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A NOTATIONS

For convenience, we summarize some of the notations used in the paper.

e SC/C/NC/WC: strongly convex, convex, nonconvex, weakly-convex.

* FS: finite-sum.

e L-S: L-Lipschitz smooth. L-IS / AS: L-Lipschitz individual / averaged smoothness.

* SOTA: state-of-the-art, LB / UB: lower / upper bound

¢ FO/IFO: first-order oracle, incremental first-order oracle, denoted by Oro and Orro.

 A:linear-span first-order algorithm class.

o &(x), U(y): primal and dual functions of f(x,y).

* V. f, V, f: gradients of a function F' with respect to « and y. Also we set Vf = (V. f, V, f).

« V2,[. V2, [, V2, F, V2 f:the Hessian of F(x,y) with respect to different components.

« {U»_ € Orth(a,b,n): a matrix sequence where if for each 4,5 € [1,n] and i # j, U® UW ¢ R**? and
UOWO)T =1 R and UD(UW)T = 0 € R¥**, Sometimes we use u() £ Uz,

¢ ¢, unit vector with the i-th element as 1.

 0: zero scalars or vectors.

* X, = Span{ei, ez, - ,ex}, Vi = Span{eqii1,ed, - ,ea—ps2}, Xo = Yo = {0}.

e aVb=max{a,b},aAb= min{a,b}.

* ||||: #2-norm.

» N™: all positive integers.

* N: all nonnegative integers.

¢ dom f: the domain of a function f.

* dyi,ds € N*: dimension numbers of x and y.

e z4: the d-th coordinate of z, x*: the variable x in the ¢-th iteration (in Section and Appendix |C|only)

B USEFUL LEMMAS AND PROOFS OF SECTION

Lemma B.1 (Lemma B.2[Lin et al.,2020]) Assume f(-,y) is p,-strongly convex for Vy € R% and f(z,-) is p,-strongly
concave for Vx € R4 (we will later refer to this as (ji, piy)-SC-SC)) and f is L-Lipschitz smooth. Then we have

a) y*(z) = argmax,cga, f(r,y) is %-Lipschitz;
Y
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b) ®(z) = max,cga, f(x,y) is
¢) x*(y) = argmin, e, f(z, y) is

d) ¥(y) = min,cpa, f(x,y)is

252 -Lipschitiz smooth and ji,.-strongly convex with V®(z) = V, f(z,y*(x));
Yy
L -Lipschitz;

-Llpschmz smooth and pu,-strongly concave with VU (y) =V, f(z*(y), y).

Lemma B.2 Under the same assumptions as Lemma|B-1| we have

*“2

a) gapy(z,y) < lelx - o
b) gap(z,y) < 2,“ IVaf (@ p)lIP + 51V f (2, )1

) Blle —a*|]* + By — v*|I* < gapy(z,y).
d) (Ve f (@ yl? + [Vy fla,y)? <AL ([lz — 2*]* + [ly — y*[1?).

2, where (x*,y*) is the optimal solution to min, cga, max,cgdy f(,y).

Proof

a) Because ®(x) is 2L2 -smooth by Lemmaand V&(z*) = 0, we have ®(z) — &(z*) < lLTQHx — z*||%. Similarly,

because ¥(y) is QML -smooth and ¥(y*) = 0, we have U (y*) — U(y) < ﬁ—ij — y*||?. We reach the conclusion by
noting that gap ;(z,y) = ®(x) — ¥(y) and ®(z*) = ¥(y*).

b) Because f(-,y) is piz-strongly-convex and V, f (z*(y), y) = 0, we have f(x,y)—min, f(z,y) < (Vi f(z*(y),y),x—

*( ) + 5 IVaf(2,y) = Vaf (@ (), y)II” < 5[ Vaf(@,y)||?. Similarly, we have max, f(z,y) — f(z,y) <

V., f(z,y)||*. Then we note that gapy(r,y) = max, f(z,y) — f(z,y) + f(z,y) — min, f(z,y).

2#1/
¢) Because ®(z) is i, strongly-convex and V®(z*) = 0, we have ®(z) > ®(z*) + 42|z — 2*||. Similarly, because
W (y) is py strongly-concave and V¥ (y*) = 0, we have U (y*) — U(y) > & ||y — y*|°.

of (@, )] = IIsz(fE,y) v f( YOI < L2(lz =2+ ly—y*[)? <
2L2(||lv — 2*||> + ly — y*||*) and ||V f (2, ) I = [Vy f(z,y) = Vi f(@*, 591 < L2(lz — 27| + lly — y*[])* <
202l — 2|1 + lly — v*11?)-

Proof of Proposition 2.1]

Proof (a) and (b) directly follow from the definition of averaged smoothness and individual smoothness.

(c) Denote

n

- T, - T, - 1 T N T, - 1 -
Fa.p) = fwy) + Zlo =32 = Ly = g2 = - 3" [filw.n) + Zlo =30 = Ly -] £ - Fit),
i=1

=1
where f(z,y) = fi(z,y) + %l — #||* — Zlly — 7|*. Note that for any (z1,y1) and (z2, y2),
IVafi(z1, 1) = Vafi(za,y2)|* < 2| Vafi(@1,y1) — Vafilza,y2)|* + 275 |21 — 22|,
IVy filwr,y1) = Vyfile, ) IIP < 20V filzr,v1) — Vy fi(za, y2) |2 + 275 [y1 — well*.

Therefore,

S IV - Vi) s%Z IV fi(rs ) = V iz, y)|I® + 202wy — ol + 720l — vl

< (227 + 2max{7?, /}) (llor — @2* + [lys — 2|?) -
|
An important trick to transform the basic hard instance into the final hard instance is scaling, which will preserve the

smoothness of the original function while extend the domain of the function to a high dimension, i.e., enlarging d, which
helps to increase the lower bound. The properties of scaling is summarized in the following lemma.



Lemma B.3 (Scaling and Smoothness) For a function g(x,y) defined on R x R, if g is L-smooth, then for the
following scaled function:

g(z,y) =n y<x y) 1)
n’n

then g is also L-smooth. Furthermore if the function g has a finite-sum form: g(x,y) = %Z?:l Gi(z,y), if {Gi}1y is
L-averaged smooth, then for the following functions:

gi(x,y)—nzéi@?z) and  g(z,y) ng ZTF‘ (z y) )

{9:}_, is also L-averaged smooth. If we further assume {g;}?_, is L-individually smooth, then {g;}?_, is also L-
individually smooth.

Proof For the first statement, note that Vg(x, y) = r]Vg( ) so for any (z1,y1), (z2,y2) € R% x R4z,
1Y T2 Y2
IVag(z1,91) — Vag(z2, 2)|| = anx9< - 1) —nVag ( >H
n'n
< nL( + ‘

similar conclusion also holds for Vg, which verifies the first conclusion.

