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Abstract

There has been growing interest in the AI commu-
nity for precise uncertainty quantification. Condi-
tional density models f(y|x), where x represents
potentially high-dimensional features, are an inte-
gral part of uncertainty quantification in prediction
and Bayesian inference. However, it is challenging
to assess conditional density estimates and gain in-
sight into modes of failure. While existing diagnos-
tic tools can determine whether an approximated
conditional density is compatible overall with a
data sample, they lack a principled framework for
identifying, locating, and interpreting the nature
of statistically significant discrepancies over the
entire feature space. In this paper, we present rigor-
ous and easy-to-interpret diagnostics such as (i) the
“Local Coverage Test” (LCT), which distinguishes
an arbitrarily misspecified model from the true
conditional density of the sample, and (ii) “Amor-
tized Local P-P plots” (ALP) which can quickly
provide interpretable graphical summaries of distri-
butional differences at any location x in the feature
space. Our validation procedures scale to high di-
mensions and can potentially adapt to any type of
data at hand. We demonstrate the effectiveness of
LCT and ALP through a simulated experiment and
applications to prediction and parameter inference
for image data.

1 INTRODUCTION

There has been growing interest in the AI community for
precise uncertainty quantification (UQ), with conditional
density models playing a key role in UQ in prediction and
Bayesian inference. For instance, the conditional density
f(y|x) of the response variable y given features x can be
used to build predictive regions for y, which are more infor-

mative than point predictions. Indeed, in prediction settings,
f provides a full account of the uncertainty in the outcome
y given new observations x. Conditional densities are also
central to Bayesian parameter inference, where the posterior
distribution f(6]x) is key to quantifying uncertainty about
the parameters 6 of interest after observing data x.

Recently, a large body of work in machine learning has
been developed for estimating conditional densities f for all
possible values of x, or to generate predictions that follow
the unknown conditional density (see |Uria et al.[2014} Sohn!
et al.[2015, |Papamakarios et al.|2017} [Dutordoir et al.[2018],
Papamakarios et al.[2021|and references therein). With the
advent of high-precision data and simulations, simulation-
based inference (SBI;|/Cranmer et al.[[2020]) has also played
a growing role in disciplines ranging from physics, chem-
istry and engineering to the biological and social sciences.
The SBI category includes machine-learning based methods
to learn an explicit surrogate model of the posterior [Marin
et al.,|2016, [Papamakarios and Murray}, 2016, [Lueckmann
et al.,|2017, |Chen and Gutmann, [2019, [Izbicki et al., {2019,
Greenberg et al.,|[2019].

Inevitably, any downstream analysis in predictive modeling
or Bayesian inference depends on the trustworthiness of the
assumed conditional density model. Validating such mod-
els can be challenging, especially for high-dimensional or
mixed-type data x. There does not currently exist a compre-
hensive and rigorous set of diagnostics that describe, for all
values of x, the quality of fit of a conditional density model.

Related work. Large Al models, such as deep generative
autoregressive models or Bayesian networks, are typically
fit using global loss functions like the Kullback-Leibler
divergence or the L? loss [Izbicki et all, 2017], Rothfuss
et all 2019]. Loss functions are useful for training mod-
els but only provide relative comparisons of overall model
fit. Hence, a practitioner may not know whether he or she
should keep looking for better models (using larger training
samples, training times, etc.), or if the current estimate is
“close enough”. Another line of work assesses goodness-of-
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fit of a conditional density model via a two-sample test that
compare samples from fand f. Earlier tests involve a con-
ditional version of the standard Kolmogorov test [[Andrews),
1997, |Zheng| [2000] in one dimension, or are tailored to spe-
cific families of conditional densities [[Stute and Zhu, 2002,
Moreiral 2003]]. Recently, Jitkrittum et al.| [2020] developed
a fast kernel-based approach that can also identify local
regions of poor fit. While these tests are consistent, they do
not provide insight on how the distributions of annd f differ
locally. Kernel approaches also require the user to specify
an appropriate kernel and tuning parameters, which can be
challenging in practice. Finally, existing diagnostics that do
describe the nature of inconsistencies between fand f only
test for a form of overall coherence between a data-averaged
conditional (posterior) distribution and its marginal (prior)
distribution. Typically, they compute probability integral
transform (PIT) values [[Cook et al.| 2006, [Freeman et al.,
2017, Talts et al., 2018l [D’Isanto and Polsterer,[2018|]. While
informative, these diagnostics were originally developed for
assessing unconditional density models [Gan and Koehler],
1990]. As such, they are known to fail to detect some clearly
misspecified conditional models including models that ig-
nore the dependence on the covariates altogether [[Schmidt
et al,2020]). (Our Theorem |T]details different failure modes
of existing diagnostics.)

