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Abstract

Program synthesis has emerged as a successful
approach to the image parsing task. Most prior
works rely on a two-step scheme involving super-
vised pretraining of a Seq2Seq model with syn-
thetic programs followed by reinforcement learn-
ing (RL) for fine-tuning with real reference images.
Fully unsupervised approaches promise to train
the model directly on the target images without re-
quiring curated pretraining datasets. However, they
struggle with the inherent sparsity of meaningful
programs in the search space. In this paper, we
present the first unsupervised algorithm capable of
parsing constructive solid geometry (CSG) images
into context-free grammar (CFG) without pretrain-
ing via non-differentiable renderer. To tackle the
non-Markovian sparse reward problem, we com-
bine three key ingredients—(i) a grammar-encoded
tree LSTM ensuring program validity (ii) entropy
regularization and (iii) sampling without replace-
ment from the CFG syntax tree. Empirically, our
algorithm recovers meaningful programs in large
search spaces (up to 3.8 × 1028). Further, even
though our approach is fully unsupervised, it gen-
eralizes better than supervised methods on the syn-
thetic 2D CSG dataset. On the 2D computer aided
design (CAD) dataset, our approach significantly
outperforms the supervised pretrained model and
is competitive to the refined model.

1 INTRODUCTION

Image generation is extensively studied in machine learning
and computer vision literature. Vast numbers of papers have
explored image generation through low-dimensional latent
representations [Goodfellow et al., 2014, Arjovsky et al.,
2017, Li et al., 2017, Kingma and Welling, 2013, van den

Oord et al., 2017, Oord et al., 2016]. However, it is challeng-
ing to learn disentangled representations that allow control
over each component of the generative models separately
[Higgins et al., 2017, Kim and Mnih, 2018, Locatello et al.,
2018, Chen et al., 2016]. In this paper, we tackle the prob-
lem of CFG program generation from constructive solid
geometry (CSG) [Hubbard, 1990] and computer aided de-
sign (CAD) images, which are commonplace in engineering
and design applications. Parsing a geometric image into a
CFG program not only enables selective manipulations of
the desired components while preserving the rest, but also
provides a human-readable alternative to the opaque low-
dimensional representations generated by neural networks.
Our model for extracting the programs can be viewed as an
encoder and the renderer that reconstructs the image as a
decoder. We focus on a non-differentiable renderer (most
design software are non-differentiable, e.g. Blender and Au-
todesk). They are more common than differentiable ones [Li
et al., 2018, Liu et al., 2019, Kania et al., 2020], but they are
also more challenging to work with neural networks because
their discrete nature cannot be integrated into the network
and the gradients w.r.t. the rendered images are inaccessible.

A common scheme for parsing images (e.g. CSG images)
into programs (e.g. CFG programs) for non-differentiable
renderers involves two steps: first use synthetic images with
ground-truth programs for supervised pretraining, followed
by REINFORCE fine-tuning [Sharma et al., 2018, Ellis et al.,
2019] on the target image dataset. Sampling programs from
a grammar can provide data suitable for supervision if the
target images are restricted to combinations of geometric
primitives specified in the grammar. There are two limita-
tions of supervised methods. Firstly, it maximizes the likeli-
hood of a single reference program while penalizing many
other correct programs [Bunel et al., 2018] using maximum
likelihood estimation (MLE). This observation is known as
program aliasing and it adversely affects supervise learn-
ing’s performance. Secondly, it does not generalize well to
the test images not generated by the grammar. REINFORCE
fine-tuning is proposed to remedy the two limitations [Bunel
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et al., 2018, Sharma et al., 2018]. The transition between
the supervised pretraining and REINFORCE fine-tuning is
delicate, however, because the model is sensitive to bad gra-
dient updates that cause the grammar structure to collapse
among the generated programs. Additionally, the quality
of the curated pretraining dataset can limit the downstream
model’s ability to generalize.

In this paper, however, we focus on the more interesting
and more challenging unsupervised task, when ground-truth
programs of the images are not available for training. Com-
pared with the supervised pretrained alternative, unsuper-
vised image parsing is under explored. The benefits of an
unsupervised approach are:

• Train directly on the target domain. Instead of train-
ing on a curated synthetic dataset that mimic the target
dataset, e.g. combinations of geometric shapes speci-
fied in the CFG imitating a CAD dataset exceeding the
primitives of the grammar, we can train directly on the
target images. The synthetic dataset may not reflect the
target image dataset accurately and can subsequently
lead to insufficient generalization during test time.

