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Abstract

We provide a new convergence analysis of stochas-
tic gradient Langevin dynamics (SGLD) for sam-
pling from a class of distributions that can be non-
log-concave. At the core of our approach is a novel
conductance analysis of SGLD using an auxiliary
time-reversible Markov Chain. Under certain con-
ditions on the target distribution, we prove that
Õ(d4ε−2) stochastic gradient evaluations suffice
to guarantee ε-sampling error in terms of the total
variation distance, where d is the problem dimen-
sion. This improves existing results on the conver-
gence rate of SGLD [Raginsky et al., 2017, Xu
et al., 2018]. We further show that provided an
additional Hessian Lipschitz condition on the log-
density function, SGLD is guaranteed to achieve
ε-sampling error within Õ(d15/4ε−3/2) stochastic
gradient evaluations. Our proof technique provides
a new way to study the convergence of Langevin
based algorithms, and sheds some light on the de-
sign of fast stochastic gradient based sampling al-
gorithms.

1 INTRODUCTION

We study the problem of sampling from a target distribu-
tion using Langevin dynamics [Langevin, 1908] based al-
gorithms. Mathematically, Langevin dynamics (a.k.a., over-
damped Langevin dynamics) is defined by the following
stochastic differential equation (SDE)

dX(t) = −∇f
(
X(t)

)
dt+

√
2β−1dB(t), (1.1)

where β > 0 is called the inverse temperature parameter and
B(t) ∈ Rd is the Brownian motion at time t. It has been
proved in Chiang et al. [1987], Roberts and Tweedie [1996]
that under certain conditions on the drift term −∇f(X(t)),
the Langevin dynamics will converge to a unique stationary

distribution π(dx) ∝ e−βf(x)dx. To approximately sample
from such a target distribution π, we can apply the Euler-
Maruyama discretization onto (1.1), leading to the Langevin
Monte Carlo algorithm (LMC), which iteratively updates
the parameter xk as follows

xk+1 = xk − η∇f(xk) +
√

2ηβ−1 · εk, (1.2)

where k = 0, 1, . . . denotes the time step, {εk}k=0,1,... are
i.i.d. standard Gaussian random vectors in Rd, and η > 0 is
the step size of the discretization.

In large scale machine learning problems that involve a large
amount of training data, the log-density function f(x) can
be typically formulated as the average of the log-density
functions over all the training data points, i.e., f(x) =
n−1

∑n
i=1 fi(x)1, where n is the size of training dataset and

fi(x) denotes the log-density function for the i-th training
data point. In these problems, the computation of the full
gradient over the entire dataset can be very time-consuming.
In order to save the cost of gradient computation, one can
replace the full gradient ∇f(x) with a stochastic gradient
computed only over a small subset of the dataset, which
gives rise to stochastic gradient Langevin dynamics (SGLD)
[Welling and Teh, 2011].

When the target distribution π is log-concave, SGLD prov-
ably converges to π at a sublinear rate in 2-Wasserstein
distance [Dalalyan and Karagulyan, 2019, Dalalyan, 2017a,
Wang et al., 2019]. However, it becomes much more chal-
lenging to establish the convergence of SGLD when the
target distribution is not log-concave. When the negative
log-density function f(x) is smooth and dissipative, the
global convergence guarantee of SGLD has been firstly es-
tablished in Raginsky et al. [2017]2 via the optimal control

1In some cases, the log-density function f(x) is formulated as
the sum of the log-density functions for training data points instead
of the average. To cover these cases, we can simply transform the
temperature parameter β → nβ and thus the target distribution
remains the same.

2Although this paper mainly focuses on the convergence anal-
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theory and further improved in Xu et al. [2018] by a di-
rect analysis of the ergodicity of LMC. Nonetheless, these
two works require extremely large mini-batch size (e.g.,
B = Ω(ε−4)) to ensure sufficiently small sampling error,
which is prohibitively large or even unrealistic compared
with the practical setting. Zhang et al. [2017] studied the
hitting time of SGLD for nonconvex optimization, but can
only provide the convergence guarantee for finding a local
minimum rather than converging to the target distribution.
Recently, Chau et al. [2019], Zhang et al. [2019] studied
the global convergence of SGLD for nonconvex stochas-
tic optimization problems and proved faster convergence
rates than those in Raginsky et al. [2017], Xu et al. [2018].
However, their convergence results require an additional
Lipschitz condition in terms of the input data (rather than
the model parameter) on the stochastic gradients, which
restricts their applications to a small class of SGLD-based
sampling problems.

In this paper, we consider the same setting in Raginsky et al.
[2017], Xu et al. [2018] and aim to establish faster con-
vergence rates for SGLD with an arbitrary mini-batch size.
In particular, we provide a new convergence analysis for
SGLD based on an auxiliary time-reversible Markov chain
called Metropolized SGLD [Zhang et al., 2017], which is
constructed by adding a Metropolis-Hasting step to SGLD3.
The key idea is that as long as the transition kernel of the
constructed Metropolized SGLD chain is sufficiently close
to that of SGLD, we can prove the convergence of SGLD to
the target distribution. Compared with existing proof tech-
niques that typically take LMC or Langevin dynamics as
an auxiliary sequence, the advantage of using Metropolized
SGLD as the auxiliary sequence is that it is closer to SGLD
in distribution as its transition distribution also covers the
randomness of stochastic gradients, thus can better char-
acterize the convergence behavior of SGLD and lead to
sharper convergence guarantees. To sum up, we highlight
our main contributions as follows:

• We provide a new convergence analysis of SGLD for
sampling a large class of distributions that can be non-
log-concave. In contrast to Raginsky et al. [2017], Xu
et al. [2018] that require a very large mini-batch size, our
convergence guarantee holds for an arbitrary choice of
mini-batch size.

• We prove that SGLD can achieve ε-sampling error in
total variation distance within Õ(d4β2ρ−4ε−2) stochastic
gradient evaluations, where d is the problem dimension, β
is the inverse temperature parameter, and ρ is the Cheeger
constant (See Definition 4.2) of a truncated version of
the target distribution. We also prove the convergence of

ysis of SGLD for nonconvex optimization, part of its theoretical
results also reveal the convergence rate for sampling from a target
distribution.

3This Markov chain is practically intractable and is only used
for the sake of theoretical analysis.

SGLD under the measure of polynomial growth functions,
which suggests that the number of required stochastic
gradient evaluations is Õ(ε−2). This improves the state-
of-the-art result proved in Xu et al. [2018] by a factor of
Õ(ε−3).