Contribution and novelty. Our work provides diagnostic
tools for UQ and calibration of predictive models that pro-
vide insight in simple, explainable terms like coverage, bias,
dispersion, and multimodality in y (output of interest) as a
function of x (observed inputs). Having interpretable diag-
nostics is crucial for scientific collaborators and end users
to build trust in large Al models.

Existing diagnostics for conditional density models cannot
detect every kind of misspecified model and give insight
into local quality of fit at any given x. Our method quantifies
deviations between actual and nominal coverage in y. It (i)
detects arbitrarily misspecified models and (ii) assesses and
visualizes quality of fit anywhere in feature space, even at
points without observed data, in terms of easy-to-explain
diagnostics. To the best of our knowledge, no other method
in the literature provides both consistency and diagnostics
for complex high-dimensional data.

To enrich our vocabulary for desired properties of CDEs,
we begin our paper by defining global and local consistency
(see Definitions [T and 3] respectively). We then describe our
diagnostic framework, which has three main components:

* [GCT - Global Coverage Test] A statistical hypoth-
esis test that can distinguish any misspecified density
model from the true conditional density. (This is a test
of global consistency.)

* [LCT - Local Coverage Test] A statistical hypothesis
test that identifies where in the feature space the model
fits poorly. (This is a test of local consistency.)

* [ALP - Amortized Local P-P plots] Interpretable
graphical summaries of the fitted model that show how
it deviates from the true density at any location in fea-
ture space (see Figure [I] for examples).

Our diagnostics are easy and fast to compute, and can iden-
tify, locate, and interpret the nature of (statistically signif-
icant) discrepancies over the entire feature space. At the
heart of our approach is the realization that the local cov-
erage of a CDE model is itself a conditional probability
(see Equation [5) that often varies smoothly with x. Hence,
we can estimate the local coverage at any given x by lever-
aging a suitable regression method using sample points in
a neighborhood of x. Thanks to the impressive arsenal of
existing regression methods, we can adapt to different types
of potentially high-dimensional data to obtain computation-
ally and statistically efficient validation. Finally, because
we specifically evaluate local coverage (rather than other
types of discrepancies), the practitioner can “zoom in” on
statistically significant local discrepancies flagged by the
LCT, and identify common modes of failure in the fitted
conditional density (see Figures [Af{6|for examples).

2 EXISTING DIAGNOSTICS ARE
INSENSITIVE TO COVARIATE
TRANSFORMATIONS

Notation. Let D = {(X1,Y1),...,(X,,Y,)} denote an
i.i.d. sample from Fx y, the joint distribution of (X,Y") for
arandom variable Y € Y C R (in Section[3.3] Y is multi-
variate), and a random vector X € X C R%. Ina prediction
setting, D represents a hold-out set not used to train f In
a Bayesian setting, Y represents the parameter of interest
(sometimes also denoted with #), and each element of D is
obtained by first drawing Y; from the prior distribution, and
then drawing X; from the statistical model of X|Y;.

Ideally, a test should be able to distinguish any given alterna-
tive conditional density model f(y|x) from the true density
f(y|x), as well as locate discrepancies in the feature space
X. More precisely, a test should be able to identify what we
in this section define as global and local consistency.
Definition 1 (Global Consistency). An estimate f(y\x) is
globally consistent with the density f(y|x) if the following
null hypothesis holds:

~

Ho : f(y|x) = f(y|x) foreveryx € X andy € Y. (1)

Note that fis a particular fixed conditional density estimate,
and we test whether samples from f are consistent with
samples from f. Existing diagnostics typically validate den-
sity models by computing PIT values on independent data,

~

which were not used to estimate f(y|x):
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Definition 2 (PIT). Fixx € X and y € Y. The probability
integral transform of y at X, as modeled by the conditional
density estimate f(y|x), is

v
PIT(y: x) = / ')y’ @)

See Figure 2} top panel for an illustration of this calculation.

o~

Remark 1. For implicit models of f(y|x) (that is, genera-
tive models that via e.g. MCMC can sample from, but not
directly evaluate f), we can approximate the PIT values by
Jorward-simulating data: For fixed x € X and y € Y, draw
Yi,..., Yy ~ f(:|x). Then, approximate PIT(y; X) via the
cumulative sum L~! Zle I(y; <y).

