
Enabling Long-range Exploration in Minimization of Multimodal Functions
(Supplementary Material)

Jiaxin Zhang1 Hoang Tran1 Dan Lu2 Guannan Zhang1

1Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
2Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

1 ADDITIONAL INFORMATION ON THE
HIGH-DIMENSIONAL BENCHMARK
FUNCTION TESTS

We provide definitions of the high-dimensional benchmark
functions and the implementation details of the DGS method
and the other baselines.

1.1 DEFINITIONS OF THE BENCHMARK
FUNCTIONS

To make the test functions more general, we applied the
following linear transformation to x, i.e.,

z = R(x− xopt),

where R is a rotation matrix making the functions non-
separable and xopt is the optimal state. Then we substitute
z into the standard definitions of the benchmark functions
to formulate our test problems. For notational simplicity, we
use z as the input variable in the following definitions and
omit the dependence of z on x.

• The Ellipsoidal function F1(x) is defined by

F3(x) =

d∑
i=1

106
i−1
d−1 z2i ,

where d is the dimension and x ∈ [−2, 2]d is the in-
put domain. The global minimum is f(xopt) = 0. This
represents convex and highly ill-conditioned landscapes.

• The Sharp Ridge function F2(x) is defined by

F2(x) = z21 + 100

√√√√ d∑
i=2

z2i ,

where d is the dimension and x ∈ [−10, 10]d is the
input domain. The global minimum is f(xopt) = 0. This

represents convex and anisotropic landscapes. There is
a sharp ridge defined along z22 + · · ·+ z2d = 0 that must
be followed to reach the global minimum, which creates
difficulties for optimizations algorithms.

• The Ackley function F3(x) is defined by

F3(x) =− a exp

−b
√√√√1

d

d∑
i=1

z2i


− exp

(
1

d

d∑
i=1

cos(czi)

)
+ a+ exp(1),

where d is the dimension and a = 20, b = 0.2, c = 2π
are used in our experiments. The input domain x ∈
[−32.768, 32.768]. The global minimum is f(xopt) = 0
The Ackley function represents non-convex landscapes
with nearly flat outer region. The function poses a risk
for optimization algorithms, particularly hill-climbing
algorithms, to be trapped in one of its many local minima.

• The Rastrigin function F4(x) is defined by

F4(x) = 10d+

d∑
i=1

[z2i − 10 cos(2πzi)], (1)

where d is the dimension and x ∈ [−5.12, 5.12]d is
the input domain. The global minimum is f(xopt) =
0. This function represents multimodal and separable
landscapes.

• The Schaffer function F5(x) is defined by

F5(x) =
1

d− 1

(
d−1∑
i=1

(√
si +

√
si sin2(50s

1
5
i)
))2

with si =
√
z2i + z2i+1,

where x ∈ [−100, 100]d is the input domain. The global
minimum is f(xopt) = 0. This function represents mul-
timodal and non-separable landscapes.

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

mailto:<zhangj@ornl.gov>?Subject=Your UAI 2021 paper
mailto:<tranha@ornl.gov>?Subject=Your UAI 2021 paper
mailto:<lud1@ornl.gov>?Subject=Your UAI 2021 paper
mailto:<zhangg@ornl.gov>?Subject=Your UAI 2021 paper

• The Schwefel function F6(x) is defined by

F6(x) = 418.9829d−
d∑
i=1

zi sin(
√
|zi|),

where x ∈ [−500, 500]d is the input domain.
The global minimum is f(xopt) = 0, at z =
(420.9687, · · · , 420.9687). This function represents mul-
timodal landscapes with no global structure.

1.2 EXPERIMENTAL DETAILS

1.2.1 The DGS method

There are six hyperparameters given in Algorithm 1, i.e.,
M : the number of GH quadrature points; λt: learning rate;
α: the scaling factor for the rotation ∆Ξ; r, β: the mean
and variation for sampling σ; γ: the tolerance for triggering
random perturbation. We turned off the random perturbation
by setting γ to a very small number, such that we don’t need
to worry about ∆Ξ, r and β. The rest of the hyperparameters
are set as follows.

The hyperparameters of the DGS method are fixed for the 6
test functions. Specifically, we used M = 5 GH quadrature
points. A quadratic decay schedule

λt = (λ0 − λT)

(
1− t

T

)2

+ λT ,

is used for the learning rate where the maximum number
of iterations is set to T = 200. The initial (maximum)
learning rate λ0 is set to 5% of the diagonal length of the
d-dimensional search domain, and the terminal (minimum)
learning rate λT is set to 1% of λ0. A quadratic decay sched-
ule

σt = (σ0 − σT)

(
1− t

T

)2

+ σT ,

is used for the smoothing radius where the maximum num-
ber of iterations is set to T = 200. The initial smoothing
radius σ0 is 5 times of the length of the search domain for
each variable, and the terminal smoothing radius σT is 1%
of the initial radius σ0.

1.2.2 The ES-Bpop method

ES-Bpop refers to the standard OpenAI evolution strategy
in [Salimans et al., 2017] with the a big population, i.e., the
same population size as the DGS method. The purpose of
using a big population is to compare the MC-based estimator
for the standard GS gradient and the DGS gradient given the
same computational cost. In this setting, the ES-Bpop only
has two hyperparameters, i.e., the learning rate λt and the
smoothing radius σt. We use the same decay schedules for
λ and σ as the DGS method, so the only difference between
DGS and ES-Bpop is that DGS uses the nonlocal gradient
and ES-Bpop uses the local gradient.