3

T2
n n

n_
n n

) — (s — wall + 1 — w2,

For the averaged smooth finite-sum statement, note that Vg, (z,y) = nVg; (%, %) ,soforany (z1,y1), (z2,y2) € R xR,

E{”Vgi(th) - V9¢($27y2)||2}

ang’t( 1ay > _Wv91<27y2>
non n-n
§772L2< T2

n n

“

vy

2
|52

2
2 2
) :LQ(Hxl — z2||” + [ly1 — w2l )a

so {g;}7 4 is L-averaged smooth.

For the individually smooth case statement, note that each g; is a scaled version of g;, which is L-smooth, by the conclusion
for the first statement, it implies that g; is also L-smooth, which concludes the proof. [ |

C PROOF OF NC-SC LOWER BOUND

Similar to Sectionin the main text, here in this section only, we denote x4 as the d-th coordinate of = and x* as the variable
< in the ¢-th iteration.

C.1 DETERMINISTIC NC-SC LOWER BOUND

We start from the proof several important lemmas, then proceed to the analysis of Theorem 3.1}



C.1.1 Proof of Lemma

Proof Recall the definition of F; in (7)), define T'y(x) = Z?:l ['(x;), note that #? = x " e;e x, and

AV Ao Ao T
g O Ty, Vhal®) - g eanifan® (5)
Vde(l', Y )‘7 a) = )\le$ - 2)\2y7

Vde($7y; )‘7 0[) = )\leTy -

where VI 4(z) = (VI'(21), VI(z2),- -+, VI(x4)) . Then for the matrix norm of By, note that o € [0, 1] and

[Bazl| = \/xﬁﬂ + (g — Ta41)? + -+ (21 — 22)? + (Vaz)?

<y@h +2(ai 42k +ad Fad+ e+ ad +ad +a? +ad) + 2 (6)

< i@, + a2+ ah + o+ ad +a) = 2|

similarly we have || BT y|| < 2||y||. Denote C, £ 36050 because 0 < o < 1 and || By4|| < 2, we have (|| - || here denotes
the spectral norm of a matrix)

A2 400 3 200\ 2«
V F —+ < =
” d” — 2) (C @ a) - 2 Ay

IV2,Fall <2\, (IV2,Fall € 2X1, VL, Fall =2X2, (D)

which proves the first two statements (i) and (ii).

For (iii), due to the structure of B, and concerning the activation status defined in &, and ), it is easy to verify that if
x € Xy, y € Vi, for ki, ky € Nand &y, ks < d, we have

Bar € Y&y, By € Xiyia

Since the remaining components in the gradient do not affect the activation with the initial point (0, 0) € R4*! x R¥+2  this
proves (iii).

For (iv), by substituting the parameter settings, we have 202\/\10‘ = L,2)\; = L and 2\, = p, so the function Fy is p-strongly
concave in y and L-Lipschitz smooth, which concludes the proof. |

C.1.2 Proof of Lemma

Proof Recall the primal function @, of Fj :

Dy(x; N\, ) = 2)\/\%2 (1 TAdx—\/»xl—}—\/»—}—ozz;F x,) (4)?;)&1334_1. 8)
i N ,
26, (2) SPax()
For the first statement, because z4 = x441 = 0, we have

VOu(x; A, ) = VOur (x5 A, ) + VPya(x; N\, o) = VPy1 (235 A, ), ©)]
which corresponds to the hard instance in [Carmon et al., 2019, Equation 9] with an extra coefficient 5 >\ , then we apply

[Carmon et al.,|2019, Lemma 3] therein to attain the desired large gradient norm result, i.e.
[V ®q(z; A, ) || > A af _ _ Mg (10)

22 4 82

"The choice of C,, follows the setting in [Zhou and Gul 2019} Proposition 3.11], which is an upper bound of the Lipschitz smoothness
parameter of I'¢(z) in [Carmon et al.,|2019, Lemma 2].



For the second statement, we have

Dy(0; M, ) — xeiﬂ]gdfﬂ Dy(x; N\ @)

=045 (0;\, ) — 'Dréf [Pa1(x; A, @) + Pyo(x; N, )]

zERIHL
. 11
S(I)dl(O;)\’a)_zé§f+1q)dl(x;>\’a) an
N a
< 2 (VY2 100
=9 ( B + 10« >,

where the first inequality uses that ®4o(z; A, &) > 0 because « € [0, 1], and the last inequality applies [Carmon et al., 2019}
Lemma 4], which proves the second statement. [ |

C.1.3 Proof of Theorem

The complexity for deterministic nonconvex-strongly-concave problems is defined as

Compl, (FLd6e, A Oro) 2 sup inf  T.(f,)
feFEus AEA(Opo) .
= sup inf  inf {T eN ’ ||V(I)(LL‘T)H < e}.
L, AEA(OFo)
JeFNesc

As a helper lemma, we first discuss the primal function of the scaled hard instance.

Lemma C.1 (Primal of the Scaled Hard Instance) With the function Fy defined in (1), ®, defined in ) and any n € R,
for the following function:

f(z,y) = n*Fy (”C,y;A,a), (13)
nn
then for its primal function ®(x) = max,cra+2 f(z,y), we have

B(z) = 772<I>d(£; )\,a>. (14)

Proof Check the scaled function,

Y

n

fz,y)
d
t_ A?\/a<el,w> . Afagp(%) _ Af@(fml)? L Ava
2o n 29 n 49 n 4Xo (15)

X
_ 2 >\1<Bd,y>—)\2
nmn i=1

A2 /a T Mo d T; Na(x 2 N2/
=A1<de,y>—kzlly||2+”2<‘ §;2f<61’>+2322r<n>_432< ?1) i iA{ ’

n =1

check the gradient over y and set it to be 0 to solve for y*(z), we have

Vyf(x,y*(x)) = M1 Bagr — 2Xy" (1) =0 = y"(v) = - Baxz, (16)



so the primal function is

O(z) = f(z,y"(z))

. . A2/ x A x; Aoz > 22 a
= M {Bay (@) = Al <x>2+n2<— SRC ,,>+2AQZF(,7>—432< “) - 43F>

=1

A2 s of A a x Ao ¢ T; Na (2 AVa
- 2B - S I A NS N ) I

g | Ball” 20 \ U7 +2)\2; n) T\ ) T (17
_p( M BEQ_XW& e, ) 4 Moo () Ae (e )* L ARVE

= Do 20 \ 7/ T &=\ ) T e\ Ao
2772@(1(96;%04>,

n
which concludes the proof. n

Now we come to the formal statement and proof of the main theorem.