If the conditional density model f(y|x) is globally consis-
tent, then the PIT values are uniformly distributed. More
precisely, if Hy (Equation|1)) is true, then the random vari-
ables PIT(Y; X1), ..., PIT(V,: X,,) %" Unif(0, 1). This
result is often used to test goodness-of-fit of conditional den-
sity models in practice [[Cook et al.l 2006, Bordoloi et al.}
2010} Tanaka et al., 2018]].

Our first point is that unfortunately, such random variables
can be uniformly distributed even if global consistency does
not hold. This is shown in the following theorem.

Theorem 1 (Insensitivity to Covariate Transformations).
Suppose there exists a function g : X — Z, where Z C
RF for some k, that satisfies

~

flylx) = fylg(x)). ()
Let (X,Y) ~ Fx y. Then PIT(Y ; X) ~ Unif(0, 1).

Many models naturally lead to estimates that could satisfy
the condition in Equation [3] even without being globally
consistent. In fact, clearly misspecified models fcan yield
uniform PIT values and “pass” an associated goodness-of-fit

~

test regardless of the sample size. For example: if f(y|x) is
based on a linear model, then f(y|x) will by construction
depend on x € R? only through g(x) := 37x for some
B € R?. As aresult, we could have f(y|x) = f(ylg(x))
even when f(y|x) is potentially very different from f(y|x).
As another example, a conditional density estimator that
performs variable selection [Shiga et al., 2015} Izbicki and!
Leel 2017, |[Dalmasso et al., [2020]] could satisfy f(y|x) =
f(ylg(x)) for g(x) := (x)s, where S C {1,...,d}isa
subset of the covariates. A test of the overall uniformity of
PIT values is no guarantee that we are correctly modeling
the relationship between y and the predictors x; see Figure

[Blfor an illustration.

Our second point is that current diagnostics also do not pin-
point the locations in feature space X where the estimates of
f should be improved. Hence, in addition to global consis-
tency, we need diagnostics that test the following property:

Definition 3 (Local Consistency). Fix x € X. An estimate

f(y|x) is locally consistent with the density f(y|x) at fixed
X if the following null hypothesis holds:

H()(X) :

~

flylx) = fylx) foreveryy € Y. (4)

In the next section, we introduce new diagnostics that are
able to test whether a conditional density model fis both
globally and locally consistent with the underlying condi-
tional distribution f of the data. Our diagnostics are still
based on PIT, and hence retain the properties (e.g., inter-
pretability, ability to provide graphical summaries, and so
on) that have made PIT a popular choice in model validation.

3 NEW DIAGNOSTICS TEST LOCAL
AND GLOBAL CONSISTENCY

Our new diagnostics rely on the following key result:

Theorem 2 (Local Consistency and Pointwise Unifor-
mity). For any x € X, the local null hypothesis Hy(x) :

F(x) = f(-|x) holds if, and only if, the distribution of
PIT(Y ; x) given x is uniform over (0,1).

Theorem2]implies that if we had a sample of Y’s at the fixed
location x, we could test the local consistency (Definition
of fby determining whether the sample’s PIT values
come from a uniform distribution. In addition, for global
consistency we need local consistency at every x € X.
Clearly, such a testing procedure would not be practical:
typically, we have data of the form (X1,Y7),...,(X,,Y,)
with at most one observation at any given x € X.

Our solution is to instead address this problem as a regres-
sion: for fixed a € (0, 1), we consider the cumulative distri-
bution function (CDF) of PIT at x,

ro(x) := P (PIT(Y;x) < a|x), )

which is the regression of the random variable W< :=
I(PIT(Y;X) < ) on X.