• We further establish sharper convergence guarantees for
SGLD under an additional Hessian Lipschitz condition
on the negative log density function f(x). We show that
Õ(d15/4β7/4ρ−7/2ε−3/2) stochastic gradient evaluations
suffice to achieve ε-sampling error in total variation dis-
tance. Our proof technique is much simpler and more
intuitive than existing analysis for proving the conver-
gence of Langevin algorithms under the Hessian Lipschitz
condition [Dalalyan and Karagulyan, 2019, Mou et al.,
2019, Vempala and Wibisono, 2019], which can be of
independent interest.

Notation. We use the notation x ∧ y and x ∨ y to de-
note min{x, y} and max{x, y} respectively. We denote by
B(u, r) the Euclidean of radius r > 0 centered at u ∈ Rd.
For any distribution µ and set A, we use µ(A) to denote the
probability measure of A under the distribution µ. For any
two distributions µ and ν, we use ‖µ−ν‖TV andDKL(µ, ν)
to denote the total variation distance and Kullback–Leibler
divergence between µ and ν respectively. For u,v ∈ Rd,
we use Tu(v) to denote the probability of transiting to v
after one step SGLD update from u. Similarly, Tu(A) and
TA′(A) are the probabilities of transiting to a set A ⊆ Rd
after one step SGLD update starting from u and the set
A′ respectively. For any two sequences {an} and {bn}, we
denote an = O(bn) and an = Ω(bn) if an ≤ C1bn or
an ≥ C2bn for some absolute constants C1 and C2. We use
notations Õ(·) and Ω̃(·) to hide polylogarithmic factors in
O(·) and Ω(·) respectively.

2 RELATED WORK

Markov Chain Monte Carlo (MCMC) methods, such as ran-
dom walk Metropolis [Mengersen et al., 1996], ball walk
[Lovász and Simonovits, 1990], hit-and-run [Smith, 1984]
and Langevin algorithms [Parisi, 1981], have been exten-
sively studied for sampling from a target distribution, and
widely used in many machine learning applications. There
are a large number of works focusing on developing fast
MCMC algorithms and establishing sharp theoretical guar-
antees. We will review the most related works among them
due to the space limit.

Langevin dynamics (1.1) based algorithms have recently
aroused as a promising method for accurate and efficient
Bayesian sampling in both theory and practice [Welling
and Teh, 2011, Dalalyan, 2017b]. The non-asymptotic con-
vergence rate of LMC has been extensively investigated in
the literature when the target distribution is strongly log-
concave [Durmus and Moulines, 2016, Dalalyan, 2017b,



Durmus et al., 2017b], weakly log-concave [Dalalyan,
2017a, Mangoubi and Vishnoi, 2019], and non-log-concave
but admits certain good isoperimetric properties [Raginsky
et al., 2017, Ma et al., 2018, Lee et al., 2018, Xu et al.,
2018, Vempala and Wibisono, 2019], to mention a few. The
stochastic variant of LMC, i.e., SGLD, is often studied to-
gether in the above literature and the convex/nonconvex
optimization field [Raginsky et al., 2017, Zhang et al., 2017,
Xu et al., 2018, Gao et al., 2018, Chen et al., 2019a, Deng
et al., 2020]. Another important Langevin based algorithm
is the Metropolis Adjusted Langevin Algorithms (MALA)
[Roberts and Tweedie, 1996], which is developed by intro-
ducing a Metropolis-Hasting step into LMC. Theoretically,
it has been proved that MALA converges to the target dis-
tribution at a linear rate for sampling from both strongly
log-concave [Dwivedi et al., 2018] and non-log-concave
[Bou-Rabee and Hairer, 2013] distributions.

Beyond first-order MCMC methods, there has also emerged
extensive work on high-order MCMC methods. One pop-
ular algorithm among them is Hamiltonian Monte Carlo
(HMC) [Neal et al., 2011], which introduces a Hamilto-
nian momentum and leapfrog integrator to accelerate the
mixing rate. From the theoretical perspective, Durmus et al.
[2017a] established general conditions under which HMC
can be guaranteed to be geometrically ergodic. Mangoubi
and Vishnoi [2018, 2019] proved the convergence rate of
HMC for sampling both log-concave and non-log-concave
distributions. Bou-Rabee et al. [2018], Chen et al. [2019b]
studied the convergence of Metropolized HMC (MHMC)
for sampling strongly log-concave distributions. Another
important high-order MCMC method are built upon the
underdamped Langevin dynamics, which incorporates the
velocity into the Langevin dynamics (1.1). For continuous-
time underdamped Langevin dynamics, its mixing rate has
been studied in Eberle [2016], Eberle et al. [2017]. The
convergence of its discrete version has also been widely
studied for sampling from both log-concave [Chen et al.,
2017, Zou et al., 2018] and non-log-concave distributions
[Chen et al., 2015, Cheng et al., 2018, Gao et al., 2018, Zou
et al., 2019b].

3 REVIEW OF THE SGLD ALGORITHM

For the completeness, we present the SGLD algorithm
[Welling and Teh, 2011] in Algorithm 1, which is built upon
the Euler-Maruyama discretization of the continuous-time
Langevin dynamics (1.1) while using mini-batch stochastic
gradient in each iteration.

In the k-th iteration, SGLD samples a mini-batch of data
points without replacement, denoted by I , and computes the
stochastic gradient at the current iterate xk, i.e., g(xk, I) =
1/B

∑
i∈I ∇fi(xk), where B = |I| is the mini-batch size.

Based on the stochastic gradient, the model parameter is

Algorithm 1 Stochastic Gradient Langevin Dynamics
(SGLD)

input: step size η; mini-batch sizeB; inverse temperature
parameter β;
Randomly draw x0 from initial distribution µ0.
for k = 0, 1, . . . ,K do

Randomly pick a subset I from {1, . . . , n} of size
|I| = B; randomly draw εk ∼ N(0, I)
Compute the stochastic gradient g(xk, I) =
1/B

∑
i∈I ∇fi(xk)

Update: xk+1 = xk − ηg(xk, I) +
√

2η/βεk
end for
output: xK

updated using the following rule,

xk+1 = xk − ηg(xk, I) +
√

2η/β · εk,

where εk is randomly drawn from a standard normal distri-
bution N(0, I) and η > 0 is the step size.

4 MAIN RESULTS

In this section, we present our main theoretical results. We
start with the following two definitions. The first one quan-
tifies the goodness of the initial distribution compared with
the target distribution, and the second one characterizes the
isoperimetric profile of a given distribution. Both defini-
tions are widely used in the convergence analysis of MCMC
methods [Lovász and Simonovits, 1993, Vempala, 2007,
Dwivedi et al., 2018, Mangoubi and Vishnoi, 2019].