• Treat all correct programs equally. When multiple
programs correspond to the reconstruction of the same
image, while supervised methods only optimize for pro-
grams included in the synthetic ground-truth dataset,
the equivalent programs receive equal rewards under
RL.

Despite the benefits, designing an approach without super-
vised pretraining is challenging. Because of the problem’s
discrete nature, we rely on tools from reinforcement learn-
ing, such as REINFORCE. However, the program space
grows exponentially with the length of the program and
valid programs are too sparse in the search space to be sam-
pled frequently enough to learn. Training with the naive
REINFORCE provides no performance gain in our experi-
ments. RL techniques such as Hindsight Experience Replay
[Andrychowicz et al.] that mitigate the sparse reward prob-
lem cannot be applied here due to the Markov assumption
on the model. We improve the sample efficiency of the RE-
INFORCE algorithm and show that our improved approach
achieves competitive results to a two-step model. We further
demonstrate that our method generalizes better on a syn-
thetic 2D CSG dataset than a supervised method. On a 2D
CAD dataset, which was NOT generated by CFG and thus
cannot be captured sufficiently by a synthetic dataset, our
method exceeds the results of a pretrained model by a large
margin and performs competitively to the refined models.

Here we summarize the key ingredients that help success-
fully learn to parse an image without program supervision
while using a non-differentiable renderer without direct gra-
dient propagation w.r.t. the rendered images:

• We incorporate a grammar-encoded tree LSTM to

impose a structure on the search space such that the
algorithm is sampling a path in the CFG syntax tree top-
down. This guarantees validity of the output program.

• We propose an entropy estimator suitable for sam-
pling top-down from a syntax tree to encourage explo-
ration of the search space by entropy regularization.

• Instead of relying on naive Monte Carlo sampling, we
adopt sampling without replacement from the syn-
tax tree to obtain better entropy estimates and REIN-
FORCE objective for faster convergence.

2 RELATED WORK

Program synthesis attracts growing interests from re-
searchers in machine learning. Supervised training is a nat-
ural choice for input/output program synthesis problems
[Parisotto et al., 2016, Chen et al., 2018a, Devlin et al.,
2017, Yin and Neubig, 2017, Balog et al., 2017, Zohar and
Wolf, 2018]. Shin et al. [2018] use the input/output pairs
to learn the execution traces. Bunel et al. [2018] use RL to
address program aliasing, however, supervised pretraining
is still necessary to reap its benefits. Approaches to ensure
valid outputs involve syntax checkers [Bunel et al., 2018]
or constructions of abstract syntactic trees (AST) [Parisotto
et al., 2016, Yin and Neubig, 2017, Kusner et al., 2017,
Chen et al., 2018b]. A graph can also model the information
flow in a program [Brockschmidt et al., 2018].

Vision-as-inverse-graphics focuses on parsing a scene into a
collection of shapes or 3D primitives, e.g. cars or trees, with
parameters, e.g. colors or locations, that imitates the original
scene [Tulsiani et al., 2017, Romaszko et al., 2017, Wu et al.,
2017]. Yao et al. [2018] further manipulate the objects de-
rendered, such as color changes. Stroke-based rendering
creates an image similar to how we write and draw. Some of
the examples are recreating paintings by imitating a painter’s
brush strokes [Huang et al., 2019], drawing sketches of
objects [Ha and Eck, 2017]. SPIRAL [Ganin et al., 2018]
is an adversarially trained deep RL agent that can recreate
MNIST digits and Omniglot characters. Contrary to our
problem, a grammar structure is unnecessary to both vision-
as-inverse-graphics and stroke-based rendering.

Research on converting images to programs relates more
closely to our work [Sharma et al., 2018, Ellis et al., 2019,
2018, Liu et al., 2018, Shin et al., 2019, Beltramelli, 2018,
Kania et al., 2020]. Tian et al. [2019], Kania et al. [2020] in-
corporate differentiable renderers into the learning pipeline
while we treat our renderer as an external process indepen-
dent from the learning process, thus unable to propagate gra-
dient through the renderer. Furthermore, Kania et al. [2020]
construct the parse tree bottom up and pre-determines the
number of leaves, as opposed to top down like ours which is
more general. Ellis et al. [2018] use neural networks to ex-
tract shapes from hand-drawn sketches, formulate the gram-
matical rules as constraints and obtain the final programs
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by optimizing a constraint satisfaction problem. Similarly,
Du et al. [2018] cast the problem of parsing a 3D model
into a CSG tree as a constraint satisfaction problem and
solve by an existing SAT solver. This process can be com-
putationally expensive compared to neural network based
solutions. More relevantly, Sharma et al. [2018] perform
program synthesis by supervised pretraining before RL fine-
tuning to generalize to a CAD dataset. Ellis et al. [2019]
pretrain a policy with supervision from synthetic data and
learns a value function with REINFORCE. Both are used
for pruning unpromising candidates during test time. Their
reward function is binary and cannot approximate images
not generated by a grammar, as opposed to our model.