From Theorem [2] it follows that the estimated density is
locally consistent at x if and only if r,, (x) = « for every a:

Corollary 1. Fixx € X. Then r,(x) = « for every a €

~

(0,1) if, and only if, F(y|x) = f(y|x) for every y € V.

Our new diagnostics are able to test for both local and global
consistency. They rely on the simple idea of estimating
7 (x) and then evaluating how much it deviates from « (see
Section[3.1)). Note that

PIT(YV;x) < a <= Y € (—00,qu(x))

where G, (x) is the a-quantile of f. That is, ro (x) evaluates
the local level-a coverage of fat x. In Section we ex-
plore the connection between test statistics and coverage, for
interpretable descriptions of how conditional density models
fmay fail to approximate the true conditional density f.
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3.1 LOCAL AND GLOBAL COVERAGE TESTS

Our procedure for testing local and global consistency is
very simple and can be adapted to different types of data.
For anii.d. test sample (X1,Y7), ..., (X,,Y,) from Fx y
(which was not used to construct f) we compute W :=
I(PIT(Y;; X;) < «). To estimate the coverage o (x) (Equa-
tion [5) for any x € X, we then simply regress W on X
using the transformed data (X1, Wh),...,(X,, W,). Nu-
merous classes of regression estimators can be used, from
kernel smoothers to random forests to neural networks.

To test local consistency (Definition [3]), we introduce the
Local Coverage Test (LCT) with the test statistic

where 7, denotes the regression estimator and G is a grid of
« values. Large values of T'(x) indicate a large discrepancy
between fand f at x in terms of coverage, and Corollary
links coverage to consistency. To decide on the correct
cutoff for rejecting Hy(x), we use a Monte Carlo technique
that simulates 7'(x) under H. Algorithm|[I|details our pro-
cedure. For the LCT, note that we are performing multiple
hypothesis tests at different locations x. After obtaining
LCT p-values, we advocate using a method like Benjamini-
Hochberg to control the false discovery rate.

Similarly, we can also test global consistency (Definition|I))
with a Monte Carlo strategy. Algorithm 3]in Supp. Mat. B.
details our procedure. We introduce the Global Coverage
Test (GCT) based on the following test statistic:

1 n
:ﬁ;T(X

We recommend performing the global test first and, if the
global null is rejected, investigating further with local tests.
Empirically, we have found that the power of our tests is
related to the MSE (a measurable quantity) of the regression
method we use. This observation is in line with similar
results in Kim et al.|[2019} Theorems 3.3 and 4.1]. Hence,
as a practical strategy, we maximize power by choosing the
regression model with the smallest MSE on validation data.

3.2 AMORTIZED LOCAL P-P PLOTS

Our diagnostic framework does not just give us the ability
to identify deviations from local consistency in different
parts of the feature space X. It also provides us with insight
into the nature of such deviations at any given location x.
For unconditional density models, data scientists have long
favored using P-P plots (which plot two cumulative distri-
bution functions against each other) to assess how closely a

Algorithm 1 P-values for Local Coverage Test

Require: conditional density model ]/"\, test data {X;,Yi}iz1;
test point x € X’; regression estimator 7; number of null training
samples B
Ensure: estimated p-value p(x) for any x € X
1: // Compute test statistic at x:
2: Compute values PIT(Y7;X4),...,PIT(Y,; X,)
3: G < grid of v values in (0, 1).
4: for avin G do
5: Compute indicators W{*, ..., W2
6.
7
8
9

Train regression method 7, on {X;, W&},

: end for

: Compute test statistic 7'(x)

: // Recompute test statistic under null distribution:
10: forbinl,..., Bdo
11: DrawUl(b),...,
12: for o in G do

P~ Unif[0, 1.

13: Compute indicators {W(b) = H(U(b) <a)ty
14: Train regression method 7 To ) on {X;, W, ab? )
15: end for
16: Compute T® (x Z 7 (x
|G| aeG

17: end for

B
18: return p(x Z ( <T®(x ))

density model agrees with actual observed data. What makes
our work unique is that we are able to construct “amortized
local P-P plots” (ALPs) with similar interpretations to assess
conditional density models over the entire feature space.