Theorem C.1 (Lower Bound for General NC-SC, Restate Theorem[3.1) For any linear-span first-order algorithm A €
A and parameters L, 1, A > 0, with a desired accuracy € > 0, for the following function f : R4t x R4+l — R:

f(w.y) £ 0 Fa ( P ) (18)
n'n’
where Fy is defined in (T), with a primal function ®(z) £ max, cra+1 f(z,y), for a small enough e > 0 satisfying

AL ALk
2 o i (28
€ = (64000’ 38400 )

if we set

. L u 16 34 1 ALk 2
= —_ — = — - >
A ( ), 7 « €, « €0,1, d= 12800 > 3, (19)

we have

e The proposed function [ € fN&;“ sc-

s To obtain a point & € R4*! such that | V®(2)|| < €, the number of FO queries required by the algorithm A € A is at
least 2d — 1 = Q (\/kALe™2), namely,

Compl, (FL248, A, Oro ) = Q(VEALE?), (20)

Proof First, we verify the smoothness and strong concavity of the function f. According to Lemrna oo, implies
that Fy(z, y; \*, ) is L-smooth and pu-strongly concave in y. Given that f is a scaled version of Fy, by Lemma it is
easy to verify that f is also L-smooth and pu-strongly concave in y.

Then by Lemma |C.1] we have

(x) =n2¢d<z;x*,a>, @1
where @ is defined in (9). Next we check the initial primal function gap, by Lemma[3.2]and parameter substitution,
212 64 1 10d
o(0) — ir;f ®(x) =n? (<I>d(0) - ir;f @d(z)> < 7747 (\/2& + IOad> Lf ( + \/a>62, (22)

by substituting « and d into the RHS above, we have
4 1 4 L L AL
O (L 0d) e S (SO g, [ VE o) 2
2 Va L? I 7 12800 23)

_ 64 AL AL 5\ o

m



The second inequality holds because € above is set to be small enough than -2£ . We conclude that f € Fl\LIéLSé

6400

We now discuss the lower bound argument. Based on Lemma@] and the setting of 7, we have when x4 = x441 = 0,
L2
V@) =n||vea (=00 )| > Loa®t = (24)
n 16p

So starting from (x,y) = (0,0) € Rt x R4*+2, we cannot get the primal stationarity convergence at least until z4 # 0.
By the “alternating zero-chain" mechanis in Lemma each update with the linear-span algorithm interacting with the
FO oracle call will activate exactly one coordinate alternatively between x and y. Therefore the algorithm A requires at least
2d — 1 queries to FO to activate the d-th element of x, i.e., x4, which implies the lower bound is (note that € is small enough
such that d > 3)

2d—1= Q(\/EAL€2), (25)
which concludes the proof. Notice that this argument works even for randomized algorithms, as long as they satisfy the
linear-span assumption. |

C.2 AVERAGED SMOOTH FINITE-SUM NC-SC LOWER BOUND

Similar to the deterministic NC-SC case, here we still start from several important lemmas and proceed to the proof of
Theorem

C.2.1 Hard Instance Construction

Recall the (unscaled) hard instance in averaged smooth finite-sum case in (15)): Hy; : R+2 x R 5 R, I R4+ 5 R
and

MVE, L Ma, | VA
22 YTy T T T,
n o i(d+1)—1 (26)

3 ) Ty,

i=1 j=i(d+1)—d

Hd(%%)\va) £ A1<de7y> - A2||yH2 -

then f;, f : RM(4TD x Rd+2) 5 R {UD}? | € Orth(d+1,n(d+1),n), {VP}2 | € Orth(d+2,n(d+2),n) and

_ , . o
. 2 (1) (@) ,,. 1 n
Fiw,y) & Hy(U2,VOy:x, ) + J1E T @)
R 1 & _ _ o 27)
ny) &= filwy) =—3 [Hd (UD2, VOy;xa) + RC )]
i=1 i=1
i.e., by denoting u() 2 Uz and note that |[y||* = 321, ||V(i)yH2,
f(a,y)
1« ; ; ; A f Ma Ma/ @) \2  MVa
= M{ B Uz, VOy) — 2, ||[VDy)2 ul® 1 pn _;( (l)> |
P> (B, VOy) =0l VO = = (e, U) + 00 = 30 (i) + 30| )
DUINPR , , )\f Mo Na 2 Ao
——] - (B, U® V(1)> < u® > 1% A (()) 1
ALY 1(BaUWz, vy L UO2) + g BT ) = - (uih) + S|
so f is %-strongly concave in y. Recall the gradient of f;:
N\ T . 22 N\ T 22 22 T )
Vohia) =2 (U0) BIVOy - AV (go) o L A N (o) e, 6T U,
2/\2 277)\2 2)\2 (29)

Vyfi(z,y) =M (V(i)) TBdU(i)J? — 22 (V(i)) TV(i)ya

2 Also known as the “Domino argument” in|Ibrahim et al.{[2020].



then we discuss the smoothness of {f;};.
Lemma C.2 (Properties of f) Forn € N*, L > 2nu > 0, if we set
A== (A, \) = —L,— d 30
(A7, 42) (\/40’2) e = s G0)
then the function { f;}; is L-averaged smooth, and f(x,-) is j-strongly concave for any fixed x € R4+,

Proof For the strong concavity, note that f is %-strongly concave, so by substitution we have f is j-strongly concave in
y. Then for the average smoothness, by definition, we have for any (1, 1), (72, y2) € R¥1 x R+

D IV Lilw ) = Vi(wa, v
! 31

1V fi(ar,m) = Vafilwa w)|* + [V filwr, ) = Vo iz o))

S|

[

I
3| =
=1

i=1

then note that I'}; and I'g enjoys the same Lipschitz smoothness parameter as that of I', so we have

IVafi(zi, 1) — Vafilza,yo)|?
2

) 22
34‘ /\1<U(Z)) T VO (y —yo) +4H21§‘ (VI (1) — VI (x2))
2
)\104 A\ T i
+4H2>\2 U0) earaekn UG~ 2) (32)
. 2 Ma? Ma? . 2
=3 BIVOG — )|+ 55 IVTd )~ Vi) + 255 [ewneln UO @ - a2)
, 2 C2)\a? Ma? 2
16X VO — )| + =i lles — el + S [0~ ) [
5
and
AT ‘ NT 2
Hvyfi(xlvyl)_vyfi(.’b27y2)”2: ‘M(V(l)) BdU(z)(fEl—fz)—”\z(V(lo VO (y —yo)
T . 2 NT 2 33
§2’)\1(V(’)) ByUW (21 — z5) —1—2H2)\2(V(’)) VO (y; —yo) (33)
, 2 ‘ 2
< 8)\3HU(1)(x1 - xz)H + SAgHV(z)(m - y2)} )
so we have
1 — 5
- D IV il ) = Vfilwe,y2)l
=1
BN 2 2 i Aa? 2 i 2 Ca 2
<n;[1w +833)[VO - )| + <A +832 ) [U (@1 — @) + g e =l
1 C2)\402
= *(16/\%+8>\2 {HV() Y1 — Y2 H } > U‘U() T1 — T2 H ] ’Yzlz ||$1 *952||2
n P n?A\;
1 Ma 02 1a?
= = (16AF + 83 [lys — wa® + = (1 +8>\2>||$1 Ak Jrv7”961—962”
n n 2)\2
1 C2)\3a2
<= ax{16A%+8A§,“2 +8A2 ||x1—x2|| + v — ng2)7
n nA;

(34)



then note that o € [0, 1] because we set L > 2npu > %nu, so substitute parameters into the above, we have

1 C2M\a? Mo
= 1602 +8)2, 2 87
- max { 1+ 8A3, n)\% + /\2 +

1 4C2X1e®  4Mta?
:rnax{l(i)\%—l—%”ﬂ/f7 LA 10; +8)\2

n n3p2 n2u
1} (35)

1 16nL? n?u? n?L* 8nL?
= — 2 22 1 N °
max{ qo T2k, 1000000 5550 Teoons2 T a0 }

{2L2 L? L2 L2}
<max4q —+—,— + —

1
< —max {16)& + 2n%p?
n

5 27 4 5

9L2 92

- — Y < 2
max{ IO’QO}L’

where the first inequality is attained by the computation with the value of C, = 360, the second inequality comes from the
assumption L > 2npu > 24/nu; the last equality is attained by parameter substitution, which verifies the conclusion. W

A

Next we discuss the primal function of the finite-sum hard instance.

