
Unsupervised Program Synthesis for Images By Sampling Without Replacement
Supplementary Material

Chenghui Zhou1 Chun-Liang Li1 Barnabás Póczos1

1Machine Learning Department, Carnegie Mellon University , Pittsburgh, Pennsylvania, USA
{chenghuz,chunlial,bapoczos}@cs.cmu.edu

A GRAMMAR TREE LSTM GUIDE

This section provides a guide for the tree-LSTM illustration
in Figure 1. This guide follows the arrows in the illustration
(Figure 1) from left to right:

• A grammar stack with a start token S and an end token
$ as well as an empty image stack is initialized.

• In the first iteration, the token S is popped out. Follow-
ing Rule (1), all other options will be masked except
E, the only possible output. E token is added to the
stack.

• In the second iteration, or any iteration where the to-
ken E is popped, the input for all examples and all
softmax outputs are masked except the entries repre-
senting EET and P according to Rule (2). If EET is
sampled, T , E and E tokens will be added to the stack
separately in that exact order to expand the program
further. If P is sampled, it will be added to the stack
and the program cannot expand further.

• If T is popped out of the stack, the output space for
that iteration will be limited to all the operations (Rule
(3)). Similarly, if P is popped out, the output space is
limited to all the geometric shapes (Rule (4)).

• When a shape token is sampled, it will not be added
to the grammar stack as they do not contribute to the
program structure. Instead, the image of the shape will
be pushed onto the corresponding image stack.

• When an operation token is sampled, it also will not
be added to the grammar stack. Instead, we pop out
the top two images to apply the operation on them and
push the final image onto the image stack again.

• When the stack has popped out all the added tokens,
the end token $ will be popped out in the last iteration.
We then finish the sampling as standard RNN language
models.

In practice, we implement the masking mechanism by
adding a vector to the output before passing into logsoftmax

layer to get the probability. The vector contains 0 for valid
output and large negative numbers for invalid ones. This
makes sure that invalid options will have almost zero proba-
bility of being sampled. The input of the RNN cell includes
encoded target image and intermediate images from the im-
age stack, embedded pop-out token from grammar stack and
the hidden state from the RNN’s last iteration. The exact
algorithm is in Algorithm 3.

B SAMPLING WITHOUT
REPLACEMENT

This section describes how we achieve sampling without
replacement with the help of stochastic beam search [Kool
et al., 2019b].

At each step of generation, the algorithm chooses the top-
k + 1 beams to expand based on the ~Gφi,j score at time
step j in order to find the top-k stochastic sequences at the
end. The use for the additional beam will be explained later.
Let A be all possible actions at time step j, ~φi,j ∈ RA is
the log probability of each outcomes of sequence i at time j
plus the log probability of the previous j − 1 actions.

~φi,j =
[
logP (a1), logP (a2), . . . , logP (aA)

]
+

logP (at1 , at2 , · · · , atj−1
) · ~1

=
[
logP (a1), logP (a2), . . . , logP (aA)

]
+ φi,j−1 · ~1

(1)

For each beam, we sample a Gumbel random variable
Gφi,j,a = Gumbel(φi,j,a) for each of the element a of the
vector ~φi,j . Then we need to adjust the Gumbel random
variable by conditioning on its parent’s adjusted stochastic
score Gsij−1

being the largest (Equation 2) in relation to

all the descendant elements in ~Gφi,j , the resulting value
~̃Gφi,j ∈ RA is the adjusted stochastic score for each of the
potential expansions.

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

~̃Gφi,j =− log(exp (−~1 ·Gsij−1
)− exp (−~1 · Zi,j)+

exp (−~Gφi,j)) (2)

Here Zi,j is the largest value in the vector ~Gφi,j =
[Gφi,j,a1 , Gφi,j,a2 , · · · , Gφi,j,aA] and Gsij−1

is the adjusted
stochastic score of i-th beam at step j − 1 from the last
iteration. Conditioning on the parent stochastic score being
the largest in this top-down sampling scheme makes sure
that each leaf’s final stochastic score Gsi is independent,
equivalent to sampling the sequences bottom up without
replacement [Kool et al., 2019b].