Definition 4.1 (λ-warm start). Let ν be a distribution on
Ω. We say the initial distribution µ0 is a λ-warm start with
respect to ν if

sup
A:A⊆Ω

µ0(A)

ν(A)
≤ λ.

Definition 4.2 (Cheeger constant). Let µ be a probability
measure on Ω. We say µ satisfies the isoperimetric inequality
with Cheeger constant ρ if for any A ∈ Ω, it holds that

lim inf
h→0+

µ(Ah)− µ(A)

h
≥ ρmin

{
µ(A), 1− µ(A)

}
,

where Ah = {x ∈ Ω : ∃y ∈ A, ‖x− y‖2 ≤ h}.

Next, we introduce some common assumptions on the neg-
ative log density function f(x) and stochastic gradients
g(x, I).

Assumption 4.3 (Dissipativeness). There are absolute con-
stants m > 0 and b ≥ 0 such that

〈∇f(x),x〉 ≥ m‖x‖22 − b, for all x ∈ Rd.



This assumption has been conventionally made in the con-
vergence analysis for sampling form non-log-concave distri-
butions [Raginsky et al., 2017, Xu et al., 2018, Zou et al.,
2019a]. Basically, this assumption implies that the log den-
sity function f(x) grows like a quadratic function when x
is outside a ball centered at the origin. Note that a strongly
convex function f(x) simply satisfies Assumption 4.3, but
not vice versa.

Assumption 4.4 (Smoothness). There exists a positive con-
stant L such that for any x,y ∈ Rd and all functions fi(x),

‖∇fi(x)−∇fi(y)‖2 ≤ L‖x− y‖2.

This assumption has also been made in many prior works
[Raginsky et al., 2017, Zhang et al., 2017, Xu et al., 2018].

We now define the following function that will be repeatedly
used in the subsequent theoretical results:

R̄(z) =

[
max

{
625d log(4/z)

mβ
,

4d log(4L/m) + 4βb

mβ
,

4d+ 8
√
d log(1/z) + 8 log(1/z)

mβ

}]1/2

.

(4.1)

Based on all aforementioned assumptions, we present the
convergence result of SGLD in the following theorem.

Theorem 4.5. For any ε ∈ (0, 1), let π∗ ∝ e−βf(x) 1
(
x ∈

B(0, R)
)

be the truncated target distribution in Ω = B(0, R)
with R = R̄(εK−1/12), and ρ be the Cheeger constant of
π∗. Under Assumptions 4.3 and 4.4, we suppose P(‖x0‖2 ≤
R/2) ≤ ε/16, and set the step size as η = Õ(ρ2d−2β−1 ∧
B2ρ2d−4β−1), then for any λ-warm start with respect to π,
the output of Algorithm 1 satisfies

‖µSGLD
K − π‖TV ≤ λ(1− C0η)K +

C1η
1/2

B
+ C2η

1/2 +
ε

2
,

where C0 = Õ
(
ρ2β−1

)
, C1 = Õ

(
Rdρ−1β3/2

)
and C2 =

Õ
(
dρ−1β1/2

)
are problem-dependent constants.

Theorem 4.5 shows that the total variation distance between
the distributions µSGLD

K and π can be upper bounded by
the sum of four terms. Specifically, the first term corre-
sponds to the sampling error of Metropolized SGLD, which
converges to zero at a linear rate. The second and third
terms correspond to the approximation error between SGLD
and Metropolized SGLD, which is in the order of O(η1/2).
Moreover, the third the third term corresponds to the vari-
ance of stochastic gradients, which decreases when increas-
ing the mini-batch size B. The last term can be understood
as an approximation error that comes from the technical
proof.

Remark 4.6. For a general non-log-concave distribution, it
is difficult to prove a tight bound on the Cheeger constant ρ.

One possible lower bound of ρ can be obtained via Buser’s
inequality [Buser, 1982, Ledoux, 1994], which shows that
the Cheeger constant ρ can be lower bounded by Ω(d−1/2cp)
under Assumption 4.4, where cp is the Poincaré constant of
the distribution π?. Moreover, Bakry et al. [2008] gave a sim-
ple lower bound of cp, showing that cp ≥ e−βOscRf/(2R2),
where OscRf = supx∈B(0,R) f(x) − infx∈B(0,R) f(x) ≤
LR2/2. Assuming R = Õ(d1/2), this further implies that
ρ = Ω(d−1) · e−O(R2) = e−Õ(d). In addition, better lower
bounds of ρ can be proved when the target distribution
enjoys better properties. When the target distribution is a
mixture of strongly log-concave distributions, the lower
bound of ρ can be improved to 1/poly(d) [Lee et al., 2018].
Strengthening Assumption 4.3 to a local nonconvexity con-
dition yields ρ = e−O(L) [Ma et al., 2018]. The lower
bound of Cheeger constant has been extensively studied
for log-concave distributions [Kannan et al., 1995, Lee and
Vempala, 2017, Chen, 2021], among them Lee and Vempala
[2017] proved that the Cheeger constant ρ can be lower
bounded by ρ = Ω

(
1/(Tr(Σ2))1/4

)
, where Σ is the covari-

ance matrix of the distribution π?. When the target distri-
bution is m-strongly log-concave, based on Cousins and
Vempala [2014], Dwivedi et al. [2018], it can be shown that
ρ = Ω(

√
m).

Note that the upper bound of the sampling error proved in
Theorem 4.5 relies on the step size, mini-batch size, and
the goodness of the initialization (i.e., λ). In order to guar-
antee ε-sampling error of SGLD, we need to specify the
choices of these hyper-parameters. In particular, we present
the iteration complexity of SGLD in the following corollary.

Corollary 4.7. Under the same assumptions made in
Theorem 4.5, consider Gaussian initialization µ0 =
N
(
0, I/(2βL)

)
, then for any mini-batch size B ≤ n and

ε ∈ (0, 1), if set the step size and maximum iteration number
as

η = Õ

(
ρ2ε2

d2β
∧ B

2ρ2ε2

d4β

)
,

K = Õ

(
d3β2

ρ4ε2
∨ d5β2

B2ρ4ε2

)
,

SGLD can achieve an ε sampling error in total variation
distance.

It is worth noting that the iteration complexity in Corol-
lary 4.7 holds for any mini-batch size 1 ≤ B ≤ n, as
opposed to Raginsky et al. [2017], Xu et al. [2018] that
require the mini-batch size to be poly(ε−1) in order to guar-
antee vanishing sampling error. Moreover, if we set the
mini-batch size to be B = O(d), the number of stochastic
gradient evaluations needed to achieve ε-sampling error is
K ·B = Õ(d4β2ρ−4ε−2).

Based on Corollary 4.7, we further show prove the con-
vergence of SGLD under the measure of any polynomial



growth function.

