
Dynamic visualization for L1 fusion convex clustering
in near-linear time (Supplementary material)

Bingyuan Zhang1 Jie Chen1 Yoshikazu Terada1,2

1Graduate School of Engineering Science, Osaka University, Japan.
2RIKEN Center for Advanced Intelligence Project (AIP)

1 AN EXAMPLE N = 3

Consider the case n = 3, given x1 ≤ x2 ≤ x3, we want to minimize the following problem to obtain â1 ≤ â2 ≤ â3.

(â1, â2, â3) = arg min
(a1,a2,a3)

{
1

2

[
(x1 − a1)2 + (x2 − a2)2 + (x3 − a3)2

]
+ λ1|a1 − a2|+ λ2|a2 − a3|

}
Suppose â2 is known, by definition â1 is equal to:

â1 = arg min
b

1

2
(x1 − b)2 + λ1|b− â2|

= arg min
b

h1(b) + λ1|b− â2|

Since the b here represents â1 and is always smaller than â2. We only need to consider two cases:

• (1) b < â2. At that case, by KKT condition it is easy to find â1 = U1.

• (2) b = â2. In other words, â1 = â2.

From that we get

â1 = arg min
b

h1(b) + λ1|b− â2| = max(â2, U1)

Similarly for â2, we suppose â3 is known:

â2 = arg min
b

[
1

2
{(x1 − φ1(b))2 + (x2 − b)2}+ λ1|φ1(b)− b|+ λ2|b− â3|

]
= arg min

b
h2(b) + λ2|b− â3| = max(â3, U2)

Next we need to find U1, U2 and â3, with whom â1 and â2 can be obtained immediately. We solve it in the following order:

U1 → U2 → â3 → â2 → â1.

For U1, it is straightforward that U1 = x1 + λ1. Then for U2, the U2 satisfies g2(U2) = λ2, and g2(b) is a continuous
piecewise linear function shown in the figure 1.

g2(b) = g1(b)I[b ≤ U1] + λ1I[b > U1] + (b− x2)
= (b− x1)I[b ≤ U1] + λ1I[b > U1] + (b− x2)

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

Because g2 is composed of two lines, the key is to locate which line is (U2, λ2) on. According to the algorithm 2, we first
search from the right by assuming the (U2, λ2) is on the right line, and get β = λ2 − λ1 + x2 which makes (β, λ2) the
intersection point of y = λ2 with the right line. Next we compare the β with U1 in figure 1. If β >= U1, (U2, λ2) is indeed
on the right part of the line, then we have U2 = β; otherwise we update the slope and intercept to be those of the left line
and let U2 = βnew = λ2 + (x1 + x2)/2.

b

y

U1

g2(b)
λ2

λ2

ββ βnew

Figure 1: An image of g2(b): the solid line is an example of g2(b) with a branch point U1. The search starts to find the β first
and if β does not qualify β > U1, then we go to find the βnew.

This search process is efficient enough but is still not linear. To make the search from left to right more efficient, some care
need to be taken.

Here we illustrate the erase step in the line 11 of the algorithm 2, we consider the case when U2 < U1. And now we want to
find â3, and we also search from the right part of the g3 function. The only difference between searching U2 and â3 is we let
β satisfy g3(β) = 0. We first compare the β with U2, and if β < U2, the comparison between β and U1 is not necessary
any more because we already know U2 < U1. Thus we can delete the U1 after obtaining a U2 that is smaller than U1. In
the end, all the Ui can be deleted at most once: once a Uj , j > i is found such that Uj < Ui, the former Ui can be deleted
immediately and never used again. By doing this the DP algorithm becomes much more efficiently and finally takes linear
time.

2 SIMULATION DETAILS

Both standard errors and means over 30 replications are reported in the following table. When the sample size becomes
larger, C-PAINT becomes faster than FUSION.

Sample size n 100 500 1000 5000 10000 50000
CARPl1 0.32(2.7e-3) 232.5(69) * * * *
FLSA 0.04(5.2e-4) 3.4(4.8e-2) 35.6(0.4) * * *
ADMM 0.07(9.3e-4) 4.9(4.8e-2) 50.8(20) * * *
AMA 0.07(1.1e-3) 3.3(2.7e-2) 42.7(15) * * *
FUSION 5e-4(9.2e-5) 4e-3(1.1e-4) 1.2e-2(2.0e-4) 0.33(3.1e-3) 1.1(7.4e-3) 27.7(2.8e-2)
C-PAINT 9.7e-4(2.6e-4) 3.8e-3(1.2e-4) 8.9e-3(1.5e-4) 0.15(7.5e-3) 0.41(1.1e-2) 5.6(4.2e-2)

Table 1: Run times Comparison. The means and standard errors of each method over 30 replications are reported. Here ∗
means we cannot obtain the solutions within a reasonable time.

	An example N = 3
	Simulation Details

