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SUPPLEMENTARY MATERIALS

A: PROOFS

In this section, we show proofs of the results stated in the
paper.

Proof of Theorem[I} Let z = g(x) and Z = ¢g(X). Notice
Equatlonllmphes F(Y|x) = F(Y|g(x)) = F(Y|z), and
thus

FY[X) = F(Y]g(X))

~ Fx y then, forevery 0 <a <1,

=F(Y|2) M
Thus, if (X, Y)
P(PIT(Y,X) < a) = P(F(Y|X) < a)

P(F(Y|X) < a|Z = 2)f(2)dz

Proof of Theorem[2} Assume that f(y|x) = f(
lows that, for any 0 < o < 1,

y|x). It fol-

P (PIT(Y; X) < alx) =P (Fyx(Y) < a|x)

:]P(Y<F VLo )|x>
—Fy\x< Y|x( ))

:Of7

which shows that the distribution of PIT(Y;X),
conditional on x, is uniform. Now, assume that
P (PIT(Y; X) < alx) = « for every 0 < a < 1
and let F =/ F(y'|x)dy’. Then

It follows that Fy i (7% (a) ) = a, and thus

Fyi(a) = Fyl () Ya € (0,1).
The conclusion follows from the fact that the CDF charac-
terizes the distribution of a random variable. O

Proof of Corollary[l] Notice that r(x) = E[Z%|x] =
P (PIT(Y; X) < a|x). It follows that r,(x) = « for ev-
ery a € (0, 1) if, and only if, the distribution of PIT(Y; X),
conditional on X, is uniform over (0, 1). The conclusion
follows from Theorem 2] O

Theorem 4 (HPD values are insensitive to covariate trans-
formations). Let (X,Y) ~ Fx v. If there exists a func-
tion g : X — Z such that f(y|x) = f(ylg(x)), then
HPD(Y;X) ~ Unif(0,1).

Proof of Theorem|4} Under the assumption we can rewrite
the HPD value as:

HPD(y, x) — / £ g(x))dy’

Y f(y'9(x)>f(ylg(x))

- / £('|2)dy’ = HPD(y,2).
y': f(y'|z)>f(y|z)
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with g(x) = z. Following the proof structure by Harri{
son et al.| [2015]] closely, we define the random variable
&2,y = HPD(z,y), equipped with the probability density
function h : (£ x Y) — R. Dropping the subscripts for
simplicity, let &* = HPD(z*,y*) the HPD value of a spe-
cific pair (z*,y*); £* is the probability mass of f above the
level set f(y*|z* = g(x*)). Without loss of generality, if
we show that 2(£*) = 1 we can conclude that £(y, z) is uni-
formly distributed U0, 1]. Using the fundamental theorem
of calculus we can write:

Algorithm 3 P-values for Global Coverage Test

Require: conditional density model f; test data {Xi,Yitie1s
regression estimator 7; number of null training samples B
Ensure: estimated p-value p(x) across all x € X
1: // Compute test statistic over X, ..., X,;:
2: Compute values PIT(Y7;X4),...,PIT(Y,; X,,)
3: G < grid of v values in (0, 1).
4: for o in G do
5 Compute indicators 2, ..., Z%
6: Train regression method 7, on {X;, Z*}7 ,
7: end for
8: Compute test statistic S = L > | T(X;)
9: // Recompute test statistic under null distribution:

10: forbinl,..., B do
11: Draw U, ..., U ~ Unif[0, 1].
12: for a.in G do
13: Compute indicators {Z,’ ®) = ]I(U(b) <o),
14: Train regression method ’\é) on {X;, Zib)i 1
15: end for ’
16: Compute T(b) Z A<b) 2 for
‘ acG
1=1,...,n
17: Compute S® := 15" 7®)(X;)
18: end for
B
19: return p(x) : Z (S < S(b))

b:

e = (;z* [ i
85* / [, 06 2) Qi e
= 5 [ ¥t - €)ar(z)
- g [ w2 - sl seyas
=g [, €SI = e =
where @ is the Heavyside function, which is 1 when the
argument is positive and 0 otherwise. 0

Proof of Theorem[3] Under the null hypothesis Hy(x) for
any x € X we have that:

HPD(y;x) = / Yy @

v F(y'1x)> fly|x)

= / f'[x)dy. (3
Y f(y' %) > f(yx)

Applying the results about uniformity of HPD for f(-|x)
from |Harrison et al.|[2015] Section A.2] (also reproduced in
the proof of Theorem[)) proves the theorem.

O

B: GLOBAL COVERAGE TEST

Algorithm [3|describes our procedure for testing global con-
sistency (see Definition 1 in the paper) using a Monte Carlo
sampling strategy.

C: EXAMPLE 1: OMITTED VARIABLE BIAS IN
CDE MODELS

In this section we s/lzow the results of the local test on Ex-
ample 1 for model f,, which passes the global test.

Figure[7] right panel, shows P- -values from LCTs across the
feature space for the model fg Unlike model fl, which ‘was
fit on X alone, f2 was fit on both X; and X5. Hence, f2 is
able to pass all tests, with local P-P plots indicating a good
fit (with two examples shown in the Figure[/] left panel).
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Figure 7: P-values for LCTs for fg in Example 1 suggest an
adequate fit everywhere in the feature space; local coverage plots
at selected points also suggest a good fit.
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K 2 3 4 5

6 7 8 9 10

KL loss | -0.729 | -0.885 | -0.915 | -0.906

-0.897 | -0.917 | -0.906 | -0.911 | -0.905

Table 1: The KL divergence loss indicates that the number of mixture components in the ConvMDN approximation of the posterior in

Example 2 should be K = 7.