Corollary 4.8. Under the same assumptions and hyper-
parameter configurations as in Corollary 4.7, let h(x) be
a polynomial growth function with degree D, i.e., h(x) ≤
C(1 + ‖x‖D2 ) for some constant C, and K be defined in
Corollary 4.7, then the output of SGLD satisfies

E[h(xK)]− E[h(xπ)] ≤ C ′ε,

where xπ ∼ π denotes the random vector sampled from π
and C ′ = Õ

(
dD/2

)
is a problem-dependent constant.

Remark 4.9. Similar results have been presented in Sato
and Nakagawa [2014], Chen et al. [2015], Vollmer et al.
[2016], Erdogdu et al. [2018]. However, Sato and Naka-
gawa [2014] only analyzed the finite-time approximation
error between SGLD and the SDE (1.1) rather than the con-
vergence to the target distribution. The convergence results
in Chen et al. [2015], Vollmer et al. [2016], Erdogdu et al.
[2018] also differ from ours as their guarantees are made
on the sample path average rather than the last iterate. In
addition, these works assume that the Poisson equation solu-
tion of the SDE (1.1) has polynomially bounded i-th order
derivative (i ∈ {2, 3, 4}), which is not required in our result.

Let us consider a special case that h(·) = f(·), which was
studied in Raginsky et al. [2017], Xu et al. [2018]. As-
sumption 4.4 implies that h(x) is a quadratic growth func-
tion. Then Corollary 4.8 shows that in order to guarantee
E[f(xk)]− E[f(xπ)] ≤ ε, SGLD requires Õ(ε−2) stochas-
tic gradient evaluations. In contrast, in order to achieve the
same error, Raginsky et al. [2017], Xu et al. [2018] require
Õ(ε−8) and Õ(ε−5) stochastic gradient evaluations respec-
tively, both of which are worse than ours.

5 IMPROVED CONVERGENCE RATES
UNDER HESSIAN LIPSCHITZ
CONDITION

In this section, we will show that the convergence rate of
SGLD can be improved if the log density function addi-
tionally satisfies the Hessian Lipschitz condition, which is
defined as follows.

Assumption 5.1 (Hessian Lipschitz). There exists a posi-
tive constant H such that for any x,y ∈ Rd, it holds that∥∥∇2f(x)−∇2f(y)

∥∥
op ≤ H‖x− y‖2.

This assumption has been made in many recent papers to
prove faster convergence rate of LMC [Dalalyan and Karag-
ulyan, 2019, Vempala and Wibisono, 2019, Mou et al., 2019]
for sampling from both log-concave and non-log-concave
distributions.

With this additional assumption, we state the convergence
result of SGLD in the following theorem.

Theorem 5.2. For any ε ∈ (0, 1), let π∗ ∝ e−βf(x) 1
(
x ∈

B(0, R)
)

be the truncated target distribution in Ω = B(0, R)
with R = R̄(εK−1/12), and ρ be the Cheeger con-
stant of π∗. Under Assumptions 4.3, 4.4, and 5.1, sup-
pose P(‖x0‖2 ≤ R/2) ≤ ε/16. Setting the step size
η = Õ

(
ρ2d−2β−1B2 ∧ ρ/(d3/2 + dβ1/2)

)
, then for any

λ-warm start with respect to π, the output of Algorithm 1
satisfies

‖µSGLD
K − π‖TV ≤ λ(1− C0η)K +

C1η
1/2

B
+ C2η +

ε

2
,

where C0 = O(β−1ρ2), C1 = Õ(R2dρ−1β3/2) and
C2 = Õ(d3/2ρ−1 + Rd1/2βρ−1) are problem-dependent
constants.

The four terms in Theorems 5.2 have the same meaning as
those in Theorem 4.5. Compared with the convergence result
in Theorem 4.5, the improvement brought by Hessian Lips-
chitz condition lies in the approximation error between the
transition distributions of SGLD and Metropolized SGLD,
which is improved from O(η1/2) to O

(
B−1η1/2 + η

)
.

Dalalyan and Karagulyan [2019], Mou et al. [2019], Vem-
pala and Wibisono [2019] also improved the convergence
rate of LMC using the Hessian Lipschitz condition. How-
ever, Dalalyan and Karagulyan [2019] only focused on
strongly log-concave distributions and the theoretical re-
sults in Mou et al. [2019], Vempala and Wibisono [2019]
cannot be easily extended to SGLD.

Corollary 5.3. Under the same assumptions made in
Theorem 5.2, consider Gaussian initialization µ0 =
N
(
0, I/(2βL)

)
, then for any mini-batch size B ≤ n, if

set the step size and maximum iteration number as

η = Õ

(
ρ2B2ε2

d2β
∧ ρε

d3/2 + dβ1/2

)
,

K = Õ

(
d5β2

ρ4B2ε2
+
d5/2β + d2β3/2

ρ3ε

)
,

SGLD can achieve an ε sampling error in terms of total
variation distance.

Note that the required number of stochastic gradient evalu-
ations is K ·B = Õ

(
d5β2/(Bρ4ε2) +Bd5/2β3/2/(ρ3ε)

)
.

Therefore, if setting the mini-batch size as B =
Õ
(
[d5/2β1/2ρε]1/2

)
, it can be derived that the gradient com-

plexity of SGLD is Õ(d15/4β7/4ρ−7/2ε−3/2). This strictly
improves the stochastic gradient complexity (i.e., number
of stochastic gradient evaluations to achieve ε-sampling
error) of SGLD without Assumption 5.1 by a factor of
Õ(d1/4β1/4ρ−1/2ε−1/2).

6 PROOF OUTLINE

In this section, we will sketch the proof of the main results
(Theorem 4.5). The missing proofs for the other theorems,



corollaries and lemmas are deferred to the appendix. We
first highlight the key proof technique and its novelty and
difference compared with prior works. Then we will go over
each of the key steps in detail.

6.1 PROOF TECHNIQUE AND NOVELTY

Proof Technique. Our proof relies on two sequences
(green arrows in Figure 1): Projected SGLD (xProj-SGLD

k ) and
Metropolized SGLD (xMH

k ). Projected SGLD is constructed
by adding an accept/reject step to the standard SGLD al-
gorithm, which was first studied in Zhang et al. [2017].
Metropolized SGLD is a “virtual” sequence constructed
by further adding a Metropolis Hasting step into Projected
SGLD (the Metropolis Hasting step is computationally in-
tractable so that Metropolized SGLD is not a practical al-
gorithm and we only use it for theoretical analysis). Due to
such Metropolis Hasting step, Metropolized SGLD is a time-
reversible Markov chain and thus enjoys good conductance
properties. Based on these two auxiliary sequences, we will
prove the convergence of SGLD following three steps: (1)
show that the output of Projected SGLD is close to that of
SGLD in distribution (see Lemma 6.1); (2) show that the
transition distribution of Projected SGLD is close to that of
Metropolized SGLD (see Lemma 6.2); and (3) prove the
convergence of Projected SGLD based on the conductance
of Metropolized SGLD (see Lemma 6.4).