Once we have aggregated all the adjusted stochastic scores

in ~̃Gφi,j from all previous k+1 beams, we select the top-k+
1 scored beams from (k+1) ∗A scores for expansions. The
selected k+1 adjusted stochastic scores become the Gsij ∀i
in the new iteration. Note that the reason that we maintain
one more beam than we intended to expand because we need
the k + 1 largest stochastic score to be the threshold during
estimation of the entropy and REINFORCE objective. This
is explained next. Please refer to Algorithm 2 for details in
the branching process.

The sampling without replacement algorithm requires im-
portance weighting of the objective functions to ensure
unbiasness. The weighting term is pθ(s

i)
qθ,κ(si)

. pθ(si) repre-
sents the probability of the sequence si (si is the i-th com-
pleted sequence and pθ(s

i) = expφi) and S represents
the set of all sampled sequences si for i = 1, 2, · · · , k.
qθ,κ(s

i
j) = P (Gsij > κ) = 1 − exp(− exp(φi,j − κ)),

where κ is the (k + 1)-th largest Gsij score for all i and
φi,j = logP (at1 , at2 , · · · , atj) is the log likelihood of the
first j actions of i-th sequence, can be calculated based on
the CDF of the Gumbel distribution. It acts as a threshold
for branching selection. We can use the log probability of
the sequence here to calculate the CDF because the adjust
stochastic scores Gsij ’s are equivalent to the Gumbel scores
of sequences sampled without replacement from bottom up.
During implementation, we need to keep an extra beam,
thus k + 1 beams in total, to accurately estimate κ in order
to ensure the unbiasness of the estimator.

To reduce variance of our objective function, we intro-
duce additional normalization terms as well as a baseline.
However, the objective function is biased with these terms.
The normalization terms are W (S) =

∑
si∈S

pθ(s
i)

qθ,κ(si)
and

W i(S) =W (S)− pθ(s
i)

qθ,κ(si)
+ pθ(s

i).

Incorporating a baseline into the REINFORCE objective is
a standard practice. A baseline term is defined as B(S) =∑
si∈S

pθ(s
i)

qθ,κ(si)
f(si) and f(si) should be the reward of the

complete i-th program si in this case.

To put everything together, the exact objective is as follows
[Kool et al., 2019a]:

∇θEs∼pθ(s)[f(s)] ≈
∑
si∈S

1

W i(S)
·∇θpθ(s

i)

qθ,κ(sin)
(f(si)− B(S)

W (S)
)

(3)
Entropy estimation uses a similar scaling scheme as the
REINFORCE objective:

ĤD(X1, X2, X3, · · · , Xn) ≈
n∑
j=1

1

Wj(S)

∑
si∈S

pθ(s
i
j)

qθ,κ(sij)
H(Xj |X1 = xi1, · · · , Xj−1 = xij−1)

(4)

where Wj(S) =
∑
si∈S

pθ(s
i
j)

qθ,κ(sij)
and sij denotes the first

j elements of the sequence si. The estimator is unbiased
excluding the 1

Wj(S)
term.

C PROOF OF STEPWISE ENTROPY
ESTIMATION’S UNBIASNESS

Entropy of a sequence can be decomposed into the sum
of the conditional entropy at each step conditioned on
the previous values. This is also called the chain rule for
entropy calculation. Let X1, X2, · · · , Xn be drawn from
P (X1, X2, · · · , Xn) [Cover and Thomas, 2012]:

H(X1, X2, · · · , Xn) =

n∑
j=1

H(Xj |X1, · · · , Xj−1) (5)

If we sum up the empirical entropy at each step after the
softmax output, we can obtain an unbiased estimator of the
entropy. Let S be the set of sequences that we sampled and
each sampled sequence si consists of X1, X2, · · · , Xn:

EX1,...,Xj−1
(ĤD)

= EX1,...,Xj−1
(
1

|S|
∑
i∈|S|

n∑
j=1

H(Xj |X1 = xi1, . . . ,

Xj−1 = xij−1))