D: EXAMPLE 2: CONDITIONAL NEURAL
DENSITY MODELING FOR GALAXY IMAGES

Figure [§| shows the true conditional densities of the simu-
lated “redshift” Z vs. the axis ratio A of the corresponding
galaxy image.

N(0.1,0.02)

Beta(3,7)

0.6N(0.3,0.05) + 0.4N(0.7,0.05)
Beta(7,3)

Density

- S&
0.0 : .

0.0 0.2 0.4 0.6 08 1.0
Y

Figure 8: We assign a unimodal distribution of “redshift” Z
for to the galaxy population with A = 0.8, and higher, more
skewed and bimodal distributions of Z to the populations with
A=0.7,0.6,0.5.

E: EXAMPLE 3: POSTERIOR INFERENCE FOR
GALAXY IMAGES

Table[T]reports the KL divergence loss over a test set of 1000
galaxy images for a ConvMDN model with K components,
for K = 2,...,10. The KL loss indicates that K = 7 is the
optimal choice. However, in the paper we show that this
model fails to pass our GCT and therefore is not a good
approximation of the true conditional density. Figure[6]in
the paper also shows how to use our LCTs and P-P plots to
diagnose the inadequacies in the fit.

F: EXAMPLE 4: CONDITIONAL DENSITY
MODELS WITH MULTIVARIATE RESPONSE

For multivariate response Y, we can assess the quality of
fit of fthrough highest predictive density (HPD) values,
as described in Section [3.3] Our method still yields inter-
pretable diagnostics, but the interpretation of HPD values

differs from that of PIT values. If a local P-P plot shows
estimated HPD values 7, that are too high relative to a,
this suggests that the model is overdispersed relative to the
true density. HPD values that are too low could suggest an
underdispersed model, or be a symptom of model misspeci-
fication: if the estimated density is systematically biased (i.e.
not centered at the same location as the true density), the
observed values Y will disproportionately represent lower
density contours of the true density.

In this example, we draw X = (X7, X5) ~ Unif[0, 1]2, and
then define a bivariate response Y = (Y7, Y3) as follows:

N((X1, X2), I1), X, €11,2]
Yix ~ d V(X1 X2),02512), X, €[0,1]

t4 centered at (X7, X5), X, € [-1,0]

tq centered at (X7 + 1, X0 + 1), Xo €[-2,-1]

where I is the identity matrix. See Figure [9] for an illus-
tration of how the true conditional density f(y|x) varies
across the feature space. For illustration, we choose the
model f(|x) = N((x1,z2),1) in all four regions. This
model perfectly fits the true density when x5 € [1, 2], and
is misspecified in the other cases. We evaluate HPD values

at 1000 test points to run our diagnostic framework.

Figure [I0] summarizes the results of our diagnostics. First,
we perform the GCT, which rejects the global null with
p < 0.001. We then perform LCTs across the feature space
for X;; the resulting p-values are shown in the center panel.
As expected, LCTs indicate a good fit when fis correct,
and a poor fit in most regions where fis misspecified. In-
vestigating further with local P-P plots enables us to detect
overcoverage and undercoverage of HPD regions at spe-
cific locations in the feature space. Overcoverage of the true
Y by the HPD region means the a-HPD set for fis too
large, so observed HPD values are too low: this indicates
that fis overdispersed locally (as in the top right example).
Conversely, undercoverage by the HPD region means the
a-HPD set for fdoes not cover enough of the true density
mass of f, so observed HPD values are too high: this can
be caused by fbeing underdispersed or biased locally (as
in the bottom right example).
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True conditional density f

16: AYIX) = N((X1, Xa), )

fYIX) = N((X1, X2), 0.2515)

f(Y|X) = ts centered at (X1 + 1, X2+ 1)

Figure 9: The true conditional density f(y|x) has different forms in four different regions of the feature space, whereas we assume the
same model f(y|x) = N((z1,22), 1) across feature space. When X, € [1, 2], the model [ is correctly specified. When X, € [0,1],
fis overdispersed relative to the true density f. When X» € [—1, 0], fis slightly underdispersed relative to the true density f. When
Xo € [-2,-1], fis both biased and slightly underdispersed relative to the true density f.
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Figure 10: New diagnostics for Example 4. P-values for LCTs for f indicate a poor fit for values of X where X5 € [0,1] or
X2 € [—2, —1] (see center panel). Amortized local P-P plots at selected points show the HPD level sets of fas overdispersed for
X2 € [0, 1], and underdispersed or biased for X> € [—2, —1]. In contrast, the HPD level sets are well estimated at significance level
a = 0.05 for X3 € [1,2] and X2 € [—1,0]. (Gray regions represent 95% confidence bands under the null.) Contour plots show the
model fvs. the true (unknown) conditional density f at the selected points. fis clearly overdispersed at (0,0.5) and systematically
biased at (0, —1.5). The model perfectly fits the density at (0, 1.5), and has barely detectable underdispersion at (0, —0.5). (Note: The
contour plots requires knowledge of the true f, which would not be available to the practitioner.)
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