Technical Novelty. In order to prove the convergence rate
of SGLD, prior works [Raginsky et al., 2017, Xu et al.,
2018] typically make use of the LMC iterates xLMC

k and de-
compose the sampling error of SGLD (the error between
xk and xπ) into two parts: (1) the error between SGLD iter-
ates and LMC iterates; and (2) the sampling error of LMC
(though Raginsky et al. [2017], Xu et al. [2018] bound the
sampling error of xLMC

k in different ways). We illustrate the
roadmap of different proof techniques in Figure 1. Note that
their results on the error between xk and xLMC

k diverge as
k increases, due to the uncertainty of stochastic gradients.
This suggests that LMC may not be a good enough auxiliary
chain for studying SGLD. In contrast, our constructed aux-
iliary sequences (i.e., Projected SGLD and Metropolized
SGLD) are closer to SGLD since they also cover the ran-
domness of stochastic gradients (this randomness can be
included as part of the transition distribution, see Section
6.3 for more details). Therefore, our proof technique can
lead to a sharper convergence analysis than those in Ra-
ginsky et al. [2017], Xu et al. [2018], which consequently
gives a faster convergence rate of SGLD for sampling from
non-log-concave distributions.

We would also like to point out that while the construction of
Metropolized SGLD follows the same spirit of Zhang et al.
[2017], it has a different goal and thus the corresponding
analysis is not the same. Specifically, Zhang et al. [2017]

xk x⇡xMH

k

xLMC

k

xLMC

k

xLD

t

x⇡LMC

<latexit sha1_base64="9MhPbHbMEbe02jvX1Eg/vLAXmes="></latexit>

xProj-SGLD

k

Figure 1: Illustration of the analysis framework of SGLD in
different works: Raginsky et al. (2017), Xu et al. (2018),
this work. The goal is to prove the convergence of SGLD
iterates xk to the point following the target distribution xπ .
Note that, xLMC

k , xProj-SGLD

k and xMH
k denote the k-th iterates of

LMC, Proj-SGLD, and Metropolized SGLD respectively;
xLD
t denotes the solution of (1.1) at time t; xπLMC denotes the

point following the stationary distribution of LMC.

only characterizes the hitting time of SGLD to a certain set
by lower bounding the restricted conductance of SGLD, but
does not prove its convergence to π. In contrast, we focus on
the ability of SGLD for sampling from a certain target dis-
tribution. Thus we not only need to analyze the conductance
of SGLD, but also need to bound the approximation error
between the distribution of xk and the target one (see Lem-
mas 6.4 and B.3 and their proofs for more details), which
is more challenging. As a consequence, we prove that the
sampling error of SGLD to the target distribution can be
upper bounded by O(

√
η), while the analysis in Zhang et al.

[2017] can only give O(1) sampling error.

6.2 PROJECTED SGLD AND ITS EQUIVALENCE
TO SGLD

Projected SGLD is constructed by adding an extra step in
Algorithm 2 with the following accept/reject rule:

xk+1 =

{
xk+1 xk+1 ∈ B(xk, r) ∩ B(0, R);

xk otherwise.
(6.1)

This step ensures each new iterate xk+1 does not go too far
away from the current iterate and all iterates are restricted in
a (relatively) large region B(0, R). The entire algorithm is
summarized in Algorithm 2. Due to the above accept/reject
rule, Projected SGLD is slightly different from the standard
SGLD algorithm (see Algorithm 1). However, we can show
that Projected SGLD is nearly the same as SGLD given
proper choices of R and r. In particular, in the following
lemma, we will show that the total variance distance be-
tween the distributions of the outputs of both algorithms can
be arbitrarily small.

Lemma 6.1. Let µSGLD
K and µProj-SGLD

K be the distributions
of the outputs of the standard SGLD algorithm and the
projected SGLD algorithm. For any ε ∈ (0, 1), set

R = R̄(εK−1/4), r =
√

2ηd/β
(
2 +

√
2 log(8K/ε)/d

)
.



Algorithm 2 Projected SGLD

input: step size η; mini-batch sizeB; inverse temperature
parameter β; radius R, r;
Randomly draw x0 from initial distribution µ0.
for k = 0, 1, . . . ,K do

Randomly pick a subset I from {1, . . . , n} of size
|I| = B; randomly draw εk ∼ N(0, I)
Compute the stochastic gradient g(xk, I) =
1/B

∑
i∈I ∇fi(xk)

Update: xk+1 = xk − ηg(xk, I) +
√

2η/βεk
if xk+1 6∈ B(xk, r) ∩ B(0, R) then

xk+1 = xk
end if

end for
output: xK

Suppose P(‖x0‖2 ≤ R/2) ≤ ε/16 and setting η ≤ (LR +
G)−2β−1d, then we have∥∥µSGLD

K − µProj-SGLD
K

∥∥
TV
≤ ε

4
.

6.3 CONSTRUCTION OF METROPOLIZED SGLD

Projected SGLD will approximately generate samples from
the following truncated target distribution since it restricts
all iterates to the region Ω := B(0, R),

π?(dx) =

{
e−βf(x)∫

Ω
e−βf(y)dydx x ∈ Ω;

0 otherwise.
(6.2)

Then we will characterize the convergence of Projected
SGLD to π∗. In particular, we will introduce an useful aux-
iliary Markov chain called Metropolized SGLD, i.e., SGLD
with a Metropolis-Hasting step. We will first give the tran-
sition distribution of the Markov chain corresponding to
Projected SGLD.