Figure (1| illustrates how a local P-P plot of 7, (x) against
« (that is, the estimated CDF against the true CDF at x)
can identify different types of deviations in a conditional
density model. For example, positive or negative bias in the
estimated density frelative to f leads to P-P plot values
that are too high or too low, respectively. We can also easily
identify overdispersion or underdispersion of ffrom an
“S”-shaped P-P plot.

Of particular note is that our local P-P plots are “amortized”,
in the sense that computationally expensive steps do not
have to be repeated with e.g Monte Carlo sampling at each
x of interest. Both the consistency tests in Section [3.1and
the local P-P plots only require initially training 7, on the
observed data; the regression estimator can then be used
to compute 7, (X,q;) at any new evaluation point X,q;. Be-
cause of the flexibility in the choice of regression method,
our construction also potentially scales to high-dimensional
or different types of data x. Algorithm [2] details the con-
struction of ALPs, including how to compute confidence
bands by a Monte Carlo algorithm.
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Figure 1: P-P plots are commonly used to assess how well a density model fits actual data. Such plots display, in a clear and
interpretable way, effects like bias (left panel) and dispersion (right panel) in an estimated distribution f vis-a-vis the true
data-generating distribution f. Our framework yields a computationally efficient way to construct “amortized local P-P

-~ ~

plots” for comparing conditional densities f(6|x) and f(y|x) at any location x of the feature space X. See text for details

and Sections [4}j6] for examples.

Algorithm 2 Confidence bands for local P-P plot

Require: test data {X; };-;; test point x € X’; regression estima-
tor 7; number of null training samples B; confidence level 7
Ensure: estimated upper and lower confidence bands U (x), L(x)
atlevel 1 —nforanyx € X

1: // Recompute regression under null distribution:
2: G + grid of « values in (0, 1).
3: forbinl,..., Bdo

4 Draw Ul(b), cey Ul ~ Unif]0, 1].
5: for ain G do
6: Compute indicators {Wo(ébl) = H(Ui(b) <a)t,
7: Train regression method 7 on {X,, Wc(ybl) 1
8: end for
9: Compute ) (x)

10: end for

11: // Compute (1 — 1) confidence bands for 7, (x):

12: U(x),L(x) + 0

13: for avin G do

14 U(x) « U(x) U (1 — 2)-quantile of {7 (x)} 2.,
15: L(x) « L(x) U I-quantile of {7y (x)}2.,

16: end for

17: return U (x), L(x)

3.3 HANDLING MULTIVARIATE RESPONSES

If the response Y is multivariate, then the random vari-
able Fy|x (Y|X) is not uniformly distributed [Genest and
Rivest, 2001]], so PIT values cannot be trivially generalized
to higher dimensions. One way to overcome this is to evalu-

ate the PIT statistic of univariate projections of Y, as done
by [Talts et al.| [2018]] for Bayesian consistency checks and
Mucesh et al.|[2021] for the prediction setting. That is, the

~

PIT values can be computed using the estimate f(h(Y)|x)

induced by f(Y|x) for some chosen h : RP — R. Differ-
ent projections can be used depending on the context. For
instance, in Bayesian applications, posterior distributions
are often used to compute credible regions for univariate
projections of the parameters #. Thus, it is natural to evalu-
ate PIT values of h(6) = 0, for each parameter of interest.
Another useful projection is copPIT [Ziegel and Gneiting|
2014], which creates a unidimensional projection that has
information about the joint distribution of Y. Our diagnostic
techniques are not enough to consistently assess the fit to
f(Y|x) if applied to these projections, but they do consis-
tently evaluate the fit to f(h(Y)|x), which is often good
enough in practice.

An alternative approach to assessing fis through highest
predictive density values (HPD values; Harrison et al.|2015}
Dalmasso et al.[2020), which are defined by

~

HPD(y: x) — / 'y
vy f(y'|x)> f(y]x)

(see Figure [2 bottom, for an illustration). HPD(y; x) is a
measure of how plausible y is according to f(y|x) (in the
Bayesian context, this is the complement of the e-value
[[de Braganca Pereira and Stern, [1999]]; small values indi-
cate high plausibility). As with PIT values, HPD values are
uniform under the global null hypothesis [Dalmasso et al.,
2020]]. However, standard goodness-of-fit tests based on
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HPD values share the same problem as those based on PIT:
they are insensitive to covariate transformations (see Theo-
rem[d] Supp. Mat. A). Fortunately, HPD values are uniform
under the local consistency hypothesis:

Theorem 3. For any x € X, if the local null hypothesis
Hy(x) : f(:|x) = f(-|x) holds, then the distribution of
HPD(Y'; x) given x is uniform over (0, 1). (The reverse is

however not true.)