3 PROPOSED ALGORITHM

CSG Image and CFG Program. We use constructive
solid geometry (CSG) [Hubbard, 1990] to describe an im-
age. The input of our model are images constructed from
geometric shapes (e.g. square, circle, ...) each with a desig-
nated size and location (see Figure 1). The outputs of the
model are context-free grammar (CFG) programs. In the
CFG specification [Sharma et al., 2018], S, T , and P are
non-terminals for the start, operations, and shapes. The rest
are terminals, e.g. + (union), ∗ (intersection), − (subtrac-
tion), and c(48, 16, 8) stands for a circle with radius 8 at
location (48, 16) in the image. Figure 3 contains examples
of CSG images and their corresponding programs. Each line
below is a production rule or just rule for simplicity:

S → E (1)
E → EET |P (2)
T → +| − |∗ (3)
P → SHAPE1|SHAPE2| · · · |SHAPEn. (4)

3.1 LEARNING WITH REINFORCE

A model trained with the REINFORCE objective only
[Sharma et al., 2018] is unable to improve beyond the lowest
reward (Section 4.1.1). We propose three components to en-
able the RL approach to learn in this setting: (i) a tree model
entropy estimator to encourage exploration; (ii) sampling
without replacement in the program space to facilitate opti-
mization and further encourage exploration; (iii) a grammar-
encoded tree LSTM to ensure valid output sequences with
an image stack to provide intermediate feedback. We start
this section by discussing objective and reward function.

Objective Function Our model consists of a CNN encoder
for input images, an embedding layer for the actions, and an
RNN for generating the program sequences (see Figure 1).
The model is trained with entropy regularized REINFORCE
[Williams, 1992]. Here, let H(s) and f(s) stand for the
entropy (we will define this later) and reward function of

sequence s, respectively, and let θ denote the parameters of
the model. The objective is optimized as follows

∆θ ∝ Es∼Pθ(s)[∇θ logP (s)f(s)] + α∇θH(s) (5)

Reward Function The output program s is converted to
an image y by a non-differentiable renderer. The image
is compared to the target image x and receives a reward
f(s) = R(x,y). We use Chamfer Distance (CD) as part of
the reward function. The CD calculates the average match-
ing distance to the nearest feature and is a greedy estimation
of image similarity, unlike Optimal Transport (OT). How-
ever, OT is not computationally feasible for RL purpose.

Algorithm 1 Sampling w/o Replacement Tree LSTM
Input: Target Image x, Number of samples k
Initialize: Grammar stack S, Image stack I , Sample set B

Encode the target image T̃ ← Encode(T )
B = {si0, Gsi0 , φi,0|s

i
0 = ∅, Gsi0 = 0, φi,0 = 0}

for i ∈ 1, 2, · · · k + 1 and H(v) = 0
for j := 1 to n do

Φ:,j ,Hi,j ← TreeLSTM(S, I,B,x) (Algorithm 3)
B← Sample_w/o_Replacement(Φ:,j ,B, k)
(See Algorithm 2 and [Kool et al., 2019] )

ĤD ← ĤD +
∑n
j=1

1
Wj(S)

∑
si∈S

pθ(s
i
j)

qθ,κ(sij)
Hi,j

(Equation 4 in Appendix B)
if sij ∈ G then Si.push(sij)

else Ii.push(sij),∀si ∈ B
end for
yi = Render(si) for i ∈ 1, 2, · · · k
Maximize E[

∑k
i=1R(x,yi)] + αĤD

Formally, let x ∈ x and y ∈ y be pixels in each image
respectively. Then the distance Ch(x,y) is

Ch(x,y) =
1

|x|
∑
x∈x

min
y∈y
||x−y||2+

1

‖y‖
∑
y∈y

min
x∈x
||x−y||2

(6)

The CD is scaled by the length of the image diagonal (ρ)
[Sharma et al., 2018] such that the final value is between 0
and 1. For this problem, the reward 1 − Ch(x,y) mostly
falls between 0.9 and 1. We exponentiate 1− Ch(x,y) to
the power of γ = 20 to achieve smoother gradients [Laud,
2004]. We add another pixel intersection based component
to differentiate shapes with similar sizes and locations. The
final reward function is defined as:

R(x,y) = max(δ, (1− Ch(x,y)

ρ
)γ +

∑
x∈x∩y 1∑
x∈x 1

) (7)

The first and second part of the reward function provide
feedback on the physical distance and similarity of the pre-
diction respectively. We clip the reward below δ = 0.3 to
simplify it when the quality of the generated images are
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Figure 1: This is an example of the grammar encoded tree LSTM at work. The top layer of images demonstrates the image
stack and the bottom layer demonstrates the grammar stack. The blue, orange, yellow and green colored LSTM cell generates
grammatical tokens according to the CFG rule 1, 2, 3 and 4 respectively. In implementation, we can constrain the output
space by adding a mask to the output of the LSTM and render the invalid options with close to zero sampling probability.

poor. A low reward value provides little insight on its perfor-
mance and is largely dependent on its target image. Similar
reward clipping idea was used in DQN [Mnih et al., 2013].

3.2 EXPLORATION WITH ENTROPY
REGULARIZATION

Entropy regularization in RL is a standard practice for en-
couraging exploration. Here we propose an entropy esti-
mation for sampling top-down from a syntax tree. Let S
denote a random variable of possible programs. Its entropy
is defined byH(S) = E[− logP (S)] 1. EstimatingH(S) is
challenging because the possible outcomes of S is exponen-
tially large and we cannot enumerate all of them. Given the
distribution P , the naive entropy estimator is

Ĥ = − 1

K

K∑
i=1

logP (si), (8)

where {si}Ki=1 are iid samples from P . In practice, when
K is not exponentially large, this estimator has huge vari-
ance. We provide an improved estimator designed for
our syntax tree: First, we decompose the program S into
S = X1 . . . Xn, where each Xj is the random variable for
the token at position j in the program. Under autoregressive
models (e.g. RNN), we can access the conditional probabil-
ities, and this allows us to construct decomposed entropy
estimator ĤD as

ĤD =
1

K

K∑
i=1

n∑
j=1

H(Xj |X1 = xi1, · · · , Xj−1 = xij−1),

(9)
1Following Rule (1) and Rule (2) we overload S and P .

where si = xi1, . . . , x
i
n, andH(Xj |X1 = xi1, · · · , Xj−1 =

xij−1) is the conditional entropy. The below lemma states
that ĤD is indeed an improved estimator over Ĥ.

Lemma 3.1. The proposed decomposed entropy estimator
ĤD is unbiased with lower variance, that is E[ĤD] = H(S)
and Var(ĤD) ≤ Var(Ĥ).

The proof can be found in the Appendix C and D.

3.3 EFFECTIVE OPTIMIZATION BY SAMPLING
WITHOUT REPLACEMENT

After establishing our REINFORCE method with entropy
regularization objective, now we show the intuition behind
choosing sampling without replacement (SWOR) over sam-
pling with replacement (SWR). For this explanation, we use
a synthetic example (Figure 2).

We initialize a distribution of m = 100 variables with three
of them having significantly higher probability than the oth-
ers (Figure 2 (2)). The loss function is entropy. Its estimator
is 1
m

∑m
i=1 log pi for SWR and

∑m
i=1

pi
qi

log pi for SWOR.
In both cases, pi is the i-th variable’s probability. qi is the
re-normalized probability after SWOR. piqi is the importance
weighting. The increase in entropy by sampling 20 variables
without replacement is more rapid than 40 variables with
replacement. At the end of the 700 iterations, the distribu-
tion under SWOR is visibly more uniform than the other.
SWOR would achieve better exploration than SWR.

To apply SWOR to our objective, the REINFORCE objec-
tive and the entropy estimator require importance weight-
ings. Let sij denotes the first j elements of sequence si:
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Figure 2: The left most image demonstrates the entropy value increases over 700 iterations by sampling 20 distinct samples
with and without replacement as well as sampling 40 samples with replacement. The second image shows the initial
distribution. The third and fourth images show the final distributions.