Lemma C.3 (Primal of Averaged Smooth Finite-Sum Hard Instance) For the function f = 237" | f; defined in (T3),
define ®(x) £ max, f(z,y), then we have

n
Z B,(z), where ®;(z)2 (U@)x) : (36)
while @4 is defined in ().
Proof By the expression of f in (28), take the gradient over y and set it as 0, denote the maximizer as y*(z), we have

2A2 v ( Z/\l (V@ ) BUYz =0 = y*(z)= ;Tl Z (V“))TBdU(%, 37)
2=

so we have

O(z) = flo,y"(x))

1 - [ A2 N2 Ao , Ma Na/ @ \2 ANV
==Y 2| B,Uu® ’ _ A U 1Y b _L<<z>) i
n ; _4A2’ S 22 <el’ x> + 21y () A, Mt + 4Ny
1~ | M2 N2 A a , Ma & ; Ma/ o \2 Mya
- = Mg u® ‘ _AM u® 1 r (Um _ M@ 1
n | 4x ’ ae 2X\o <el7 x> * 2n o ; ¢ :v) e (“d+1) + 1\,
1 [ A2 L2 A2ya . Aa . Na/ o \2 AJa 38)
==Y |2 B,u® ’ _ < 10 > Ao (U@) )_#( (@) ) i
n £ _4)\2’ d T 2 e1, r)+ 3 d T i Ugii) + Dy
T n — _2>\2 (2 (U ) AUz — \/a<el’U x> + aFd<U x) + 9 (udJrl) + 5
1 n
== Z d, (U( )
[t
where the third equality follows from (16)), and A, and @, are defined in (T0) and (9)), which concludes the proof. |

The above two lemmas proves the statements in Lemma [3.3] Before we present the main theorem, we first discuss the
behavior of the scaled hard instance, which will be used in the final lower bound analysis.



Lemma C.4 (Primal of the Scaled Finite-Sum Hard Instance) With the function f(x,y) and f;(x,y) defined in
®(z) £ max, f(z,y), then for any n € R and the following function:

Zflxy an(‘”,y), (39)
- UM

then for its primal function ®(x) £ max,cga+1 f(z,y), we have
1 ¢ 2z (£ 2 |
= fzq)i(x), where ®;(z) = n°P; =n"dy EU x . (40)
n
i=1
Proof Based on (28)), we can write out the formulation of f:
— x y
f(xvy) = 7]2f<a >
nn

A SR Qi
— 2 _22|¥ =
- ( n nH ta

2
M<Bﬂﬂ”xqva> AVﬁ< ;Umx>+_MaIﬁ(x)

i=1

2

CNafufl ) Mva
+ (41)

4)\2 n 4>\2

1 n )\ \/7 )\204 T

_ N B,UDz v 2( 2 = T
H 12+ = ;A1< U2, VOy) 4y n; T G +2M2 iy

2 @ \? 2

_ e fta ) ATVa

4)\2 n 4)\2 ’
check the gradient over y and set it to be 0 to solve for y*(z), we have

sy 2N M (v B, . M (v B
Vyf(z,y*(z)) = - y*(x) + - ;(V ) B,U%x =0 = y*(x) 2)\2;(V ) B;,UYz, (42)

which implies that

n (43)

QTL)\Q 4)\2 n 4>\2

M \2
_ Aa e UOTN Ma (% Mo Ugi i Ao
22 \ U0 0/ T2 \n) 4\ 1 Ao

2 n n 2 2 () 2 2
_ 4:\\171 Z HBdU(i)tz 1 Z l_ )\1\/a<th(i);> n Ao " (;) )\104 <Ud+1> n >\1\/a]
2= ;

(44)

where the last equality directly applies the conclusion in Lemma[C.3] which concludes the proof. |



C.2.2 Proof of Theorem

Recall that the complexity for averaged smooth finite-sum nonconvex-strongly-concave problems is defined as

Compl, (Filse, A, 0f:8°) & sup  inf ET.(f.4)
fefﬁc“sg A€A(@ILFO ) 43)
= s inf  Emf{TeN||[ve@”)| <)
L,As

FeFLiLs A A(0S)

Based on the discussion of the properties of the hard instance, we come to the final statement and proof of the theorem.

Theorem C.2 (Lower Bound for Finite-Sum AS NC-SC, Restate Theorem[3.2) For any linear-span first-order algo-
rithm A € A, and parameters L, 1, A > 0 with a desired accuracy € > 0, for the following function f : R(4+1) x R4+

R:
_ 27 (%Y _ Ly,
fl(xvy)fn fl <77777>7 f(xay)*ni:1fl(x7y) (46)

where f; is defined as (13) and {U(i)}?:1 € Orth(d+1,(d+ 1)n,n) is defined in (13), with its primal function
O(r) = max,cra+1 f(z,y), for small enough ¢ > 0 satisfying

LA L2A L2A
¢ < min [ Y2 e (47)
76800nu " 1280nu”
if we set L > 2nyu > 0 and
. n _ ny 160+/ 2nu s ni VaL*A 2
A= — L, — = =—, d= >3 48
( 0772 ) =TT e YT R 25600nu° | = “%)

we have

* The function f € be”S’C {fi}i is L-averaged smooth.

* In the worst case, the algorithm A requires at least Q(n + «/nnALe*) IFO calls to attain a point & € R such
that E||VO(2)|| < ie.,

Compl, (FL258, A, 0F8%) = Q(n+ VirALe?). (49)

Proof We divide our proof into two cases.

Case 1 The first case builds an ©2(n) lower bound from a special case of NC-SC function. Consider the following function:
z,y € R? and

n

A Al
hilw,y) £ 6o, @) + Liz,y) = Sl hley) & > hila,y), (50)

i=1

where < /2L i“ 2,0 < p < L, the dimension number d is set as a multiple of n, and v; € R is defined as

>

Ui:[O .- 01 -~ 10 --- O}T’ (629

such that elements with indices from %d +1to %d are 1 and the others are all 0, namely, there are % non-zero elements.