It follows that the same techniques developed in Sections
[3:1)and [3.2] can be used with HPD values to check global
and local consistency for multivariate responses, as well as
to construct local P-P plots. (Supp. Mat. F showcases multi-
variate extensions via HPD.) The HPD statistic is especially
appealing if one wishes to construct predictive regions with
J?as HPD values are intrinsically related to highest predic-
tive density sets [1996]. HPD sets are region
estimates of y that contain all y’s for which f(y|x) is larger
than a certain threshold (in the Bayesian case, these are
the highest posterior credible regions). More precisely, if
HPD,, (x) is the a-level HPD set for y, then

HPD(y;x) < @ <= Y € HPD,(x).
Thus, by testing local consistency of fvia HPD values, we
assess the coverage of HPD sets. It should be noted, however,

that even if the HPD values are uniform (conditional on x),
it may be the case that f £ f.

Probability Integral Transform (PIT)

Highest Probability Density (HPD)

Fly'Ix)

f(y'|x) = f(y|x)

Figure 2: Schematic diagram of the construction of PIT
(top panel, shaded blue area) and HPD value (bottom panel,
shaded green area) for an estimated density fevaluated at
(y,x). The highlighted red intervals in the bottom panel
correspond to the highest density region (HDR) of y|x.

4 EXAMPLE 1: OMITTED VARIABLE
BIAS IN CDE MODELS

Our first example involves omitted but clearly relevant vari-
ables in a prediction setting. Inspired by Section 2.2.2 of
Shalizil [2021]], we generate X = (X1, X,) ~ N(0,%) €
R?, with Y11 = Y22 = land ¥, 3 = 0.8, and take the re-
sponse to be Y |X ~ N (X; + X5, 1). To mimic the variable
selection procedure common in high-dimensional inference
methods, we fit two conditional density models: fl, trained
only on X;, and fg, trained on X. Both models are fit-

ted using a nearest-neighbor kernel CDE
2020] with hyperparameters chosen by data splitting: we

use 10000 training, 5000 validation, and 200 test points.

60

—— Uniform Average

50

40
30
20
10

0
0.4 0.6

PIT values for fl

60

50 —— Uniform Average

0.0 0.2 0.4 0.6 0.8 1.0
PIT values for f,

Figure 3: Standard diagnostics for Example 1 showing his-
tograms of PIT values computed on 200 test points (with
95% confidence bands for a Unif[0,1] distribution). Top:
Results for fl, which has only been fit to the first of two
covariates. Bottom: Results for fz, which has been fit to both
covariates. The top panel shows that standard PIT diagnos-
tics cannot tell that fl is a poor approximation to f. GCT,
on the other hand, detects that J/‘\l is misspecified (p=0.004),
while not rejecting the global null for fg (p=0.894).

This is a toy example where omitting one of the variables
might lead to unwanted bias when predicting the outcome
Y for new inputs X. As an indication of this bias, we
have included a heat map (see panel (d) of Figure ) of
the difference in the true (unknown) conditional means,
E[Y|xz1] — E[Y |21, x2] as a function of x; and x5. (In this
example, the omitted variable bias is approximately the
same as the difference in the averages of the predictions
of Y when using the model ]?1 versus the model ]?2 at any
given x € X'; see Figure [ panels (c) and (d)). Despite the
clear relationship between Y and X5, both j?l (which omits
X5) and fg pass existing goodness-of-fit tests based on PIT
(Figure[3). This result can be explained by Theorem [T} be-
cause PIT is insensitive to covariate transformations and
fi(y|x) =~ f(y|x1), PIT values are uniformly distributed,