∇θEs∼pθ(s)[f(s)] ≈
∑
si∈S

∇θpθ(si)
qθ(si)

f(si) and, (10)

ĤD ≈
n∑
j=1

∑
si∈S

pθ(s
i
j)

qθ(sij)
H(Xj |X1 = xi1, · · · , Xj−1 = xij−1)

(11)

Implementing SWOR on a tree structure to obtain the appro-
priate set of programs S is challenging. It is not practical to
instantiate all paths and perform SWOR bottom-up. Instead,
we adopt a form of stochastic beam search by combining
top-down SWOR with Gumbel trick that is equivalent to
SWOR bottom-up [Kool et al., 2019]. The sampling process
is described in Algorithm 2. For more detailed explanation,
the implementation of the re-normalized probability qθ(si)
as well as some additional tricks of variance reduction for
the objective function, please refer to Appendix B.

3.4 GRAMMAR ENCODED TREE LSTM

We introduce a grammar-encoded tree LSTM which encodes
the production rules into the model, thus guaranteed to gen-
erate correct programs, and significantly reduce the search
space during the training [Kusner et al., 2017, Alvarez-Melis
and Jaakkola, 2016, Parisotto et al., 2016, Yin and Neubig,
2017]. There are 3 types of production rules in the grammat-
ical program generation – shape selection (P ), operation se-
lection (T ), and grammar selection (E). Grammar selection
in this problem setting includes E → EET , and E → P
and they decide whether the program would expand. We
denote the set of shape, operations and non-terminal out-
comes (e.g.EET in Rule (2)) to be P , T and G respectively.
A naive parameterization is to let the candidate set of the
LSTM output to be {S, $}∪T ∪P , where $ is the end token,
and treat it as a standard language model to generate the pro-
gram [Sharma et al., 2018]. The model does not explicitly
encode grammar structures, and expect the model to capture
it implicitly during the learning process. The drawback is

Algorithm 2 Sampling_w/o_Replacement

Input: Log probability at time j Φ:,j Beam Set B,
Number of beams k

function SAMPLING_W/O_REPLACEMENT(Φ:,j ,B, k)
G̃j ← ∅
for sij−1, Gsij−1

∈ B and ~φi,j ∈ Φ:,j do
~Gφi,j ∼ Gumbel(~φi,j)
Zi,j ← max(~Gφi,j )

Calculate ~̃Gφi,j (Equation 2 in Appendix B)
Aggregate the values in the vector G̃φi,j

G̃j ← G̃j ∪ G̃φi,j

end for
Choose top k + 1 values in G̃j ∈ R(k+1)·A

and form the new beam set
B̃ = {sij , Gsij , φ

i
j |sij = s̃ij−1∪s̃ij , Gsij = G̃i,j , φi,j =

logP (sij)} where i ∈ 1, 2, · · · , k + 1

return B̃
end function

Algorithm 3 TreeLSTM Model

Input: Grammar Stack S, Image Stack I ,
Target Image x, Sample Set B

function TREELSTM(S, I,B,x)
x̃← Encode(x)
for sij−1, φi,j−1 ∈ B do

gi ← Si.pop()
g̃i ← Embed(gi)
Ĩi ← Encode(Ii)
Hi,j ← LSTM(g̃i, Ĩi, x̃, Hi,j−1)
pi,j ← softmax(f(Hi,j) + Mask(gi))
Estimate entropy at this level:
Hi,j = p̃i,j · log p̃i,j

Update the log probabilities of partial sequences
~φi,j = ~1 · φi,j−1 + log pi,j

end for
return Φ:,j ,Hi,j

end function

412



target program: c(32,40,20)c(40,16,12)-s(24,40,16)-s(8,16,8)+

target program: t(16,16,12)s(40,16,12)+t(32,40,20)+s(24,32,20)-s(24,40,16)+

Target

Our Algorithm w/o Entropy Sampling w/ 
Replacement

Reward: 2.0 Reward: 1.07 Reward: 0.58 Reward: 0.3 

w/o Tree

Reward: 1.82Target

target program: t(32,32,16)t(40,16,12)-t(24,40,16)-
Reward: 0.3 Reward: 0.78 Reward: 0.78

Reward: 0.42Reward: 2.0 Reward: 0.3 Reward: 1.1Target

(a) Example output of each method

Target Reward: 2.0   Reward: 2.0   Reward: 1.7   Reward: 2.0

Target   Reward: 1.7                Reward: 2.0     Reward: 2.0               Reward: 2.0

Target   Reward: 0.9                Reward: 1.0                Reward: 1.5               Reward: 0.9

Target   Reward: 1.6                Reward: 1.6                Reward: 1.6               Reward: 1.6

Target   Reward: 2.0                Reward: 2.0                Reward: 2.0               Reward: 2.0

(b) Example outputs of sampling without replacement

Figure 3: (a) We show a target image from each dataset and
attach its correct program below. To the right are the recon-
structed output programs from our algorithm and three vari-
ants each removing one design component. The reward is
on top of the reconstructed images. (b) Some reconstructed
example output programs of our algorithm. Each row repre-
sents one data point. The leftmost images of the five columns
are the target images and the four columns to their right are
the reconstructed outputs of four samples. The final output
highlighted in red has the highest reward.

that the occurrence of valid programs is sparse during sam-
pling and it can prolong the training process significantly.