1.2.3 The ASEBO method

ASEBO refers to Adaptive ES-Active Subspaces for Black-
box Optimization proposed in [Choromanski et al., 2019].
This is the state-of-the-art method in the family of ES. It
has been shown that other recent developments on ES, e.g.,
[Akimoto and Hansen, 2016, Loshchilov et al., 2019], un-
derperform ASEBO in optimizing the benchmark functions.
We use the code published at https://github.com/
jparkerholder/ASEBO by the authors of the ASEBO
method. Since we use ASEBO to represent the state-of-the-
art ES method, we set the population size to the standard
value 4 + 3 log(d). Due to the use of a small population, the
smoothing radius σ needs to be small to control the variance
of the MC estimator. It turns out that σ = 0.1 works the best
for the test cases. The ASEBO code uses λt = αλt−1 to
set a learning rate decay schedule. For the six test cases, we
tune α by searching the grid {0.999, 0.99, 0.9} and choose
α = 0.99 for all the six functions. Again, due to the small
population size, the initial learning rate λ0 cannot be set to
as large as those for DGS or ES-Bpop because it will over-
shoot. Thus, we search for the initial learning rate on the
grid {0.01, 0.1, 0.5, 1.0}, and it turns out λ0 = 0.1 provides
the best performance for ASEBO for the test functions.

1.2.4 The IPop-CMA method

IPop-CMA refers to the restart covariance matrix adaptation
evolution strategy with increased population size proposed
in [Auger and Hansen, 2005]. We use the code pycma v3.0.3
available at https://github.com/CMA-ES/pycma.
The main subroutine we use is cma.fmin, in which the
hyperparameters are

• restarts=9: the maximum number of restarts with
increasing population size;

• restart_from_best=False: which point to
restart from;

• incpopsize=2: multiplier for increasing the popula-
tion size before each restart;

• σ0: the initial exploration radius is set to 1/4 of the search
domain width.

1.2.5 The Nesterov method

Nesterov refers to the random search method proposed in
[Nesterov and Spokoiny, 2017]. We use the stochastic oracle

xt+1 = xt − λtF ′(xt,ut),

where ut is a randomly selected direction and F ′(xt,ut) is
the directional derivative along ut. According to the anal-
ysis in [Nesterov and Spokoiny, 2017], this oracle is more
powerful and can be used for non-convex non-smooth func-
tions. As suggested in [Nesterov and Spokoiny, 2017], we

https://github.com/jparkerholder/ASEBO
https://github.com/jparkerholder/ASEBO
https://github.com/CMA-ES/pycma

use forward difference scheme to compute the directional
derivative. The only hyperparameter is the learning rate λt.
We use the same quadratic decay model as in DGS and the
tuned learning rate schedule is given in Table 1

Table 1: The hyperparameter values for Nesterov

λ0 λT T

Ellipsoidal 2000D 0.001 0.0001 1,000,000
Sharp-Ridge 2000D 0.001 0.0001 1,000,000
Ackley 2000D 1.0 0.001 1,000,000
Rastrigin 2000D 0.00001 0.000001 1,000,000
Schaffer 2000D 0.0001 0.0001 1,000,000
Schwefel 2000D 0.005 0.0001 1,000,000

Sphere 20D 0.01 0.001 800
Sharp-Ridge 20D 0.001 0.00001 2000
Ackley 20D 0.1 0.01 8000
Rastrigin 20D 0.001 0.0001 6000
Schaffer 20D 0.005 0.001 8000
Schwefel 20D 0.1 0.01 10000

1.2.6 The FD method

FD refers to the classical central difference scheme for local
gradient estimation. The only hyperparameter is the learning
rate λt. We use the same quadratic decay model as in DGS
and the tuned learning rate schedule is given in Table 2.

Table 2: The hyperparameter values for FD

λ0 λT T

Ellipsoidal 2000D 1.0 0.01 20
Sharp-Ridge 2000D 0.4 0.0001 60
Ackley 2000D 1.0 0.001 160
Rastrigin 2000D 0.001 0.0001 400
Schaffer 2000D 0.01 0.001 600
Schwefel 2000D 0.1 0.01 500

Sphere 20D 1.0 0.01 40
Sharp-Ridge 20D 0.4 0.0001 50
Ackley 20D 1.0 0.01 400
Rastrigin 20D 0.01 0.001 300
Schaffer 20D 0.001 0.0001 400
Schwefel 20D 0.1 0.01 500

1.2.7 The Cobyla method

Cobyla refers to Constrained Optimization By Linear Ap-
proximation optimizer [Powell, 1994]. This algorithm is
based on linear approximations to the objective function
and each constraint, and can be used for constrained prob-
lems where the derivative of the objective function is not

known. We use scipy.optimize.minimize with de-
fault hyperparameters for COBYLA implementation.

1.2.8 The Powell method

Powell is a conjugate direction method without calculat-
ing derivatives [Powell, 1964]. It performs sequential one-
dimensional minimizations along each vector of the direc-
tions set, which is updated at each iteration of the main
minimization loop. The function need not be differentiable,
and no derivatives are taken. We implement the Powell
method using scipy.optimize.minimize with de-
fault hyperparameter setting in scipy.

1.2.9 The DE method

DE refers to Differential Evolution method [Storn and Price,
1997] that optimizes a problem by iteratively trying to
improve a candidate solution with regard to a given measure
of quality. DE method is stochastic in nature to find the
minimum, and can search large areas of candidate space,
but often requires larger numbers of function evaluations
than conventional gradient-based techniques. We use the
scipy.optimize.differential_evolution
implementation and default hyperparameters.