It is easy to see that the function h; is p-strongly convex and L-smooth in both x and y. For the initial value gap, denote
¢ £ max, h. We have

n

1< L? L? 6
o) = 3 35 (Bona) + o lel?) = SolelP + 230 (o, 52)

i=1



which is a strongly convex function, and its optimal point z* is

2
) 1o & ) po* |1
— 3= i = i 53
L2n ;U 4 2L2n2 izzlv (53)
Based on the setting of 6,
o m0? IS~ | pPd
80(0) - 90 2L2n2 Zlvi - 2L2n2 S A‘ (54)
Hence, we have h € flﬁé‘s’é . Then based on the expression of V,h; and V, h;, we have that, starting from (z,y) = (0,0)
and denoting {iy, 42, - - ,i:} as the index of IFO sequence for ¢ queries, then the output (3, ;) will be
-f'%ta :gt S Span{vil y Uigy st t 5 U4y } (55)
then note that each v; contains only Z 4 pon-zero elements, by the expression of the gradient of the primal function Vi, we
have that if ¢ < n/2, then there must be at least o % i % zero elements in &, which implies that for €2 < LT—LA,

V()| =

7:“ + - Z \f > e, (56)

where we follow the setting of 6 above. So we proved that it requires 2(n) IFO calls to find an e-stationary point.

Case 2 The second case provides an Q(y/nrxA Le~2) lower bound concerning the second term in the result. Throughout
the case, we assume L > 2nyu > 0 as that in Lemma[C.2]

Here we still use the hard instance constructed in (T3), note that V f;(z,y) = nV f; ( ) is a scaled version of f;, which is

L-averaged smooth by Lemma so by Lemmawe have {f;}; is also L-average smooth. The for the strong concavity,
note that f is p-strongly concave on y, so as the scaled version, f is also p-strongly concave on y.

Then for the primal function of £, let ®(z) £ max, f(z,y), by Lemmaand Lemma we have

o(x )—772<I>< ) 202‘1)( ) (57)
where @ and ®; follow the definition in LemmalC.3]

We first justify the lower bound argument by lower bounding the norm of the gradient. Recall the definition of Z (see

(18))), which is the index set such that ufi) = ul(j_i)rl =0, Vi € T while u¥) = Uz, By substituting the parameters in the
statement above into (I8) and Lemma|[3.2] we have that when the size of the set Z, i.e., |Z| > n/2 (note that scaling does not

affect the activation status),
Ivocl? = |ova( )| = |va(?)

51200n,u sy Al ol

2 2

$ 58

7 TT T Ve 8
51200n,u - L4 R
A < 51200m2 Y T

Next, we upper bound the starting optimality gap. By substitution of parameter settings and the initial gap of ® in (T7)), also
recall the setting of €, we have

. o 51200nu% s , nL? [a
_ * 2 _ bl 2 va
®(0) —P* =1 ((I)(O) melﬂr{}irl @(m)) i e 10 ( + 10ad
_1280np (1 n 10d 2 640n €2 L 12800nude>
L2 200 o)  al? L2\/a (59)

640nu  «L?A  12800nue?  JaL?A 2
S a2 1280mp T I2Va | 25600mp




so we conclude that f € flﬁ’c”s’é‘, i.e. the function class requirement is satisfied.

To show the lower bound, by previous analysis and the choice of (T3), the activation process for each component will also
mimic the "alternating zero-chain" mechanism (see Lemma [3.T) independently. So we have, by the lower bound argument
(18), it requires to activate at least half of the components through until their d-th elements (or at least half of {u(i)}i are not
activated through until the d-th element, note that each u(*) corresponds to an unique part of z with length (d + 1)) for the
primal stationarity convergence of the objective function, which takes (note that 2| x| — 1 > « when x > 3)

n JaL?A

n -2 -2 -2
= > — —
T 5 (2d —1) 5 25600,””6 Q(VaALke?) = Q(v/nkALe ?) (60)

IFO oracle queries. So we found that for any fixed index sequence {i;}7_;, the output z7+! from a randomized algorithnﬂ

must not be an approximate stationary point, which verifies the Q(n V nnALefz) or Q(n + \/nnALe’Q) lower bound
by combining the two cases discussed above together. We conclude the proof by applying Yao’s minimax theorem [Yaol,
1977], the lower bound will also hold for a randomized index sequence incurred by IFOs. |

D PROOF OF NC-SC CATALYST

D.1 OUTER-LOOP COMPLEXITY

In this section, we first introduce a few useful definitions. The Moreau envelop of a function F’ with a positive parameter
A > 0Ois:

1
Fy(z) = zglﬁﬂll F(z)+ ﬁHz — x|

We also define the proximal point of x:

1
prox, p(z) = arg min {F(z) + —lz— x||2} .
z€R% 2X

When F is differentiable and ¢-weakly convex, for A € (0,1/¢) we have
VE(prox,p(z)) = VF\(2) = A" (z — prox, p(2)). (61)

Thus a small gradient ||V F)(x)|| implies that x is near a point prox, p(x) that is nearly stationary for F'. Therefore
IV E\(z)]| is also commonly used as a measure of stationarity. We refer readers to [Drusvyatskiy and Paquette}, 2019] for
more discussion on Moreau envelop.

In this subsection, we use (z',y’) as a shorthand for (zf,y{). We will denote (Z*,§") as the optimal solution to the
auxiliary problem (x) at ¢-th iteration: min, cga, max, cga, [ft(x, y) = f(x,y) + L)z — mt||2] . It is easy to observe that
' = proxg jor, (). Define &, (x) = max, f(z,y) + L|jz — 2'||. In the following theorem, we show the convergence

of the Moreau envelop ||[V®; /51, (z)||? when we replace the inexactness measure by another inexactness measure
gapj, (T ytH) < By(||ot — 28| + ||y® — 9t[|?). Later we will show this inexactness measure can be implied by with
our choice of 3; and ;.

Theorem D.1 Suppose function f is NC-SC with strong convexity parameter | and L-Lipschitz smooth. If we replace
4
the stopping criterion (@) by gapy, (2 gt < Bullat — 2 + ||yt — §P11?) with By = 5= for t > 0 and

4
Bo = m’ then iterates from Algorithmsatisfy

T—1
87L 7L

> V@1 r(ah)® < ——=Ag + —DJ, (62)

= 5 5 Y

where DY) = ||y — y*(2°)[|> and Ag = ®(2°) — inf, D(x).

3Note that randomization does not affect the lower bound, as long as the algorithm satisfies the linear-span assumption.