The proposed model can be described as an RNN model
with a masking mechanism by maintaining a grammar stack
to rule out invalid outputs. We increase the size of the total
output space from 2+|P|+|T | of the previous approach (e.g.
[Sharma et al., 2018]) to 2 + |P|+ |T |+ |G| by including
the non-terminals. During the generation, we maintain a
stack to trace the current production rule. Based on the
current non-terminal and its corresponding expansion rules,
we use the masking mechanism to weed out the invalid
output candidates. Take the non-terminal T for example, we
mask the invalid outputs to reduce the candidate size from
2 + |P|+ |T |+ |G| to |T | only. In this process, the model
will produce a sequence of tokens, including grammatical,
shape and operation tokens. We only keep the terminals as
the final output program and discard the rest. The resulting
programs are ensured to be grammatically correct. During
the generation process, grammatical tokens are pushed onto
the grammar stack while intermediate images and operations
are pushed onto an image stack. Images in the image stack
are part of the input to the LSTM to aid the inference in the
search space. A step-by-step guide through the tree LSTM
for better understanding is in Appendix A and Figure 1 is a
visual representation of the process.

4 EXPERIMENTS

There are two datasets we used for experiments – a syn-
thetic dataset generated by the CFG specified in Section 3
and a 2D CAD furniture dataset. We compared the result
of our algorithm to that of the same neural network trained
with supervision of ground-truth programs. We observed
that the supervised model shows poorer generalization in
both datasets despite its access to additional ground-truth
programs. We provide qualitative and quantitative ablation
study of our algorithm on the synthetic dataset. We also
showed that our algorithm can approximate the CAD im-
ages with programs despite not having exact matches. On
the CAD furniture dataset, it outperforms the supervised
pretrained model and achieves competitive result to the re-
fined model. Additionally, we verify empirically that the
stepwise entropy estimator (Equation 9) indeed has smaller
variance than the naive estimator (Equation 8) as proven in
Lemma 3.1.

4.1 SYNTHETIC DATASET STUDY

We use three synthetic datasets to test our algorithm. The
action space includes 27 shapes (Figure 1), 3 operations and
2 grammar non-terminals to create a 64 by 64 images. The
search space for an image up to 3 shapes (or program length
5) is around 1.8×105 and it gets up to 1.1×109 for 5 shapes
(or program length 9). We separate our dataset by the length
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Type Length 5 Length 7 Length 9 2D CAD
Training set size 3600 4800 12000 10000
Testing set size 586 789 4630 3000

Table 1: Dataset statistics.

of the program to differentiate images with increasing com-
plexity. Our synthetic dataset is generated by filtering out
the duplicates and empty images in combinations of shape
and operation actions in text. Images are considered dupli-
cates if only 120 pixels are different between the two and
are considered empty if there are no more than 120 pixels
in the image. Table 1 contains the dataset size information.

4.1.1 Ablation Study of Design Components

For these 3 datasets, we sampled 19 programs without re-
placement for each target image during training. The nega-
tive entropy coefficient is 0.05 and the learning rate is 0.01.
We use SGD with 0.9 momentum.

Removing either one of the three design components has
reduced the performance of our algorithm. Under sampling
with replacement setting, the model is quickly stuck at a lo-
cal optimum (Figure 4 (yellow)). Without the entropy term
in the objective function, the reward function is only able to
improve on the length 5 dataset but fails to do so on longer
programs. Both techniques have facilitated exploration that
helps the model to escape local minimum. Without tree
structure, the reward stays around the lowest reward (Figure
4 (green)) because the program is unable to generate valid
programs. Grammar encoded tree LSTM effectively con-
straints the search space such that the sampled programs are
valid and can provide meaningful feedback to the model.

We allow variations in the generated programs as long as
the target images can be recovered, thus we evaluate the pro-
gram quality in terms of the reconstructed image’s similarity
to the target image. We measure our converged algorithm’s
performance (Table 2) on the three test sets with Cham-
fer and IoU reward metrics (Equation 7 first and second
term). The perfect match receives 1 in both metrics. Figure
3 provides some qualitative examples on the algorithms.