1.2.10 The PSO method

PSO refers to Particle Swarm Optimization method
[Kennedy and Eberhart, 1995], which solves a problem
by having a population of candidate solutions, here dubbed
particles, and moving these particles around in the search-
space according to simple mathematical formulae over the
particle’s position and velocity. PSO is one of classical
evolutionary algorithm, which means it does not require
that the optimization problem be differentiable. We use
the code PYSWARMS [Miranda, 2018] available at https:
//github.com/ljvmiranda921/pyswarms . The
hyperparameters are

• n_particle=100: the number of particle

• c1=0.5,c2=0.3,w=0.9: PYSWARMS option pa-
rameters

1.2.11 The TuRBO method

TuRBO refers to Trust Region Bayesian optimization [Eriks-
son et al., 2019] which is the state-of-the-art Bayesian op-
timization method. We use the code published at https:
//github.com/uber-research/TuRBO by the au-
thors. The hyperparameters of TuRBO are listed as follows:

• n_init=10: number of initial bounds from an symmet-
ric Latin hypercube design

https://github.com/ljvmiranda921/pyswarms
https://github.com/ljvmiranda921/pyswarms
https://github.com/uber-research/TuRBO
https://github.com/uber-research/TuRBO

• n_trust_regions=5: number of trust regions

• batch_size=10: how large batch size TuRBO uses

• max_cholesky_size=2000: switch from Cholesky
to Lanczos

• n_training_steps=50: number of steps of ADAM
to learn the hyperparameters

1.3 ADDITIONAL EXPERIMENTS ON
LOW-DIMENSIONAL CASES

Besides high-dimensional problems, it is also natural to
compare the performance of the DGS method with the other
baselines in solving relatively low-dimensional problems.
To this end, we conduct another set of tests for the functions
in 20-dimensional spaces. The hyperparameters used for the
20D tests are also given in Section 1. The main results are
given in Figure 1. We have the following observations by
comparing the 2000D and 20D results and hyperparameter
values used for DGS and the baselines.

The DGS method can use more aggressive learning rate
schedules to accelerate convergence. This is due to the good
smoothing effect of the DGS gradient and the high accuracy
of the DGS estimator. For example, the Ackley function
has a very large and flat outer-region, and the convergence
speed depends on how fast an optimizer can go through
the flat region and get to the mode containing the global
minimum. DGS can use a very large initial learning rate
e.g., λ0 = 8000 for the 2000D case, without worry about
overshooting, because its cosine distance is small and the
variance of the DGS estimator is also small. In compari-
son, ES-Bpop, Nesterov and FD need to use much smaller
learning rates to avoid overshooting; and ES-Bpop performs
better than Nesterov and FD due to the use of a relatively
large population. Another reason why Nesterov and FD
need to use smaller learning rates is that the local deriva-
tives/gradients of some test functions are very fluctuating,
e.g., Schaffer and Rastrigin, and both methods do not pro-
vide sufficient smoothing effect to reduce the fluctuation.

The advantage of the DGS in the 20D case is not as sig-
nificant as in the 2000D case. For example, IPop-CMA
outperforms DGS in minimizing the 20D Ackley function.
The convergence speed of IPop-CMA type methods depends
on how fast samples can be dropped in the mode containing
the global minimum. The flat outer-region of 20D Ackley
is much smaller than that of the 2000D Ackley, so that it
is easier for IPop-CMA to have a sample dropped in the
mode containing the global minimum. For the Sharp Ridge
function, FD outperforms DGS because the sharp ridge de-
fined by x22 + · · · + x2d = 0 is easier to follow in the 20D
space. The landscapes without any global structures, e.g.,
the Schwefel function, is still difficult to minimize in 20D
cases.

2 ADDITIONAL INFORMATION ON THE
CONSTRAINED TOPOLOGY
OPTIMIZATION

2.1 TOPOLOGY OPTIMIZATION
MATHEMATICAL FORMULATION

Here we provide more background information about the
topology optimization (TO) problem tested in §4.2. TO is
a mathematical method that aims to optimize material lay-
out defined on a design domain Ω with given boundary
conditions, loads and volume constraint, to minimize struc-
tural compliance C, or equivalently, the least strain energy.
In this work, we use the modified Solid Isotropic Mate-
rial with Penalization (SIMP) approach [Sigmund, 2007]
with design-based approach to topology optimization, where
each element e is assigned a density xe that determines its
Young’s modulus Ee:

Ee(xe) = Emin + xpe(E0 − Emin), xe ∈ [0, 1] (2)

whereE0 is the stiffness of the material,Emin is a very small
stiffness assigned to void regions to prevent the stiffness
matrix becoming singular. The modified SIMP approach
differs from the classical SIMP approach [Bendsøe, 1989],
where elements with zero stiffness are avoided by using a
small value. The modified mathematical formulation of the
considered TO problem is

min
x

: C(x) = UTKU =

N∑
e=1

Ee(xe)u
T
e k0ue

s.t. : V (x)/V0 ≤ ζ
: KU = F

: 0 ≤ x ≤ 1

(3)

where x is the vector of design variables, C is the structural
compliance, K is the global stiffness matrix, U and F are
the global displacement and force vectors respectively, ue
and ke are the element displacement vector and stiffness
matrix respectively, N is the number of elements used to
discretize the design domain Ω, V (x) and V0 are the mate-
rial volume and design domain volume respectively, ζ is the
prescribed volume fraction, and p is the penalization power
coefficient (typically p = 3).