~

even though f; omits a key variable. The GCT, however,
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Figure 4: New diagnostics for Example 1. (a) P-values for LCTs for ]/”\1 indicate a poor fit across most of the feature space. (b)
Amortized local P-P plots at selected points show the density fl as negatively biased (blue), well estimated at significance
level o« = 0.05 with barely perceived overdispersion (purple), and positively biased (red). (Gray regions represent 95%
confidence bands under the null.) (¢) fl and fg vs. the true (unknown) conditional density f at the selected points. fl is
clearly negatively and positively biased at the blue and red points, respectively, while the model does not reject the local null
at the purple point. f2 fits well at all three points. The difference on average in the predictions of Y from fl( |x) vs. the true

distribution f(-|x) for fixed x indeed corresponds to the “omitted variable bias” E[Y|z1] —

E[Y |21, x2]. (Note: Panels (c)

and (d) require knowledge of the true f, which would not be available to the practitioner.)

detects that f1 1s misspecified (p = 0. 004) while the global
null (Equatlon is not rejected for f2 = 0.894).

The next question a practitioner might ask is: “What exactly
is wrong with the fit?”. LCTs and local P-P plots can pin-
point the locations of discrepancies and describe the failure
modes. Panel (a) of FigureEI shows p-values from local cov-
erage tests for fl across the entire feature space of X. The
patterns in these p-values are largely explained by panel (d),
which shows the difference between the conditional means
of Y given x; and given x1, x5. The detected level of dis-
crepancy between the estimate ]?1 and the true conditional
density f at a point x directly relates to the omitted vari-
able bias E[Y|z1] — E[Y|z1, 2] = 0.821 — xo: the LCT
p-values close to the line x5 = 0.8z are large (indicating
no statistically significant deviations from the true model),
and p-values decrease as we move away from this line.

Panel (b) of Figure ] zooms in on a few different locations
x with local P-P plots that depict and interpret distributional
deviations. At the blue point, f; underestimates the true

Y: we reject the local null (Equation ), and the P-P plot
indicates negative bias. Conversely, at the red point, fl over-
estimates the true Y'; we reject the local null, and the P-P
plot indicates positive bias. At the purple point, fl is close
to f, so the local null hypothesis is not rejected.

This toy example is a simple illustration of the general
phenomenon of potentially unwanted omitted variable bias,
which can be difficult to detect without testing for local
and global consistency of models. Our proposed diagnostics
identify this issue and provide insight into how the omitted
variable distorts the fitted model relative to the true condi-
tional density, across the entire feature space.

S EXAMPLE 2: CONDITIONAL NEURAL
DENSITIES FOR GALAXY IMAGES

In this example of CDE in a prediction setting, we apply neu-
ral density models to estimate the distribution of synthetic
“redshift” Z (a proxy for distance; the response) assigned to
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the unimodal density model generally fits well for the A = 0.8 population, while fitting poorly for the other three populations
with skewed and bimodal true redshift distributions. Local P-P plots show statistically significant deviations in the CDEs
(gray regions are 95% confidence bands under the null) for the latter population, suggesting the need for more flexible model

classes.

photometric or “photo-z” galaxy images X (the predictors).
We then illustrate how our methods distinguish between
“good” and “bad” CDEs. This toy example is motivated by
the urgent need for metrics to assess photo-z probability
density function accuracy. Diagnostics currently used by as-
tronomers have known shortcomings [[Schmidt et al., [2020],
and our method is the first to properly address them.

Here, x represents a 20 x 20-pixel image of an elliptical
galaxy generated by GalSim, an open-source toolkit for
simulating realistic images of astronomical objects [Rowe
et al., 2015]). In GalSim, we can vary the axis ratio A,
defined as the ratio between the minor and major axes of the
projection of the elliptical galaxy. We create four equally
sized populations of galaxies, with A € {0.8,0.7,0.6,0.5}.
We then assign a response variable Z according to different
distributions (unimodal, skewed and bimodal) as follows:

Z|A = 0.8 ~ N(0.1,0.02)

Z|A = 0.7 ~ Beta(3,7)

Z|A = 0.6 ~ 0.6N(0.3,0.05) + 0.4N (0.7, 0.05)
Z|A = 0.5 ~ Beta(7,3).

See Figure 8 in Supp. Mat. D for a plot of these distributions.