Proof Define b;11 = gapy, (xt+1 yt*1). By Lemma 4.3 in [Drusvyatskiy and Paquette, 2019],

IV ®1jar (2")]|* = 4L%||2" — proxg oy, ()] <8L[D¢(a') — &4 (proxg o (2"))]

<8L[®,(2") — Py (2") + byg]

fgL{ (x t [(I)(xt )+L||xt+1izt”2] +bt+1}
<8L[®(x t) — ®(z"™) + byl (63)

where in the first inequality we use L-strongly convexity of &,. Then, fort > 1
ly* = "1 <2lly* =" I1P + 2]ly* (@) =y (@)

L 2
<aly -t +2 (£) fat-a e

L A I\ 2 o
<ol — gt P+ (2) st - a () et oy

L L\?
<8bt+4< > I3t — |2,
12 7

where we use Lemmain the second inequality, and (L, 11)-SC-SC of f,_i(x,y) and Lemmain the last inequality.
Therefore,

N 4172 R
la — 842 + [ - H2<ubt+(u 1)||xt—x”. (64)

By our stopping criterion and ||V ®1 jor,(2%)]|? = 4L? 2" — &%, fort > 1

) X 8Lf,
besr < Be [lwe — 21 + lye — 9I1] < 2

1 1
bt (o + gz ) V@) P

2
Define 0 = £ and w = 112L3
the following recursive bound

It is easy to verify that as 3, =

28L3, then SLﬂ’ < 6 and 5, ( + 4L2> < w. We conclude

bt+1 S gbt + w||V<I>1/2L(mt)||2. (65)
Fort =0,

~ * ~ * * L 2 A
19 = 371 < 2 = 5 @O 4203~ P < 20 - @+ (£) - 66)
Because ®(x) + L|lz — 2°||? is L-strongly convex, we have
L
(®(2%) + L||2° — 2°|%) + 5\\@0 — 202 < ®(20) = &* + (®(2°) — &*) < B(2Y) + (P(2°) — D).

This implies ||#° — 2°||? < £(®(2°) — ®*). Then combining with (66)

. . L L . N
I8 =3P+ 10 = 212 < (5 + 5 ) (@) = #) 20 = 5 )
Hence, by the stopping criterion,
L3 L 0 * 0 *0,.0\(12
b1 < Bo E+§ (®(z7) — %) + 20Bolly” — y" («")[]"

2 § 4 3 .
Define 6y = 1gT . With 5y = mfm, Bo (% + %) < 6y and 28y < 6y. So we can write

by < 0o(D(2°) — ®*) + Ooly° — y* (2°)|2.



Unravelling (63), we have for ¢ > 1

t t
bevt < 01+ w Y 0" V@ jop (ar)[” < 0°00(@(2°) — %) + 0%60[ly” — y* (2)|* +w Y 0KV oy ().

k=1 k=1
(67)
Summing from¢t =0to 7T — 1,
T-1 -
b1 = Z t+ by
t=0 t=1
_ T—1 t
< 0y Z 0! [®(2°) — ®*] + 6, Z 019" =y (@)P +w Y 0ROy jap ()|
t=0 t=1 k=1
<0 Tfet[@( )~ ] 40 Tfefn O 0 S VP (69)
= bo z 0 y -y x w 1—0 1/20\T )
=0 t=0 t=1
where we use Y0, o5y 0 RV o ()2 = 30T Simy 0 IV jar (@) 2 < SR 5 IV @ jan ()1
Now, by telescoping (63)),
Z V@11 (a")]* < @(2) — @* + Z bet1.
Plugging (68) in,
T-1 T-1
1 1 to
5 2 90l = 0 Y 90l < (14 1205 ) [0 - 8T+ L2007 - o ()P )
t=0 t=1
Plugging in w < ﬁ, ﬁ = 5 and 0y < 16
T-1
1 87 * 7 x
= S VB (P < S [B0) ~ B 4y — g O]
t=0
]
Proof of Theorem 4.1]

Proof We first show that criterion 1| implies the criterion in Theorem By Lemma as ft is (L, u)-SC-SC and
3L-smooth,

2ugapy, (a1 g ) <V g 1P < o[ Vfia! yh) 1P < 36L%aq (2" — &)1° + Iy — 9°11%),
therefore,
gapy, (a1, y41) < B0t gy ),
which implies gap;, ("1, y"*1) < By([|la* — 2*[|* + ||y — §%(|?) by our choice of {3;}; and {c }+.
We still use b1 = gapy, (1, y!*1) as in the proof of Theorem @) First, note that
[Ve(™)|* < 2[[Ve(z™) — Vo) + 2| Ve ()|

2L? .
<2 (5] 1ttt P 4 2V ()

16L3
S 5—bi1 + 2 VP o (1) (70)




where in the second inequality we use Lemma[B.T|and Lemma 4.3 in [Drusvyatskiy and Paquette, [2019]]. Summing from
t=0toT — 1, we have

T-1 T-1
16L
IVe@™h)* < (") 7n
t=0 t=0 t=0
Applying (68), we have
16L3 — 16L36, < . 16L30) . 1603w = 1
I S 600 - 0] + 5L S g e BB S Lo, e
M t=0 ® t=0 © t=1
2 2
Plugging in 0y = 1£7=,0 = % and w = %,
16L°% < 7L .. 7L . —
i 2 b < 80 = @+ L’ =y @O+ 3 IV ()
t=0 t=1
Plugging back into (71),
T-1 T-1
7L 7L .
IVO(")|* < Z[@(") = &+ =y’ — y* @)|> +3 Y [VP1 2 (@)
t=0 E E t=0
Applying Theorem D. 1}

268L .. 28L i}
*Z Ve |* < = [0(") - @ ]+57||y0—y ()%

D.2 COMPLEXITY OF SOLVING AUXILIARY PROBLEM (EI) AND PROOF OF THEOREM

In this layer, we apply an inexact proximal point algorithm to solve the (L, 1+)-SC-SC and 3 L-smooth auxiliary problem:
mlnx maxy ft(sc y). Throughout this subsection, we suppress the outer-loop index ¢ without confusion, i.e. we use f instead
of fyand fi, = f(z,y) — Zlly — 2 ||? instead of ft.x- Accordingly, we also omit the superscript in (%, y%) and L.

Before we prove Theorem[4.2] we present a lemma from [Lin et al.| 2018]. The inner loop to solve () can be considered as
applying Catalyst for strongly-convex minimization in [Lin et al.,[2018]] to the function — \I/( ) = —mingcga f (x,y). The
following lemma captures the convergence of Catalyst framework in minimization, which we present in Algorlthm

Lemma D.1 ([Lin et al.,2018]) Consider the problem min,cra h(x). Assume function h is p-strongly convex. Define

A = Hle(l —ag), g = F qq and a sequence {v; }; with vg = xo and vy = 1+ - (xk —xp_1) for k > 1. Consider
the potential function: Sy, = h(xy) — h(z*) + %Hx — v ||, where z* is the optimal solution. After running
Algorithm|l|for K iterations, we have

1 €
AKSK§< So“‘Z«/ k) (73)

Before we step into the proof of Theorem , we introduce several notations. We denote the dual function of f by
W(y) = min, f(z,y). We denote the dual function of fi(x,y) by Uy (y) = min, fi(z,y) = min, f(z,y) —Zlly—z|* =
U(y) — Zlly — 2. Let y; = arg max, U, (y). We also define (z*,y*) as the optimal solution to min, max, f(z,y)



Algorithm 1 Catalyst for Strongly-Convex Minimization

Input: function h, initial point x, strong-convexity constant y, parameter 7 > 0
1: Initialization: ¢ = #, 21 = To, 1 = /4.
2: forallk =1,2,..., K do
3:  Find an inexact solution xj, to the following problem with algorithm M

.7 T
min fi(z) £ [A() + 7 llo - 2

such that

hy(z1) — min hy(z) < €. (72)
zER

4:  Choose a1 € [0, 1] such that aiﬂ = (1 — agt1)0} + g1
50 zky1 = xp + Bx(xp — xx—1) Where By = %
6: end for

Output: xg.