2.2 THE TOPOLOGY OPTIMIZATION PROBLEM

The experimental TO example in Section 4.2 is a typical
structural bridge design problem. Our goal is to minimize
the structural compliance subject to unit uniform pressure
on the top of the design domain Ω, and two fixed supports
on the bottom of the design domain Ω, as shown in Fig.2.
The volume fraction is ζ = 0.2. The design domain Ω is
discretized by 120×40 elements. Using symmetric boundary

Figure 1: Comparison of the loss decay w.r.t. # function evaluations for the 6 benchmark functions in 20-dimensional spaces.
Each curve was generated by averaging 20 independent trials with random initialization. The global minimum is F (x) = 0
for all the six functions.

condition, we reduce the whole design domain into an half
to save computational cost. As a result, there are total 2400
(60×40) design variables.

Figure 2: Illustration of the structural bridge design

There has been several mathematical challenges in solv-
ing TO problem, as shown in Eq.(3), which can be briefly
summarized as follows:

• Rigid constrained optimization. Typically, design crite-
ria are specified by user to satisfy multiple constraints
including material volume fraction, maximum stress and
geometry constraints, so that meaningful structures can
be obtained.

• High dimensional design space. This is because each
element is identified as an independent design variable

in TO, shown in Eq.(3). In most cases, it requires a large
number of elements to ensure the accuracy of finite ele-
ment method (FEM) and to perform a clear final topol-
ogy.

• Highly nonconvex propriety. TO introduces the SIMP
approach to convert the 0-1 integer optimization into
continuous optimization but it also changes TO to a
difficult multi-modal optimization problem where a large
number of local minima exist.

• Optimum depends on the initial design. TO has chal-
lenges to pursue global minima [Bendsoe and Sigmund,
2013] due to a limited capability of global exploration
in sensitivity analysis when using adjoint methods or
finite difference methods. The different initial guesses
therefore finally lead to different local minima.

These challenges make a few optimization methods infea-
sible in solving TO problem well. Bayesian optimization
(BO) is good at pursuing global minima but has limitations
in high-dimensional problems (D > 1000). While many
improvements have been proposed Wu et al. [2017], Eriks-
son et al. [2018] to mitigate this challenge, the constraints
in BO framework is still a critical issue [Gardner et al.,
2014], specifically in practical implementation. The widely

used training algorithms including SGD, Adam, RMSprop,
etc., are inapplicable to TO problems without handling con-
straints.

2.3 THE CONSTRAINED OPTIMIZATION FOR
TOPOLOGY OPTIMIZATION

Method of Moving Asymptotes (MMA) [Svanberg, 1987]
algorithm is the state-of-the-art optimizer, which has been
demonstrated to be versatile and well suited for wide range
TO problems. The basic of MMA aims at solving general
nonlinear constrained optimization problem:

min
x

: f0(x) + a0z +

m∑
i=1

(ciyi +
1

2
diy

2
i)

s.t. : fi(x)− aiz − yi ≤ 0, i = 1, ...,m

: x ∈ X,y ≥ 0, z ≥ 0

(4)

Here, X =
{
x ∈ Rn|xmin

j ≤ xj ≤ xmax
j , j = 1, ..., n

}
,

where xmin
j and xmax

j are given real numbers which satisfy
xmin
j < xmax

j for all j, f0, f1, ..., fm are given, continuously
differentiable, real-valued functions on X , a0, ai, ci and di
are given real numbers which satisfy a0 > 0, ai ≥ 0, ci ≥ 0
and di ≥ 0 and ci + di > 0 for all i and also aici > a0 for
all i with ai > 0.

MMA is a gradient-based method for solving Eq.(4) using
the following steps. In each iteration, given the current point
(x(k),y(k), z(k)), MMA generates an approximating sub-
problem, where the functions fi(x) are replaced by convex
functions f̂ (k)i (x). The approximating functions are deter-
mined by the gradient information at the current iteration
point and moving asymptotes parameters which are updated
in each iteration based on information from previous itera-
tion points. The next iteration point (x(k+1),y(k+1), z(k+1))
is obtained by solving the subproblem, which looks as fol-
lows:

min
x

: f̂
(k)
0 (x) + a0z +

m∑
i=1

(ciyi +
1

2
diy

2
i)

s.t. : f̂
(k)
i (x)− aiz − yi ≤ 0, i = 1, ...,m

: α
(k)
j ≤ xj ≤ β(k)

j , j = 1, ...,m

: yi ≥ 0, i = 1, ...,m

: z ≥ 0

(5)

where the approximating functions f̂ (k)i (x) are chosen as

f̂
(k)
i (x) =

n∑
j=1

(
p
(k)
ij

u
(k)
j − xj

+
q
(k)
ij

xj − l(k)j

)
+ r

(k)
i , (6)

for i = 0, 1, ...,m, where

p
(k)
ij = (u

(k)
j − x

(k)
j)2

(
1.001

(
∂fi
∂xj

(x(k))

)+

+ 0.001

(
∂fi
∂xj

(x(k))

)−
+

10−5

xmax
j − xmin

j

)
,

q
(k)
ij = (x

(k)
j − l

(k)
j)2

(
0.001

(
∂fi
∂xj

(x(k))

)+

+ 1.001

(
∂fi
∂xj

(x(k))

)−
+

10−5

xmax
j − xmin

j

)
,

r
(k)
i = f̂i(x

(k))−
n∑
j=1

(
p
(k)
ij

u
(k)
j − xj

+
q
(k)
ij

xj − l(k)j

)
.