Transition distribution of Projected SGLD. Let g
(
x, I

)
be the stochastic gradient computed at the point x, where I
denotes the mini-batch of data points queried in the stochas-
tic gradient computation. Then it is clear that Algorithm 2
can be described as a Markov process. More specifically,
let u and w be the starting point and the point obtained
after one-step iteration of Algorithm 2, the Markov chain
in this iteration can be formed as u → v → w, where v
is generated based on the following conditional probability
density function,

P (v|u) = EI [P (v|u, I)]

= EI
[

1

(4πη/β)d/2
exp

(
− ‖v − u + ηg(u, I)‖22

4η/β

)∣∣∣∣u],
(6.3)

which is exactly the transition probability of standard SGLD
(i.e., without any accept/reject step). Let R > 0 be a tunable

radius and recall that Ω = B(0, R), the process v→ w can
be formulated as

w =

{
v v ∈ B(u, r) ∩ Ω;

u otherwise.
(6.4)

Let p(u) = Pv∼P (·|u)[v ∈ B(u, r) ∩ Ω] be the acceptance
probability in (6.4), and Q(w|u) be the conditional PDF
that describes u→ w, we have

Q(w|u) = (1− p(u))δu(w)

+ P (w|u) · 1
[
w ∈ B(u, r) ∩ Ω

]
,

where P (w|u) is computed by replacing v with w in (6.3).
Similar to Zhang et al. [2017], Dwivedi et al. [2018], we con-
sider the 1/2-lazy version of the above Markov process, i.e.,
a Markov process with the following transition distribution

Tu(w) =
1

2
δu(w) +

1

2
Q(w|u), (6.5)

where δu(·) is the Dirac-delta distribution at u. However,
it is difficult to directly prove the ergodicity of the Markov
process with transition distribution Tu(w), and it is also
hard to tell whether its stationary distribution exists or not.
Besides, SGLD is known to be asymptotically biased [Teh
et al., 2016, Vollmer et al., 2016], which does not converge
to the target distribution π even when it runs for infinite steps.
It remains unclear whether Projected SGLD can converge
to the target distribution given the formula of its transition
distribution.

Metropolized SGLD. In order to quantify the sampling
error for the output of Projected SGLD in Algorithm 2 and
prove its convergence, we follow the idea of Zhang et al.
[2017], which constructs an auxiliary Markov process by
adding an extra Metropolis-Hasting correction step into
Algorithm 2. We call it Metropolized SGLD. Given the
starting point u, let w be the candidate state generated from
the distribution Tu(·). Metropolized SGLD will accept the
candidate w with the following probability,

αu(w) = min

{
1,
Tw(u)

Tu(w)
· exp

[
− β

(
f(w)− f(u)

)]}
.

Let T ?u (·) denote the transition distribution of such auxiliary
Markov process, i.e.,

T ?u (w) = (1− αu(w))δ(u) + αu(w)Tu(w),

which is time-reversible and easy to verify. Due to this
Metropolis-Hastings correction step, the Markov chain can
converge to a unique stationary distribution π? ∝ e−βf(x) ·
1(x ∈ Ω) [Zhang et al., 2017]. It is worth pointing out
that Metropolized SGLD cannot be implemented in practice
since we are only allowed to query a subset of the training
data in each iteration of SGLD, thus we are not be able
to exactly calculate the accept probability αu(w), which



involves the expectation computation over the stochastic
mini-batch of data points. Nevertheless, we will only use
this auxiliary Markov chain in our theoretical analysis to
show the convergence of Algorithm 2.

We will further show that the transition distribution of Pro-
jected SGLD (Tu(·)) can be δ-close to that of Metropolized
SGLD (T ∗u (·)) for some small quantity δ governed by η,
which is provided in the following lemma.

Lemma 6.2. Under Assumption 4.4, let G =
maxi∈[n] ‖∇fi(0)‖2, and set r =

√
10ηd/β

(
1 +√

log(8K/ε)/d
)
, where K is the total number of iterations

of Projected SGLD. Then there exists a constant

δ =
[
10Ldη + 10L(LR+G)d1/2β1/2η3/2

+ 12β(LR+G)2dη/B + 2β2(LR+G)4η2/B
]

·
(
1 +

√
log(8K/ε)/d

)2
such that for any set A ⊆ Ω and any point u ∈ Ω,

(1− δ)T ?u (A) ≤ Tu(A) ≤ (1 + δ)T ?u (A). (6.6)

6.4 CONVERGENCE OF PROJECTED SGLD

In this part, we will characterize the convergence of Pro-
jected SGLD, which consists of two steps: (1) given the
δ-closeness result in Lemma 6.2, we prove that Projected
SGLD can converge to the truncated target distribution π?

up to some approximation error determined by δ; and (2)
we prove that with a proper choice of the truncation radius
R, the total variation distance between π? and the target
distribution π can be sufficiently small.

Convergence of Projected SGLD to π?. We first pro-
vide the definition of the conductance for a time-reversible
Markov chain as follows.

Definition 6.3 (Conductance). The conductance of a time-
reversible Markov chain with transition distribution T ?u (·)
and stationary distribution π? is defined by,

φ := inf
A:A⊆Ω,π?(A)∈(0,1)

∫
A T

?
u (Ω\A)π?(du)

min{π?(A), π?(Ω\A)}
,

where Ω is the support of the state of the Markov chain.

In Lemma 6.2, we have already shown that the transition
distribution of Algorithm 2, i.e., Tu(·) is δ-close to that of
Metropolized SGLD, i.e., T ?u (·), for some small quantity
δ. Besides, from Lovász and Simonovits [1993], Vempala
[2007], we know that a time-reversible Markov chain can
converge to its stationary distribution at a linear rate depend-
ing on its conductance. Therefore, we aim to characterize
the convergence rate of Tu(·) based on the ergodicity of
T ?u (·). We utilize the conductance parameter of T ?u (·), de-
noted by φ, and establish the convergence of Tu(·) in total
variation distance in the following lemma.

Lemma 6.4. Let µProj-SGLD
K be the distribution of the output

of Algorithm 2. Under Assumption 4.4, if Tu(·) is δ-close
to T ?u (·) with δ ≤ min{1 −

√
2/2, φ/16}, then for any λ-

warm start initial distribution with respect to π?, it holds
that

‖µProj-SGLD
K − π?‖TV ≤ λ

(
1− φ2/8

)K
+ 16δ/φ.

Lemma 6.4 shows that Projected SGLD converges to π?

in total variance distance with approximation error up to
16δ/φ. The next step is to characterize the conductance
parameter φ and reveal its dependency on the problem de-
pendent parameters, which we state in the following lemma.

Lemma 6.5. Under Assumptions 4.3 and 4.4, if the step size
satisfies η ≤

[
35(Ld+(LR+G)2βd/B)

]−1∧ [25β(LR+
G)2]−1, there exists an absolute constant c0 such that

φ ≥ c0ρ
√
η/β,

where ρ is the Cheeger constant of the distribution π?.

Bounding the difference between π and π?. Lemmas 6.4
and 6.5 together guarantee that Algorithm 2 converges to
the truncated target distribution π?. Thus the last thing re-
maining to be done is ensuring that π? is sufficiently close
to π. The following lemma characterizes the total variation
distance between the target distribution π and its truncated
version π∗ in B(0, R).