=
1

|S|
· |S|

n∑
j=1

H(Xj |X1, · · · , Xj−1)

= H(X1, X2, · · · , Xn)

In order to incorporate the stepwise estimation of the entropy
into the beam search, we use the similar reweighting scheme
as the REINFORCE objective. The difference is that the
REINFORCE objective is reweighted after obtaining the full
sequence because we only receive the reward at the end and
here we reweight the entropy at each step. We denote each
time step by j and each sequence by i, the set of sequences
selected at time step j is Sj and the complete set of all

possible sequences of length j is Tj and Sj ∈ Tj . We are
taking the expectation of the estimator over the Gφi,j scores.
As we discussed before, at each step, each potential beam
receives a stochastic scoreGφi,j . The beams associated with
the top-k + 1 stochastic scores are chosen to be expanded
further and κ is the k + 1-th largest Gφi,j . κ can also be
seen as a threshold in the branching selection process and
qθ,κ(s

i
j) = P (Gsij > κ) = 1− exp(− exp(φi,j − κ)). For

details on the numerical stable implementation of qθ,κ(sij),
please refer to [Kool et al., 2019b].

EGφ(
n∑
j=1

∑
sij∈Sj

pθ(s
i
j)

qθ,κ(sij)
H(Xj |X1 = xi1, X2 = xi2, · · · ,

Xj−1 = xij−1))

=

n∑
j=1

EGφ(
∑
i∈|Tj |

pθ(s
i
j)

qθ,κ(sij)
H(Xj |X1 = xi1, X2 = xi2,

· · · , Xj−1 = xij−1))1{xi1,··· ,xij}∈Sj)

=

n∑
j=1

∑
i∈|Tj |

pθ(s
i
j)H(Xj |X1 = xi1, X2 = xi2, · · · ,

Xj−1 = xij−1)EGφ(
1{sij=xi1,··· ,xij}∈Sj

qθ,κ(sij)
)

=

n∑
j=1

H(Xj |X1, X2, · · · , Xj−1) · 1

= H(X1, X2, · · · , Xn)

For the proof of EGφ(
1{si

j
∈Sj

qθ,κ(sij)
) = 1, please refer to [Kool

et al., 2019b], appendix D.

D PROOF OF LOWER VARIANCE OF
THE STEPWISE ENTROPY
ESTIMATOR

We will continue using the notations from above. We want
to compare the variance of the two entropy estimator Ĥ
and the stepwise entropy estimator ĤD and show that the
second estimator has lower variance.

Proof. We abuse EXj to be EXj |X1,...,Xj−1
and VarXj to

be VarXj |X1,...,Xj−1
to simplify the notations.

VarX1,X2,··· ,Xn(
1

|S|
∑
i∈|S|

n∑
j=1

H(Xj |X1 = xi1, . . . ,

Xj−1 = xij−1))

=
1

|S|2
∑
i∈|S|

n∑
j=1

VarX1,X2,··· ,Xn(H(Xj |X1 = xi1, . . . ,

Xj−1 = xij−1))

=
1

|S|2
∑
i∈|S|

n∑
j=1

(E(H2(Xj |X1 = xi1, . . . , Xj−1 = xij−1))

− E2(H(Xj |X1 = xi1, . . . , Xj−1 = xij−1)))

=
1

|S|2
∑
i∈|S|

n∑
j=1

(EX1,··· ,Xj−1E2
Xj (logP (Xj |X1 = xi1,

. . . , Xj−1 = xij−1))

− E2
X1,··· ,Xj−1

EXj (logP (Xj |X1 = xi1, . . . ,

Xj−1 = xij−1)))

=
1

|S|2
∑
si∈S

n∑
j=1

(EX1,··· ,Xj−1
(EXj (log

2 P (Xj |X1 = xi1,

. . . , Xj−1 = xij−1))

−VarXj (logP (Xj |X1 = xi1, . . . , Xj−1 = xij−1)))

− E2
X1,··· ,Xj−1

EXj (logP (Xj |X1 = xi1, . . . ,

Xj−1 = xij−1)))