Here,
(
∂fi
∂xj

(x(k))
)+

denotes the largest of the two numbers

∂fi
∂xj

(x(k)) and 0, while
(
∂fi
∂xj

(x(k))
)−

denotes the largest

of the two numbers − ∂fi
∂xj

(x(k)) and 0.

The central advantage of MMA in TO is the use of sepa-
rable and convex approximations. The separable property
means that the necessary conditions of the subproblems
do not couple the primary variables and the latter means
that dual methods or primal-dual methods can be employed
[Bendsoe and Sigmund, 2013]. Combined both two can sig-
nificantly reduce the computational cost needed to solve
the subproblems, particularly for problems with multiple
constraints.

2.4 EXPERIMENTAL DETAILS

2.4.1 Implementation of the DGS method in TO

We solve the TO design problem shown in Fig. 2 by inserting
the DGS gradient into the MMA optimizer, as discussed in
main paper. Our idea is to exploit the nonlocal exploration
ability of the DGS gradient to find a better design. The
implementation of the DGS algorithm for TO problem can
be summarized as the following steps:

• Make an initial design using Gaussian random noise.

• For the given distribution of density, compute the dis-
placement using FEM.

• Compute the objective, typically the compliance of this
design, and the associated gradient with respect to design
changes using DGS. If the change is smaller than the
specific threshold, stop the iteration, otherwise continue.

• Compute the update of the density variable, by solving
the MMA approximation subproblem using a dual or
primal-dual method.

• Repeat the iteration loop.

Our implementation is built on the python implementation
published by [Andreassen et al., 2011] at http://www.
topopt.mek.dtu.dk/Apps-and-software and
we choose density-based filtering with filter radius fr=1.5 to
avoid the numerical instability like checkerboard problem.
For MMA optimizer, we use the python implementation
from https://github.com/arjendeetman/
TopOpt-MMA-Python with the default hyperparameters
defined in MMA. To reduce the computational cost, we use
mpi4py to parallelly run the TO example on multiple cores
workstation.

2.4.2 hyperparameters of each method in TO

The hyperparameters of DGS in TO design problem are
M = 5, α = 0.1, r = 0.25, β = 0.2 and γ = 0.01. Note
that there is no learning rate λ in this case because the up-
date step of design variable is achieved by MMA optimizer.
The hyperparameters for other compared methods include:
(1) ES-Bpop: σ = 0.25 and λt = 0.99λt−1 with λ0 = 0.1;
(2) ASEBO: the population size is 14 ≈ 4 + 3 log(2400),
σ = 0.1 and λt = 0.99λt−1 with λ0 = 0.1; (3) IPop-
CMA: restarts=9, restart_from_best=False,
incpopsize = 2, σ0 = 0.25; (4) Nesterov: λt =
0.99λt−1 with λ0 = 0.01; (5) FD: λt = 0.99λt−1 with
λ0 = 0.01; (6) Cobyla: the default setting in scipy (7)
Powell: the default setting in scipy; (8) DE: the default
setting in scipy; (9) PSO: the number of particles is 100;
(10) TuRBO: the number of trust regions is 5, the batch size
is 10, the initial sample size is 10.

2.5 ADDITIONAL DISCUSSION

The results demonstrate that the IPop-CMA underperforms
all other methods since it fails to solve such constrained
optimization well. The main challenge for IPop-CMA is its
limitation in efficiently handling constraints because of its
sample-based update mechanism, and in effectively incorpo-
rating with other optimizer, such as MMA. To satisfy the vol-
ume constraint in TO problem, IPop-CMA uses Lagrangian
penalty as regularization term to enforce the constraints but
loses its own capability to seek optimization. The regular-
ization coefficient is highly sensitive to balance the penalty
term and loss function in pycma (v3.0.3 available at https:
//github.com/CMA-ES/pycma) with constraints. In
other words, it is difficult for IPop-CMA to address con-
strained optimization by using a simple penalty approach.
This has also been the challenges of CMA-based approaches
in complex real-world engineering applications.

3 ADDITIONAL INFORMATION ON THE
HYDROLOGY INFERENCE EXAMPLE

We provide detailed information on the implementation of
the hydrology example. We consider a 2D square aquifer
domain, denoted by D = [0, 1] × [0, 2]. The domain the
aquifer is discritized into a 100 × 200 mesh. The partial
differential equation (PDE) governing the groundwater flow
is

−∇ · (a(x)∇u(x)) = 0 for x ∈ (0, 1)× (0, 2)

∇u(x) = 0 for x2 = 0 and x2 = 2

u(x) = 10 for x1 = 0

u(x) = 100 for x1 = 1,

where u(x) is the hydraulic head field and a(x) is the hy-
draulic conductivity field. The no-flow boundary condition
∇u = 0 is imposed to the top (x2 = 2) and bottom (x2 = 0)
boundaries, and the constant hydraulic head condition is ap-
plied to the left (x1 = 0) and right (x1 = 1) boundary. The
goal is to infer a(x) using the sampled data of u(x).

The ground-truth of the hydraulic conductivity field (shown
in Figure 7 (Left)) is generated by a sequential Gaussian
sampling. We use a full connected neural network (FNN)
to approximate the logarithm of a(x), i.e., FNN(x;w) ≈
log(a(x)). The loss function is defined by

Loss =
1

S

S∑
s=1

[
MODFLOW(FNN(x))(xs)− u(xs)

]2
,

where S = 50, and u(xs) for s = 1, . . . , S are the hydraulic
head data sampled at 50 random locations. The simulator
MODFLOW(·) maps the predicted hydraulic conductivity
field FNN(x)) to the hydraulic head by solving the above
PDE.