4.1.2 Comparison With Supervised Training

We compare a supervised learning method’s train and test
results on the synthetic dataset, using the same neural net-
work model as in the unsupervised method. The input at
each step is the concatenation of embedded ground truth
program and the encoded final and intermediate images.
We use the same Chamfer reward metric as in Table 2 to
measure the quality of the programs. The test results of the
supervised method worsen with the increasing complexity
(program length) while the train results are almost perfect

Test Metric Length 5 Length 7 Length 9
Chamfer Reward ↑ 0.98 0.96 0.96

IoU Reward ↑ 0.99 0.96 0.96

Table 2: The performance of the converged model of our
algorithm on the test set measured with Chamfer reward and
IoU reward.

across all three datasets. The unsupervised method receives
consistently high scores and generalizes better to new data
in comparison to the supervised method (Table 3). This phe-
nomenon can be explained by program aliasing [Bunel et al.,
2018]. The RL method treats all correct programs equally
and directly optimizes over the reward function in the image
space while the supervised method is limited to the content
of the synthetic dataset and only optimizes over the loss
function in the program space.

4.1.3 Supervised Pretrained On Limited Data With
REINFORCE Fine-tuning

In this experiment we pretrained the supervised model on
a third of the synthetic training dataset till convergence.
We take the model and further fine-tune it with vanilla RE-
INFORCE on the full training sets. We report the reward
throughout fine-tuning process (Figure 5) and it dropped
sharply in all three datasets. Our explanation is that while
the output of the original supervised pretrained model fol-
low grammatical structures, they are not able to retain the
structure consistently after updates during the refinement
process, which leads to the collapse.

4.2 2D CAD FURNITURE DATASET STUDY

The dataset used in this experiment is a 2D CAD dataset
[Sharma et al., 2018] that contains binary 64× 64 images
of various furniture items. We apply our algorithm to this
problem with an action space of 396 basic shapes plus the
operations and grammatical terminals described in Section 3.
We limit the number of LSTM iterations to 24 steps, which
corresponds to a maximum of 6 shapes. For an image up
to 6 shapes the search space is 9.4 × 1017. If we remove
the grammar-encoded tree structure, the search space is
3.8× 1028. In order to scale up to such a big search space
from the synthetic experiment, we increase the number of
programs sampled without replacement to 550. The higher
number usually corresponds to faster convergence and bet-
ter performance at convergence but the performance gain
diminishes at around 500 for this problem. The learning
rate and entropy values used are 0.01 and 0.007 respectively.
We train the model with only the Chamfer reward (first part
of the Equation 7) because these images are not generated
by CFG and exact matching solutions do not exist. During
training, the reward converges to 0.72. Qualitative results
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Figure 4: From left to right, we have reward per batch for programs of length 5, 7 and 9. It demonstrates the performance of
our algorithm and controlled comparison in performance with alternative algorithms by removing one component at a time.
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Figure 5: REINFORCE fine-tuning with pretrained model.

Chamfer Reward ↑ length 5 length 7 length 9
Training 1.00 1.00 0.99
Testing 0.99 0.91 0.83

Table 3: Supervised training results.

are reported from the train and test set (Figure 6). The pro-
gram reconstructions are able to capture the overall profile
of the target images. However, the cutouts and angles de-
viate from the original because the shape actions consist
solely of unrotated squares, perfect circles and equilateral
triangles.

4.2.1 Comparison With Supervised Pretraining

In this section, we measure the image similarity directly in
Chamfer Distance (CD) (Equation 6) for comparison. We
pretrained a model on 300k, 150k and 30k ground truth
programs (including duplicates) each with learning rate of
0.001. We selected the pretrained models that reaches the
lowest CD (at 1.41, 2.00, 2.79 respectively) on a synthetic
validation set. We further fine-tuned the pretrained models
on the CAD dataset with learning rate 0.006. The transi-

Chamfer Distance ↓ k = 1 k =3 k = 5
30k Supervised Model 4.09 3.38 3.02
30k RL Refined Model 1.92 1.83 1.79

30k SWOR RL Refined Model 1.96 1.82 1.77
150k Supervised Model 3.64 2.89 2.63
150k RL Refined Model 1.91 1.79 1.73

150k SWOR RL Refined Model 1.93 1.79 1.73
300k Supervised Model 3.32 2.69 2.38
300k RL Refined Model 1.66 1.54 1.50