=
1

|S|2
∑
i∈|S|

n∑
j=1

(EX1,··· ,Xj (log
2 P (Xj |X1 = xi1, . . . ,

Xj−1 = xij−1))

− E2
X1,··· ,Xj (logP (Xj |X1 = xi1, . . . , Xj−1 = xij−1)))

− EX1,··· ,Xj−1
VarXj (logP (Xj |X1 = xi1, . . . ,

Xj−1 = xij−1))

=
1

|S|2
∑
i∈|S|

n∑
j=1

(VarX1,··· ,Xj (logP (Xj |X1 = xi1, . . . ,

Xj−1 = xij−1))

− EX1,··· ,Xj−1
VarXj (logP (Xj |X1 = xi1, . . . ,

Xj−1 = xij−1))

≤ 1

|S|2
∑
i∈|S|

n∑
j=1

VarX1,··· ,Xj (logP (Xj |X1 = xi1, . . . ,

Xj−1 = xij−1))

= VarX1,X2,··· ,Xn(
1

|S|
∑
i∈|S|

logP (si))

The fifth equation holds from the fact that
E2
XEY |X [f(X,Y)] = E2

X,Y [f(X,Y)]. The result
still stands after applying reweighting for the beam search.

E SHAPE ENCODING DEMONSTRATION

In Figure 1, we show the code name on top of the image that
it represents. c, s, and t represent circle, square and triangle
respectively. The first two numbers represent the position of

c(8,16,8) c(16,16,12) c(40,16,12) c(24,48,8) c(24,32,20) c(32,32,16) c(32,40,20) c(48,16,8) c(24,40,16)

t(8,16,8) t(16,16,12) t(40,16,12) t(24,48,8) t(24,32,20) t(32,32,16) t(32,40,20) t(48,16,8) t(24,40,16)

s(8,16,8) s(16,16,12) s(40,16,12) s(24,48,8) s(24,32,20) s(32,32,16) s(32,40,20) s(48,16,8) s(24,40,16)

Figure 1: Each shape encoding is on top of the image it represents.

s(24,16,8)s(40,16,8)+s(32,32,20)+c(32,48,12)-s(32,40,12)-

s(32,32,20)t(48,56,8)-s(24,16,16)-s(32,40,12)-s(32,40,12)-

s(32,32,20)c(48,8,8)-c(32,40,12)-c(32,32,12)-

s(32,32,16)t(16,24,8)+t(48,24,8)+t(32,48,24)-c(32,32,8)-

t(40,48,8)t(24,48,8)+s(32,32,20)+s(32,32,16)-

s(32,32,12)s(24,8,8)-s(48,32,8)+s(16,32,8)+c(32,40,12)-

t(32,48,8)t(24,16,8)+t(40,16,8)+t(32,32,8)+s(32,40,8)+ t(24,48,8)s(40,48,8)t(40,32,8)++t(40,16,8)+s(32,40,12)+

s(32,32,20)t(56,8,8)-s(24,16,16)-s(32,40,8)-s(24,16,16)- s(32,32,20)t(48,56,12)-s(32,40,12)-s(24,16,16)-c(40,16,8)+

Target TargetOutput Output

Figure 2: Additional test output with corresponding programs. The odd-numbered columns contain the target images and the images to
their right are example outputs.

the shape in the image and the last number represents the
size.

F ADDITIONAL TEST OUTPUT
EXAMPLES FOR THE 2D CAD
DATASET

In this section, we include additional enlarged test outputs
(Figure 2). We add the corresponding output program be-
low each target/output pair. We observe that the algorithm
approximates thin lines with triangles in some cases. Our
hypothesis for the cause is the Chamfer Distance reward
function being a greedy algorithm and it finds the matching
distance based on the nearest features.

	Grammar Tree LSTM Guide
	Sampling Without Replacement
	Proof of Stepwise Entropy Estimation's Unbiasness
	Proof of Lower Variance of the Stepwise Entropy Estimator
	Shape Encoding Demonstration
	Additional Test Output Examples for the 2D CAD Dataset