Proof of Theorem 4.2] 3
Proof When the criterion ||V fi (2%, y*)||? < e is satisfied, by Lemma

1 3 k  ky\2 1 \/é k ~
gapj, (Tx, yr) < Zﬂvfk(x )7 < 2= 5 (1= p)"gapg(z0,90) = &,

where we define €;, = %(1 —p)k gapf(fo, Yo)-

The auxiliary problem can be considered as max,, ¥(y). We see gap 7 (Tk, yr) < € implies max, Ui (y) — Up(yp) <
€x. By choosing a1 = /g in Algorithm , itis easy to check that o, = /g and By, = %, for all k. So this inner loop
can be considered as applying Algorithm|1|to fﬁl(y) and Lemmacan guarantee the convergence of the dual function.

Define Sy, = U (y*) — U(ys) + %Hy* — vg||? with g, = 2 Lemmagives rise to

K 2
1 e
- < €k '
A oK S (*/S:”kz_l \/;> (74)
Note that Ay, = Hle(l — ai) — (1 _ \/a)k and
moRT _Va—4q  Var  _ Na—a  Jar o qlptT)

2l—ax)  1-q2(l=yq) 7/(p+7)2(1-/4q) 2

So Sy = \il(y*) — \i/(yo) + Sy — vol|? < 2(\@(3/*) — \il(yo)) Then with €, = %(1 —p)k gapf(xo,yo), and we have
2

lat
5

T t
. . N N 1—
Right-hand side of (7) < | \/2(8(y*) — ¥(y0)) + > 2(1_ %) gap 4 (20, o) (75)
t=1
K F\ 2
<2 1+Z< 1p> gap (0, o) (76)
= _ f 9
o\ Ve
( 11_\/})1(4-1 11_\;)» 2 . X
o Lo _
2| =" saps(z0,50) <2 < p) gap §(zo, Yo)-
—° _1q 1-p 1 1—-y/4q
1—Vq 1—Va

77



Plugging back into (74),

2
1 8
Sk <2 1—p) 5 gap (20, y0) < ———— (1 — p) X gap (20, o), 78
K< (le\/lﬁ) (1=p)" " gapj(zo yo)_(\/afp)Q( p)" T gap (0, yo) (78)

where the second inequality is due to /1 — = + § is decreasing in [0, 1]. Note that
ok —a™1* <2llek — " (yr)lI” + 2l|2" (yx) — 2™ (")
4 4 2 *
<7, yr) = Fa" () y)] + 18llyxe — v [1*
4 ~ * |12
<géx +18llyk — v 79

where in the second inequality we use Lemma [B.T] Then,

* * * 4 ~
e =21 + lyxe = 711" < 190y = y"[I* + Léxc (80)

Because [lyx — y*||? < 2[¥(y*) — ¥(yx)] < 25k, by plugging in (78) and the definition of ¢, we get

=7

ek —a*|” + llyx — y*|I° < (M(\/?;)Ep)g + f) (1-p* gap (o, Yo)-
By Lemma|[B.2] we have
* 2 * 12 1 ¢ 2 1 £ 2
lore =™ 1" + llyx =91 = 5572 IV (@x, yx)lIF and - gap (20, y0) < @va(myo)” -
Then we finish the proof. u

D.3 COMPLEXITY OF SOLVING SUBPROBLEM @ AND PROOF OF THEOREM

As in the previous subsection, we suppress the outer-loop index t. Define ®(z) = max, f(x,y), ¥(y) = min, f(z,y)
and ®* = min, ®(x) = max, ¥(y) = U*. We still define ¥,(y) = min, fx(r,y) = min, f(z,y) — Hy — zll? =
Y(y) = 5lly — 2 J
the optimal solution to min, max, fx(x,y). Also, in this subsection, we denote z*(y) = argmin, f(z,y) and y*(z) =

arg max, f(x,y). Recall that we defined a potential function S = W (y*) — U (ys) + £ly* — vg||? in the proof of Theorem
%)

2, and () = max, fi(z,y). Let (z*,y*) be the optimal solution to min, max, f(x,y) and (x5, y7)

The following lemma shows that the initial point we choose to solve for M at iteration k is not far from the optimal
solution of if the stopping criterion is satisfied for every iterations before k.

Lemma D.2 (Initial distance of the warm-start) Under the same assumptions as Theorem[d.2] with accuracy €y, specified
in Theorem we assume that for Vi < k, |V fi(zs,y:)||?> < €. At iteration k, solving the subproblem from initial
point (x_1,Yk—1), we have

k-1 = 2 l* + llyr-1 — yll* < Crex,

_ | 72v2 742 1 _ 2 1, 288v2r°max{40L%97°4+4L%} 1
- { * } O = R T T T (s e fort > 1

Proof We separate the proof into two cases: k = 1 and k > 1.
Case k = 1: Note that z; = yg, and therefore the subproblem at the first iteration is

minmax | fi(,y) = f(z.y) = 5 Iy = vol2]. @81)

z Yy



Since % = argmin, f1(x,y) = argmin,, f(z,y?) and z* = argmin, f(z,y*), by Lemmawe have ||z* — x| <
3|ly* — 7| Furthermore,
llwo = 2111* + lyo — yilI* <2l|zo — 2*|I* + 2ll2™ — 271> + llyo — w1 |
<2||lzo — 2*[|* + 18]ly” — 7 lI* + llyo — w1 |®
<2lwo — & |* + 36]lyo — v 1> + 37llyo — vi |

72 .
<, 8ap7(x0,90) + 370 - vl (82)

where in the last inequality we use Lemma It remains to bound ||yo — y7||. Since ¥(y) — ly = yoll* is (n 4 7)
strongly-concave w.r.t. y, we have

(B0 = Zlwt = wol) = 5wt = woll? = B(go) = 0 — 197 = B(go)] 2 Bwi) - (" — F(wo)),  (83)

It further implies
M * 2 I* I
(7+5) llyi = woll* < ¥ — ¥(y0) < gap; (w0, yo)- ®

Plugging back into (82), we have

72 74
k2 ok 2< e R
lzo = 27[I” + [lyo — w1l _L +27+u] gap ¢(zo, Yo)
72V/2 74/2 1
S \2[4' \f €1.
I @r+pp|l-p

€& = @(1 —p)’ gap (2o, yo). Note that fris (L, + 7)-SC-SC and (L + max{2L, 7})-smooth. Then

Case k£ > 1: From the proof of Theorem we see that ||V f;(z!,1;)||2 < e implies gapy, (z;,y;) < € where

k-1 = 2 l* < 2wk — 2" (i )I” + 202" (i) — 2" (i) I?