For illustration, we fit a unimodal Gaussian neural density
model to estimate the conditional density Z|X. Our diag-
nostics pinpoint where in the feature space the density is

bimodal or skewed, and thus a fit with one Gaussian is inad-
equate. We know of no other diagnostics that can provide
such insight when fitting neural density models. Specifically,
we fit a convolutional mixture density network (ConvMDN,
D’Isanto and Polsterer|[2018]]) with a single Gaussian com-
ponent, two convolutional and two fully connected layers
with ReLLU activations [|Glorot et al., 2011]]. (We train on
10000 images using the Adam optimizer [Kingma and Ba,
2014] with learning rate 1073, 8; = 0.9, and 3> = 0.999.)
This gives an estimate of f(z|x). We expect this CDE model
to fit well for the A = 0.8 unimodal population, and fit
poorly for the other bimodal or skewed populations.

Our diagnostic framework effectively detects the flaws of
this CDE model. First, we perform the GCT which rejects
the global null (p < 0.001). Next, we turn to LCTs and P-P
plots to explore where and how the fit is inadequate. Figure
[5] shows a principal component map of the test data. The
LCTs are able to identify a unimodal Gaussian model fits
well for the A = 0.8 population, but that the same model
fails to adequately estimate the PDFs of the remaining pop-
ulations. P-P plots at selected test points indicate significant
distributional deviations and suggest the need to consider
more flexible model classes that incorporate bimodal and
skewed distributions.
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6 EXAMPLE 3: NEURAL POSTERIOR
INFERENCE FOR GALAXY IMAGES

Our final example tests for image data x € R*°0 whether
a Bayesian posterior model f(ﬁ |x) fits the true posterior.
As in Example 2, x represents an image of an elliptical
galaxy generated by GalSim. As before, ) is the galaxy’s
axis ratio, but now the quantity of interest 6 is the galaxy’s
rotation angle with respect to the x-axis; that is, an unknown
internal parameter. For illustration, we create a mixture of a
larger population with A = 0.7 (spheroidal galaxies), and a
smaller population with A = 0.1 (elongated galaxies). We
then simulate a sample of images as follows: first, we draw
A and 6 from a prior distribution given by

P(A\=0.7)=1—P(\=0.1) = 0.9
0 ~Unif(—m,m)

Then we sample 20 x 20 galaxy images X according to the
data model X|X, 0 ~ GalSim(a, A), where

alA = 0.7 ~ N(6,0.05)

alA = 0.1 ~ 0.5Laplace(6,0.05) + 0.5 Laplace(d,0.0005).

As in Example 2, we fit a convolutional mixture density
network (ConvMDN); in this case, it gives us an estimate
of the posterior distribution f(#|x). This time, we allow K,
the number of mixture components, to vary. According to
the KL divergence loss computed on a separate test sample
with 1000 images, the best fit of f(#|x) is achieved by a
ConvMDN model with K = 7 (see Table 1 in Supp. Mat. E).
Here, the ConvMDN model with the smallest KL loss fails
the GCT (p < 0.001), so we turn to LCTs and P-P plots to
understand why. Figure 6] plots the test galaxy images along
their first two principal components. The LCTs show that the
ConvMDN model generally fits the density well for the main
population of spheroidal galaxies (A = 0.7), but fails to
properly model the smaller population of elongated galaxies
(A = 0.1). P-P plots at selected test points indicate severe
bias in the posterior estimates for the A = 0.1 population.
These plots suggest that an effective way of obtaining a
better approximation of the posterior is by improving the
fit for the A = 0.1 population (by obtaining more data in
that region of the feature space, using a different model
class, etc). For instance, CDE models not based on mixtures
[Papamakarios et al.2019]] could be more effective.

7 CONCLUSION

Conditional density models are widely used for uncertainty
quantification in prediction and Bayesian inference. In this
work, we offer practical procedures (GCT, LCT, ALP) for
identifying, locating, and interpreting modes of failure for
an approximation of the true conditional density. Our tools
can be used in conjunction with loss functions, which are

useful for performing model selection, but not good at eval-
uating whether a practitioner should keep looking for better
models, or at providing information as to how a model could
be improved. Finally, because LCT pinpoints hard-to-train
regions of the feature space, our framework can provide
guidance for active learning schemes.
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