300k SWOR RL Refined Model 1.65 1.53 1.49
Unsupervised Model 1.51 1.48 1.47

Table 4: Empirical comparison of supervised model pre-
trained on 30k, 150k and 300k programs, their fine-tuned
models and our model on 2D CAD dataset with Chamfer
distance

tion between pretraining and fine-tuning is delicate. The
grammar structure of the output programs (Figure 5) col-
lapses when we set the learning rate to be 0.01 (as opposed
to 0.006) or fine-tune an unconverged pretrain model. Our
model was trained directly on the CAD dataset without
supervision with learning rate of 0.01 and entropy coeffi-
cient (ec) of 0.009. Entropy coefficient trades off between
exploitation and exploration. Higher ec leads to slower con-
vergence but the model is less likely to be stuck at local
optimum. Setting ec in the range between 0.005 and 0.012
for this problem has not impact the result significantly. We
report the result of the three pretrained models, vanilla RL
fine-tuned models, SWOR RL fine-tuned models as well as
our model after beam search with k = 1, 3, 5 in Table 4.

The poor performance of the pretrained model shows that it
is not able to directly generalize to the novel dataset due to
the mismatch of the training dataset and the CAD dataset.
The unsupervised method exceeds the performance of a
supervised model by a large margin because it was trained
directly on the target domain. It also removes the hyper-
parameter tuning step in transition to the RL fine-tuning
and reaches a result competitive to a refined model. The
unsupervised method performs better when k = 1, 3 than
the fine-tuned models. At convergence, the results of the
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Figure 7: Compare the entropy estimation following the Equation 4 as a weighted sum of stepwise entropy versus taking
the average of the sequence log probability. The number of samples varies from 2 to 80 on the x-axis. The shaded area
represents the standard deviation of each estimator. From left to right, we demonstrate the result on datasets of three program
lengths.

fine-tuned model pretrained on 300k synthetic data and the
unsupervised model become very close at k = 5. The two
types of refined models reach similar result given same
amount of pretraining synthetic data – poorer performance
on less data – confirming that the quality of the pretraining
dataset is a limiting factor for the downstream models.

4.3 VARIANCE STUDY OF ENTROPY
ESTIMATION

This study (Figure 7) investigates the empirical relationship
between the two variance estimators and verifies Lemma
3.1 that ĤD achieves lower variance than Ĥ (Section 3.2).

We take a single model saved at epoch 40 during the training
time of the length 5, 7, and 9 dataset and estimate the entropy
with ĤD (Equation 9) and Ĥ (Equation 8). We consider
two sampling schemes: with and without replacement. We
combine both entropy estimation methods with the two
sampling schemes creating four instances for comparisons.
The x-axis of the plot documents the number of samples to
obtain a single estimation of the entropy. We further repeat
the estimation 100 times to get the mean and variance. The
means of SWR method act as a baseline for the means of
the SWOR while we compare the standard deviations (the
shaded area) of the two entropy estimation methods.

Across all three datasets, ĤD (green) shows significantly

smaller variance with the number of samples ranges from 2
to 80. But we notice that longer programs, or more complex
images, require much more samples to reduce variance. This
makes sense because the search space increases exponen-
tially with the program length. The initial bias in the SWOR
estimation dissipates after the number of samples grows
over 10 and is greater in dataset with longer program length.

5 DISCUSSION

Current program synthesis approaches for non-differentiable
renderers employ a two-step scheme which requires the
user to first generate a synthetic dataset for pretraining and
then use RL fine-tuning with target images. A purely RL-
driven approach does not require the curation of a pretrain-
ing dataset and can learn directly from target images. Fur-
ther, unlike approaches that rely on supervised pretraining,
the RL approach does not restrict the model to only the
program(s) in the synthetic dataset when multiple equal re-
constructions exist. This limitation of the pretraining dataset
can further impact the downstream models’ ability to gen-
eralize. In this paper we introduced the first unsupervised
algorithm capable of parsing CSG images—created by a
non-differentiable renderer—into CFG programs without
pretraining. We do so by combining three key ingredients
to improve the sample efficiency of a REINFORCE-based
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algorithm: (i) a grammar-encoded tree LSTM to constrain
the search space; (ii) entropy regularization for trading off
exploration and exploitation; (iii) sampling without replace-
ment from the CFG syntax tree for better estimation. Our
ablation study emphasizes the qualitive and quantitative con-
tributions of each design component. Even though our RL
approach does not have access to a pretraining dataset it
achieves stronger performance than a supervised method
on the synthetic 2D CSG dataset. It further outperforms the
supervised pretrained model on the novel 2D CAD dataset
and is competitive to the RL fine-tuned model.
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