate the learned neuron connectivity and compare with the ShuffleNet [Zhang et al., [2018]] counterpart.
Here, we consider the channel permutation between two group convolutions (GroupConvs) and demonstrate the connectivity
via the confusion matrix. Specifically, we assume the first GroupConv is of cardinality G; and the second of G2, then the
confusion matrix D is a G; x G matrix with D; ; denoting the number of channels that come from the it" group of the
first GroupConv and belong to the j** group of the second.

In Tab. |2} we can see that the inter-group communication is guaranteed as there are connections between every two
groups. Furthermore, the learnable channel shuffle scheme is more flexible. The ShuffleNet [Zhang et al.,|2018]] scheme
uniformly partitions and distributes channels within each group, while our approach allows small variations of the number of
connections for each group. In this way, the network can itself control the information flow from each group by customizing
its neuron connectivity. More examples can be found in Fig. 4] All models illustrated in this section are trained on the
ImageNet dataset.

References

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely Connected Convolutional Networks.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 4700—4708, 2017.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. ShuffleNet: An Extremely Efficient Convolutional Neural
Network for Mobile Devices. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 6848—-6856,
2018.

20 50
18 40
16
30
14
-1 -20
-10 -10
(a) DenseNet-201-60% (b) ResNet-50-85% (c) ResNet-101-80%
Block4-Layer24-conv1-2 Layer1-Bottleneck1-conv2-3 Layer4-Bottleneck2-conv2-3
10
8
6
4
-2
-0
(d) ResNet-50-85% (e) ResNet-101-80%
Layer3-Bottleneck4-conv1-2 Layer3-Bottleneck1-conv1-2

Figure 4: More examples of the confusion matrices.

	Structured Regularization in General Form
	Dynamic Penalty Adjustment
	Experimental Details
	Training Dynamics
	Compressed Architectures