The hyperparameters are set as follows. DGS: M = 5, α =
0.1, r = 0.1, β = 0.1, γ = 0.001 and λt = 0.99λt−1 with
λ0 = 0.1; ES-Bpop: σ = 0.1 and λt = 0.99λt−1 with λ0 =
0.1; ASEBO: σ = 0.1, λt = 0.99λt−1 with λ0 = 0.1; IPop-
CMA: restarts=9, restart_from_best=False,
incpopsize=2, σ0 = 0.3; Nesterov: λt = 0.99λt−1
with λ0 = 0.05; FD: λt = 0.99λt−1 with λ0 = 0.05;
Cobyla: the default hyperparameters in scipy Powell: the
default hyperparameters in scipy; (8) DE: the default hy-
perparameters in scipy; (9) PSO: the number of particles
is 100; (10) TuRBO: the number of trust regions is 5, the
batch size is 10, the initial sample size is 10.

http://www.topopt.mek.dtu.dk/Apps-and-software
http://www.topopt.mek.dtu.dk/Apps-and-software
https://github.com/arjendeetman/TopOpt-MMA-Python
https://github.com/arjendeetman/TopOpt-MMA-Python
https://github.com/CMA-ES/pycma
https://github.com/CMA-ES/pycma

4 ADDITIONAL DISCUSSION ON THE
ASYMPTOTIC CONSISTENCY OF THE
DGS GRADIENT

We provide additional results to support the discussion on
the asymptotic consistency. Recall that F ∈ C1,1(Rd) if
there exists L > 0 such that ‖∇F (x + ξ) − ∇F (x)‖ ≤
L‖ξ‖, ∀x, ξ ∈ Rd. Also, recall the error of one-
dimensional GH quadrature

∣∣(D̃M −D)[Gσ]
∣∣ ≤ C M !

√
π

2M (2M) !
, (7)

where C > 0 is a constant independent of M and σ.
Given a unit vector ξ ∈ Rd, we define ∇ξF (x) the par-
tial derivatives of F at x ∈ Rd in direction ξ. We say
F is a strongly convex function if there exists a positive
number τ such that for any x, ξ ∈ Rd, F (x + ξ) ≥
F (x) + 〈∇F (x), ξ〉+ τ

2‖ξ‖
2. We call τ the convexity pa-

rameter of F . We prove below the estimate on the difference
between DGS estimator ∇̃Mσ,Ξ[F] and ∇F .

Proposition 1 Let Ξ = {ξ1, . . . , ξd} be a set of orthonor-
mal vectors in Rd and F be a function in C1,1(Rd). Then

‖∇̃Mσ,Ξ[F](x)−∇F (x)‖2 (8)

≤2C2πd(M !)2

4M ((2M) !)2
σ4M−2 + 32dL2σ2. (9)

Proof. First, adapting [Nesterov and Spokoiny, 2017,
Lemma 3] to 1-dimensional Gaussian smoothing, for any ξ
being a unit vector in Rd, there holds

|D [Gσ(0 |x, ξ)]−∇ξF (x)| ≤ 4σL. (10)

From (7) and (10), we have∣∣∣D̃M [Gσ(0 |x, ξi)]−∇ξiF (x)
∣∣∣2

≤ 2
∣∣∣(D̃M −D)[Gσ]

∣∣∣2 + 2 |D [Gσ]−∇ξiF (x)|2

≤ 2C2(M !)2π

4M ((2M) !)2
σ4M−2 + 32σ2L2, ∀i ∈ {1, . . . , d}.

(11)

Summing (11) from i = 1 to d gives (9).

Let N be the total number of function evaluations. In
our DGS algorithm, N = Md. An immediate conse-
quence of Proposition 1 is that given a positive ε, σ ≤
ε/(4L

√
d) and N ≥ d log(2d/ε2) are sufficient to obtain

‖∇̃Mσ,Ξ[F] − ∇F‖ ≤ ε. Now, we compare these with the
condition onN such that ‖g(x)−∇F (x)‖ ≤ ε, where g(x)
is an MC-based gradient estimator for ∇Fσ. For simplic-
ity, we focus on the condition for ‖g(x) −∇Fσ(x)‖ < ε,
which is actually weaker because it does not count for the

discrepancy between ∇Fσ(x) and ∇F (x). Let Var[g(x)]
be the variance of g, applying Chebyshev inequality, one
has

P (‖g(x)−∇Fσ(x)‖ > ε) ≤ d Var[g(x)]

ε2
,

therefore, ‖g(x)−∇Fσ(x)‖ ≤ ε with probability exceed-
ing 1 − η given that Var[g(x)] < ηε2/d. It can be shown
for forward finite-difference MC gradient estimator that
Var[g(x)] ' ‖∇F (x)‖2/N, see [Berahas et al., 2019], thus,
this basic estimator requires N = O(d‖∇F (x)‖2

ηε2). It is pos-
sible to reduce the number of function evaluations with
various variance reduction techniques, such as antithetic
sampling, orthogonalization, control variates. In particular,
if the variance of MC estimator is κVar[g(x)] instead of
Var[g(x)] for some κ < 1, then N = O(κd‖∇F (x)‖2

ηε2) is
sufficient. However, the proven rate of reduction κ is either
independent or O(1) on δ and ε for most variance reduction
techniques, see, e.g., [Choromanski et al., 2018, Tang et al.,
2019], in which cases, the theoretical dependence of N on
d and ε cannot be relaxed.