Lemma 6.6. For any ε ∈ (0, 1), set R = R̄(ε/12) and let
Ω = B(0, R) and π? be the truncated target distribution in
Ω. Then the total variation distance between π? and π can
be upper bounded by ‖π? − π‖TV ≤ ε/4.

Proof of Theorem 4.5. The rest proof of Theorem 4.5 is
straightforward by combining Lemmas 6.1, 6.4, and 6.6
using the triangle inequality. We defer the detailed proof to
Appendix A.

7 CONCLUSION

In this paper, we proved a faster convergence rate of SGLD
for sampling from a broad class of distributions that can be
non-log-concave. In particular, we developed a new proof
technique for characterizing the convergence of SGLD. Dif-
ferent from the existing works that mainly study the con-
vergence of SGLD based on full-gradient based Markov
chain suchs as LMC or continuous Langevin dynamics, the
key of our proof technique relies on two auxiliary Markov
chains: Projected SGLD and Metropolized SGLD, which
can better capture the behavior of SGLD since they also
cover the randomness of the stochastic gradients. Our proof
technique is of independent technical interest and can be po-
tentially adapted to study the convergence of other stochastic
gradient-based sampling algorithms.
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A PROOFS OF THE MAIN THEOREMS AND COROLLARIES

In this section, we present the detailed proofs of our main theorems and corollaries.

A.1 PROOF OF THEOREM 4.5

Now we provide the detailed proof of Theorem 4.5 based on the key lemmas presented in our proof roadmap.

Proof of Theorem 4.5. We first characterize the condition on the step size required in Lemmas 6.2, 6.4 and 6.5. From Lemma
6.2, we know that if η ≤ [25β(LR+G)2]−1 and β ≥ 1, the transition distribution Tu(·) can be δ-close to T ?u (·) with

δ =
[
10Ldη + 10L(LR+G)d1/2β1/2η3/2 + 12β(LR+G)2dη/B + 2β2(LR+G)4η2/B

]
·
(

1 +

√
log(8K/ε)

d

)2

≤
[
14Ldη + 14(LR+G)2βdη/B

]
·
(

1 +

√
log(8K/ε)

d

)2

. (A.1)

Besides, note that Lemma 6.4 requires δ ≤ min{1−
√

2/2, φ/16}, which can be satisfied if

[
14Ldη + 14(LR+G)2βdη/B

]
·
(

1 +

√
log(8K/ε)

d

)2

≤ min{1−
√

2/2, φ/16}.

Then based on the requirement of η and the lower bound of φ in Lemma 6.5, it suffices to set the step size to be

η ≤
(

1 +

√
log(8K/ε)

d

)−4

min

{
1

25β(LR+G)2
,

1

35(Ld+ (LR+G)2βd/B)
,

(
c0ρ

16
√
β
(
14Ld+ 14(LR+G)2βd/B

))2}
.

Now we are able to put the results of these lemmas together to establish the convergence of Algorithm 2. Note that if µ0

is a λ-warm start to π, it must be a λ-warm start to π∗ since π∗(A) ≥ π(A) for any A ∈ Ω. Then Lemma 6.4 applies.
Combining Lemmas 6.1,6.4 and 6.6 and setting R = R̄(ε/12) for arbitrary ε ∈ (0, 1/2], we have

‖µSGLD
k − π‖TV ≤ ‖π − π?‖TV + ‖µProj-SGLD

k − π?‖TV + ‖µSGLD
k − µProj-SGLD

k ‖TV

≤ ε

2
+ λ
(
1− φ2/8

)k
+

16δ

φ

≤ ε

2
+ λ(1− C0η)k + (C1B

−1 + C2)η1/2,

where C0 = c20ρ
2/(8β), C1 = 224

(
1 +

√
log(8K/ε)/d

)4
(LR + G)2β3/2dρ−1/c0, C2 = 224

(
1 +√

log(8K/ε)/d
)4
Ldβ1/2ρ−1/c0 are problem-dependent constants. This completes the proof.

A.2 PROOF OF COROLLARY 4.7

We first present the following technical lemma.

Lemma A.1. Under Assumption 4.3, the objective function f(x) satisfies

f(x) ≥ m

4
‖x‖22 + f(x∗)− b

2
.

Now we prove Corollary 4.7.

Proof of Corollary 4.7. The first step is to characterize the quantity of λ. Direct calculation gives

µ0(dx)

π?(dx)
≤
∫
Rd e

−βf(y)dy∫
Rd e

−βL‖y‖22dy
· e−βL‖x‖

2
2+βf(x).



By Assumption 4.4, we have

f(x) ≤ f(x∗) +
L

2
‖x− x∗‖22 ≤ f(x∗) + L‖x∗‖22 + L‖x‖22,

which implies that

e−βL‖x‖
2
2+βf(x) ≤ eβ[f(x∗)+L‖x∗‖22].

Moreover, by Lemma A.1, we have∫
Rd
e−βf(y)dy ≤ e−β[f(x∗)−b/2]

∫
Rd
e−mβ‖y‖

2
2/4dy =

(
4π

mβ

)d/2
e−β[f(x∗)−b/2].

Besides, we have ∫
Rd
e−βL‖y‖

2
2dy =

(
π

Lβ

)d/2
.

Combining the above results, we can get

λ ≤ max
x

µ0(dx)

π?(dx)
≤
(

4L

m

)d/2
eβ[L‖x∗‖22+b/2] = eO(d). (A.2)

In order to ensure that the sampling error ‖µk − π‖TV is smaller than ε, it suffices to choose η and k such that

λ(1− C0η)k =
ε

4
, C1B

−1η1/2 + C2η
1/2 =

ε

4
.

Note that we have R = R̄(ε/12) = Õ(d1/2β−1/2). Then it follows that C0 = O(ρ2β−1), C1 = Õ(d2ρ−1β1/2) and
C2 = Õ(dρ−1β1/2). Plugging these into the above equation immediately implies that

η = Õ

(
ρ2ε2

d2β
∧ B

2ρ2ε2

d4β

)
and K = O

(
log(λ/ε)

C0η

)
= Õ

(
d3β2

ρ4ε2
∨ d5β2

B2ρ4ε2

)
,

which completes the proof.

A.3 PROOF OF COROLLARY 4.8

Proof of Corollary 4.8. Let µk be the distribution of the SGLD iterate xk and denote Ω̃ = B(0, R̃) for some R̃ which we
will specify later, then it holds that,

E[h(xK)]− E[h(xπ)] =

∫
Ω̃

h(x)µK(dx)−
∫
Rd
h(x)π(dx)

≤
∣∣∣∣ ∫

Ω̃

h(x)µK(dx)−
∫

Ω̃

h(x)π(dx)

∣∣∣∣+

∫
Rd\Ω̃

h(x)π(dx).