< 2fapm — i | +2 (Hm}f{u}) Iy = vl )
Furthermore,
k-1 = @51 + N1 = will® < llon-1 = 257 + 2llye—1 = v lI® + 2llyr_y — vill?
<Dhos — ol + 2 il +2 | (RSB e
4é,_4 972 " w2
<oimet w20, 7 42 i i (56)
Now we want to bound ||y} _, — yj;||. By optimality condition, we have for Vy,
(—u) " VT() <0, (y—ui1) VIa(yi,) <O0. (87)
Choose y in the first inequality to be y;_,, ¥ in the second inequality to be y;;, and sum them together, we have
e = i) " (Vo1 (i) = VE(53)) < 0. (88)
Using VW (y) = Vyf(:c*(y), y) — 7(y — zk), we have
Wi = yi—1) " (Vo f (" (Wi_1)s wim) = 7o — 2e1) = Vo F @ (i), wi) + 7(yi — 2x)) < 0. (89)

By strong concavity of ¥(y) = max, f(x,), we have

(e = yi_) T (V) = VE(yi_y)) < —ullyr — vi_a | (90)



Adding to (89), we have

(i —ve—) " Ir (i — 21) — (Wi — 2e-1)] < —pllyss — v I on
Rearranging,
T * * T * * 2
— Zhe1 — 2k) > — . 92
u—!—T(yk Yr—1) (2k-1 k) > vk — Y-l 92)

Further with (v} — yi_ 1) " (zk—1 — 2) < ||y} — vi_1|lllzk—1 — 2&]|, we have

1y = vkl < 251 = 2l]- (93)

-
ptT
From updates of {2y, }1, we have for ¢t > 2

Vai—q V4—q
Ye—1 — Yk—2) — Yk—2 —
\/§+q( ) Vat+q

ﬂ—q) Vai—4q
<(1+ Yr—1 — Yr—2|| + Yk—2 — Yk—3
(1+ =91 I+ H

L2lyk—1 — yr—2ll + llyx—2 — yr—3l|
<6max{||yx—1 — ¥ I, lye—2 — ¥*II; lyr—3 — v* I} 94)

Yk—1 + (Yr—2 — Yr—3)

wkzhm\

Therefore,

ll2x — 2e—1]* <36 max{||yx—1 — ¥*|I% llyk—2 — y* 1%, lve—s — v [|*}

72 T Tk T \TEER T *
S; max{W(yr_1) — V", VU(yp_2) — ¥, ¥(yr_3) — V*}

72
S; max{Sy_1, Sk—2,Sk—3},

where in the second inequality we use strongly concavity of ¥ and in the last we use \il(yk) —¥*<S . Combining with

(@3) and (86), we have

. . 461 3672 max{40L?,972 + 4L?

R e A min{L, i+ 7} (u{+ 7?L2p bax(Shos, S s} 09)
Plugging in S, < (\/ﬁ%ﬁz(l — p)"*1 gap (o, yo) from the proof of Theorem (4.2|and from definition of e, and &, we
have

2 1 288272 max{40L? 972 +4L%} 1
* (12 * (12 )
Th_1— X + 1 - < - . (96
i = R+ e = 9l < {umm{L,quT} 1—p (it 2L%2(yg—p)  A—p2 S ©0)

It is left to discuss the case ¢ = 2. Similarly, we have

Va4—q
Vatq

y1+ (y1 — %o0) — Yo

\/fl—q) . .
={1+ y1 — Yol < 4max{|ly1 —v", lyo — ¥
( NG, | [ {ll 5 1l i;

22 — ] =

Then
l2 = 21]|* < 16 max{flys — "%, lyo — v" (1}
32 A L 32
< ;maX{‘I’(yl) = U, ¥(yo) — ¥*} < m max{S1, gap ;(zo, Y0)},
Combining with (93) and (86), we have

4é, 1672 max{40L?, 972 + 4L%}
min{L, y + 7} (+7)2L2p

o1 = 23] + flyn — w5 ]* < max{Sy,gap;(zo,50)}.  (97)



Plugging in 51 < (\/6%)2(1 —p)? gap (o, yo) and definition of €; and é;, we have

2 1 128v/272 40L2,97% + 412
8v272 max{40L2,972 + }}62 98)

(12 * 12
1 — + ||ly1 — v < { .
o a3 + o = il < { e B e

Proof of Theorem
Proof We separate our arguments for the deterministic and stochastic settings. Inside this proof, (z(;, %(;)) denotes the i-th

iterate of M in solving the subproblem: min, max, fr (z,y). We use (x5, y;) to denote the optimal solution as before. We
pick (20, Y(0)) tobe (xp—1,yr—1).

Deterministic setting. The subproblem is (L + max{2L, 7})-Lipschitz smooth and (L, pu + 7)-SC-SC. By Lemma[B.2]
after IV iterations of algorithm M,

IV fi(z vy, yny) |12 < AL + max{2L, 7})*[|lzny — 2312 + lyv) — vill?]

N
1 * *
( )) [H.Z‘k_l - xk:”Q + ||y1€—1 - yk||2]

< 4L +max{2L,7})? [1 - ———
AﬁftL T

Choosing
A(L + max{2L, 7})* (lex—1 — 2] + lye—1 — vill*)
€k

- Aﬁj%L(T) log (4(L + max{2L, 7})*Cy),

N :AﬁflL(T) log

4(L + max{2L, 7})%Ciey,

€k

SA{X‘L(T) log

where C} is specified in Lemma we have ||ka(a:(N), yn)|I? < e

Stochastic setting. With the same reasoning as in deterministic setting and applying Appendix B.4 of [Lin et al., 2018]],
after
(L + max{2L, 7} (|lzx-1 — 2l* + llye—1 — yi]*)

4
N = A;/X[L (1) log o

+1

iterations of M, we have ||V fi.(z(n), y(n))[|1 < €.

D.4 TOTAL COMPLEXITY

Proof of Corollary 4.1]

Proof From Theorem the number of outer-loop calls to find an e-stationary point of ® is 7' = O (L(A + Dg)e”).
From Theorem , by picking p = 0.9,/q = 0.9y/p/(pn + 7), we have

55082 18v/2L2

/ﬂ(f* )2 + [ (1- P)kHVft(xéay(t))“Q- 99)

197 (et ) P < [

Therefore, to achieve ||V fy (ki )12 < cu||V fi(2h, )]/, we need to solve (xx)

5508L° 18v2L2

K =0.9v/(r + 1)/pulog (i + -0 ( (7 + 1)/ log (mx{lLT}»

o min{1, u}




times, where «; is defined as in Theorem Finally, Theorem implies that solving (k%) needs N =

@) (Aﬁj‘L (1) log (%)) gradient oracles. The total complexity is

T.K'N:()(AxL(T)LgAJng) [T g2 (HW{ILT}D (100)
€ o min{1, u}
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