With the gradient estimate in Proposition 1, we proceed
to establish an error analysis for DGS in local regime. We
show here a convergence rate of our method in optimizing
strongly convex functions.

Proposition 2 Let F be a strongly convex function in
C1,1(Rd),x∗ be the global minimizer of F and the sequence
{xt}t≥0 be generated by Algorithm 1 with λ = 1/(8L).
Then, for any t ≥ 0,

F (xt)− F (x∗) (12)

≤1

2
L

[
δσ +

(
1− τ

16L

)t
(‖x0 − x∗‖2 − δσ)

]
. (13)

where

δσ =

(
128

τ2
+

16

τL

)
L2dσ2 +

(
8

τ2
+

1

2τL

)
C2(M !)2πd

4M ((2M) !)2
σ2.

(14)

Proof. First, we derive an upper bound for ‖∇̃Mσ,Ξ[F](x)‖.
Recall

‖∇̃Mσ,Ξ[F](x)‖2 =

d∑
i=1

∣∣∣D̃M [Gσ(0 |x, ξi)]
∣∣∣2 . (15)

Each term inside this sum can be bounded as∣∣∣D̃M [Gσ(0 |x, ξi)]
∣∣∣2 ≤ 2 |D [Gσ(0 |x, ξi)]|2

+ 2
∣∣∣D̃M [Gσ(0 |x, ξi)]−D [Gσ(0 |x, ξi)]

∣∣∣2
≤ 64σ2L2 + 4|∇ξiF (x)|2 +

2C2(M !)2π

4M ((2M) !)2
σ4M−2.

Plugging this into (15) gives

‖∇̃Mσ,Ξ[F](x)‖2 ≤ 64dL2σ2 (16)

+ 4

d∑
i=1

|∇ξiF (x)|2 +
2C2πd(M !)2

4M ((2M) !)2
σ4M−2. (17)

Denote rt = ‖xt − x∗‖. Then

r2t+1 =‖xt − λ∇̃Mσ,Ξ[F](xt)− x∗‖2 (18)

= r2t − 2λ〈∇̃Mσ,Ξ[F](xt),xt − x∗〉

+ λ2‖∇̃Mσ,Ξ[F](xt)‖2

= r2t − 2λ〈∇̃Mσ,Ξ[F](xt)−∇F (xt),xt − x∗〉
− 2λ〈∇F (xt),xt − x∗〉

+ 4λ2
d∑
i=1

|∇ξiF (xt)|2 + 64λ2L2dσ2

+
2C2λ2(M !)2πd

4M ((2M) !)2
+ σ4M−2.

We proceed to bound the right hand side of (18). First, since
F is strongly convex,

−2λ〈∇F (xt),xt − x∗〉 ≤ 2λF (x∗)

− 2λF (xt)− λτ‖x∗ − xt‖2.
(19)

On the other hand,

− 2λ〈∇̃Mσ,Ξ[F](xt)−∇F (xt),xt − x∗〉

≤ 2λ

τ
‖∇̃Mσ,Ξ[F](xt)−∇F (xt)‖2 +

λτ

2
‖xt − x∗‖2

(9)
≤ 4λ

τ
· C

2πd(M !)2

4M ((2M) !)2
σ4M−2 +

64λ

τ
L2dσ2 +

λτ

2
‖xt − x∗‖2.

(20)

Applying an estimate for convex, C1,1-functions, see, e.g.,
[Nesterov, 2004], gives

4λ2
d∑
i=1

|∇ξiF (xt)|2 = 4λ2‖∇F (xt)‖2

≤ 8λ2L(F (xt)− F (x∗)). (21)

Combining (18)–(21), there holds

r2t+1≤ r2t − (2λ− 8λ2L)(F (xt)− F (x∗))

+

(
64λ

τ
+ 64λ2

)
L2dσ2

+

(
4λ

τ
+ 2λ2

)
C2(M !)2πd

4M ((2M) !)2
σ4M−2.

(22)

Since F is a strongly convex function, for λ = 1/(8L) we
have that

−(2λ−8λ2L)(F (xt)−F (x∗)) ≤ τ

16L
‖xt−x∗‖2. (23)

Assuming σ < 1. We derive from (22), (23) and (14) that
r2t+1 − δσ ≤

(
1− τ

16L

)
(r2t − δσ), which yields

r2t − δσ ≤
(

1− τ

16L

)t
(r20 − δσ).

Note that F (xt) − F (x∗) ≤ 1
2L‖xt − x

∗‖2, since f ∈
C1,1(Rd), we arrive at the conclusion. �

It is worth remarking a few things on the above proposition.
First, we obtain the global linear rate of convergence with
DGS, which is expected for strongly convex functions. Sec-
ond, the result allows random perturbation of Ξ as long as
Ξ remains orthonormal. Finally, this proposition proves the
scalability of our algorithm in the strongly convex setting.
In particular, to guarantee F (xt)− F (x∗) ≤ ε, from error
estimate (13), we need to choose

σ ≤ O
(√

ε

d

)
, # fun evals = dM ≥ O

(
d log

(
d

ε

))
,

iterations = O

(
log

1

ε

)
.

This indicates that the number of iterations required by our
approach is completely independent of the dimension, while
the total number of function evaluations is only slightly
higher than nonparallelizable random search approach, e.g.,
[Nesterov and Spokoiny, 2017, Bergou et al., 2019].

The above discussion shows that the performance of the
DGS method is consistent with the local gradient estimation
methods when σ is small, which paves the way for further
analysis in the nonlocal regime for which the DGS gradient
is designed for.

References

Y. Akimoto and N. Hansen. Projection-based restricted
covariance matrix adaptation for high dimension. In
Proceedings of the Genetic and Evolutionary Compu-
tation Conference 2016, GECCO ’16, page 197–204.
Association for Computing Machinery, 2016. ISBN
9781450342063.

Erik Andreassen, Anders Clausen, Mattias Schevenels,
Boyan S Lazarov, and Ole Sigmund. Efficient topology
optimization in matlab using 88 lines of code. Structural
and Multidisciplinary Optimization, 43(1):1–16, 2011.

A. Auger and N. Hansen. A restart cma evolution strategy
with increasing population size. In 2005 IEEE Congress
on Evolutionary Computation, volume 2, pages 1769–
1776 Vol. 2, 2005.

M. Bendsøe. Optimal shape design as a material distribution
problem. Structural optimization, 1(4):193–202, 1989.

Martin Philip Bendsoe and Ole Sigmund. Topology opti-
mization: theory, methods, and applications. Springer
Science & Business Media, 2013.

A. S. Berahas, L. Cao, K. Choromanskiv, and K. Schein-
berg. A theoretical and empirical comparison of gra-
dient approximations in derivative-free optimization.
arXiv:1905.01332, 2019.

E. Bergou, E. Gorbunov, P. Richtárik, and P. Richtárik.
Stochastic three points method for unconstrained smooth
minimization. arXiv: 1902.03591, 2019.

K. Choromanski, M., V. Sindhwani, R. Turner, and
A. Weller. Structured evolution with compact architec-
tures for scalable policy optimization. International Con-
ference on Machine Learning, pages 969–977, 2018.

K. Choromanski, A. Pacchiano, J. Parker-Holder, Y. Tang,
and V. Sindhwani. From complexity to simplicity: Adap-
tive es-active subspaces for blackbox optimization. In
Advances in Neural Information Processing Systems 32,
pages 10299–10309. Curran Associates, Inc., 2019.

D. Eriksson, M. Pearce, J. Gardner, R. Turner, and
M. Poloczek. Scalable global optimization via local
bayesian optimization. In Advances in Neural Informa-
tion Processing Systems, pages 5496–5507, 2019.

David Eriksson, Kun Dong, Eric Hans Lee, David Bindel,
and Andrew Gordon Wilson. Scaling gaussian process
regression with derivatives. In NeurIPS, 2018.

J. Gardner, M. Kusner, Z. Xu, K. Weinberger, and J. Cun-
ningham. Bayesian optimization with inequality con-
straints. In ICML, pages 937–945, 2014.

James Kennedy and Russell Eberhart. Particle swarm opti-
mization. In Proceedings of ICNN’95-International Con-
ference on Neural Networks, volume 4, pages 1942–1948.
IEEE, 1995.

I. Loshchilov, T. Glasmachers, and H. Beyer. Large scale
black-box optimization by limited-memory matrix adap-
tation. IEEE Transactions on Evolutionary Computation,
23(2):353–358, 2019.

L. Miranda. Pyswarms: a research toolkit for particle swarm
optimization in python. Journal of Open Source Software,
3(21):433, 2018.

Yurii Nesterov. Introductory Lectures on Convex Optimiza-
tion. Springer US, 2004.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-
free minimization of convex functions. Foundations of
Computational Mathematics, 17(2):527–566, 2017.

M. Powell. An efficient method for finding the minimum of
a function of several variables without calculating deriva-
tives. The computer journal, 7(2):155–162, 1964.

Michael JD Powell. A direct search optimization method
that models the objective and constraint functions by
linear interpolation. In Advances in optimization and
numerical analysis, pages 51–67. Springer, 1994.

Tim Salimans, Jonathan Ho, Xi Chen, and Ilya Sutskever.
Evolution strategies as a scalable alternative to reinforce-
ment learning. arXiv preprint arXiv:1703.03864, 2017.

Ole Sigmund. Morphology-based black and white filters for
topology optimization. Structural and Multidisciplinary
Optimization, 33(4-5):401–424, 2007.

R. Storn and K. Price. Differential evolution–a simple and
efficient heuristic for global optimization over continuous
spaces. J. of global optimization, 11(4):341–359, 1997.

K. Svanberg. The method of moving asymptotes—a new
method for structural optimization. International J. for
numerical methods in engineering, 24(2):359–373, 1987.

Yunhao Tang, Krzysztof Choromanski, and Alp Kucukelbir.
Variance reduction for evolution strategies via structured
control variates. ArXiv, abs/1906.08868, 2019.

Jian Wu, Matthias Poloczek, Andrew Gordon Wilson, and
Peter I Frazier. Bayesian optimization with gradients. Ad-
vances in Neural Information Processing Systems, 2017:
5268–5279, 2017.

	Additional information on the high-dimensional benchmark function tests
	Definitions of the benchmark functions
	Experimental details
	The DGS method
	The ES-Bpop method
	The ASEBO method
	The IPop-CMA method
	The Nesterov method
	The FD method
	The Cobyla method
	The Powell method
	The DE method
	The PSO method
	The TuRBO method

	Additional experiments on low-dimensional cases

	Additional information on the constrained topology optimization
	Topology optimization mathematical formulation
	The topology optimization problem
	The constrained optimization for topology optimization
	Experimental details
	Implementation of the DGS method in TO
	hyperparameters of each method in TO

	Additional discussion

	Additional information on the hydrology inference example
	Additional discussion on the asymptotic consistency of the DGS gradient