Note that h(x) is a polynomial growth function with degree D, thus by definition, for all x ∈ Ω̃, we have

h(x) ≤ C(1 + ‖x‖D2 ),

for some absolute constant C. Then by Corollary 4.7, we know that ‖µK − π‖TV ≤ ε. Thus it follows that∣∣∣∣ ∫
Ω̃

h(x)µK(dx)−
∫

Ω̃

h(x)π(dx)

∣∣∣∣ ≤ C(1 + R̃D)

∣∣∣∣ ∫
Ω̃

µK(dx)−
∫

Ω̃

π(dx)

∣∣∣∣ ≤ C(1 + R̃D)ε.

The rest of the proof will be proving the upper bound of
∫
Rd\Ω̃ h(x)π(dx). We first introduce an auxiliary distribution

defined by

q(x) =
e−mβ‖x‖

2
2/8

(8π/(mβ))d/2
.



Note that the stationary distribution π takes form

π(dx) =
e−βf(x)

Z
dx,

where Z =
∫
Rd e

−f(x)dx is the normalization coefficient. By Raginsky et al. [2017] ((3.21) in Section 3.5), we know that
under Assumption 4.4, it holds that Z ≥ exp(−βf(x∗)) · [2π/(βL)]d/2. Then it is clear that if

e−β
[
f(x)+m‖x‖22/8

]
≤ exp

(
− βf(x∗)

)
·
(
m

4L

)d/2
,

we have π?(x) ≤ q(x). By Lemma A.1, we know that

−f(x) +
m

8
‖x‖22 ≤

b

2
− f(x∗)− m

8
‖x‖22. (A.3)

Therefore, it can be guaranteed that π(x) ≤ q(x) if ‖x‖22 ≥ 4m−1(β−1d log(4L/m) + b). Therefore, for any R̃2 ≥
4m−1

(
β−1d log(4L/m) + b

)
it holds that,∫

Rd\Ω̃
h(x)π(dx) ≤ 1

[8π/(mβ)]d/2

∫
‖x‖22≥R̃2

C(1 + ‖x‖D2 ) · exp
(
−mβ‖x‖22/8

)
dx

≤ 2C

∫
x≥mβR̃2/4

xD/2 · x
d/2−1e−x/2

2d/2Γ(d/2)
dx,

where the second inequality follows from the probability density function of χ2
d distribution and the fact that R ≥ 1.

Moreover, assuming d ≥ D, it is easy to verify that when x ≥ 2Dd, we have

xH/2 · x
d/2−1e−x/2

2d/2Γ(d/2)
≤ (x/2)d/2−1e−x/4

2d/2Γ(d/2)
.

Thus, if R̃2 ≥ 8Dd/(mβ), we have∫
x≥mβR̃2/4

xH/2 · x
d/2−1e−x/2

2d/2Γ(d/2)
dx ≤

∫
x≥mβR̃2/4

(x/2)d/2−1e−x/4

2d/2Γ(d/2)
dx = 2Pz∼χ2

d
[z ≥ mβR̃2/8].

By standard tail bound of χ2
d distribution, we have

Pz∼χ2
d

[
z ≥ d+ 2

√
d log(1/δ) + 2 log(1/δ)

]
≤ δ.

Therefore, set R̃ =
[
8(d+ 2

√
d log(1/ε) + 2 log(1/ε))/(mβ) ∨ 8Dd/(mβ)]1/2 = Õ(d1/2), we have∫

Rd\Ω̃
h(x)π(x) ≤ 4Cε.

Combining all previous results, we obtain

E[h(xK)]− E[h(xπ)] ≤ C(5 + R̃D)ε.

Applying the fact that R̃ = Õ(d1/2), we are able to complete the proof.

A.4 PROOF OF THEOREM 5.2

The main body of the proof of Theorem 5.2 is the same as that of Theorem 4.5. The only difference/improvement is that
provided Assumption 5.1, a sharper approximation error between the transition distributions T ?u (·) and Tu(·) can be proved,
implying SGLD is closer to its metropolized counterpart. We formally state this result in the following lemma.



Lemma A.2. Under Assumptions 4.4 and 5.1, let G = ‖∇f(0)‖2 and set r =
√

10ηd/β
(
1 +

√
log(8K/ε)/d

)
. Then there

exists a constant

δ =
[
28Hd3/2β−1/2η3/2 + 10L(LR+G)d1/2β1/2η3/2 + 12β(LR+G)2dη/B + 2β2(LR+G)4η2/B

]
·
(

1 +

√
log(8K/ε)

d

)2

such that for any set A ⊆ Ω and any point u ∈ Ω, it holds that

(1− δ)T ?u (A) ≤ Tu(A) ≤ (1 + δ)T ?u (A).

Proof of Theorem 5.2. Similar to the proof of Theorem 4.5, we first characterize the feasible range of η that satisfies all
requirements in Lemmas A.2, 6.4 and 6.5. Then by Lemma A.2, we know that if η ≤

[
25dβ(LR+G)2

]−1∧L2βd−1H−2/25
and β ≥ 1, the transition distribution Tu(·) can be δ-close to T ?u (·) with

δ =
[
28Hd3/2β−1/2η3/2 + 10L(LR+G)d1/2β1/2η3/2 + 12β(LR+G)2dη/B + 2β2(LR+G)4η2/B

]
·
(

1 +

√
log(8K/ε)

d

)2

≤
[
14(LR+G)2βdη/B +

[
28Hd3/2β−1/2 + 10L(LR+G)d1/2β1/2

]
η3/2

]
·
(

1 +

√
log(8K/ε)

d

)2

.

Then based on the requirement of η and the lower bound of φ in Lemma 6.5, it suffices to set the step size to be

η ≤ min

{
1

25β(LR+G)2
,

1

35(Ld+ (LR+G)2βd/B)
,

(
c0ρ

224(LR+G)2β3/2d/B

)2

,

c0ρ

16
√
β
[
28Hd3/2β−1/2 + 10L(LR+G)d1/2β1/2

]} · (1 +

√
log(8K/ε)

d

)−4

Therefore, by Lemma 6.6, set R = R̄(ε/12), we have

‖µSGLD
k − π‖TV ≤ ‖π − π?‖TV + ‖µProj-SGLD

k − π?‖TV + ‖µSGLD
k − µProj-SGLD

k ‖TV

≤ ε

2
+ λ
(
1− φ2/8

)k
+

16δ

φ

≤ ε

2
+ λ(1− C0η)k + C1B

−1η1/2 + C2η,

where C0 = c20ρ
2/(8β), C1 = 224

(
1 +

√
log(8K/ε)/d

)4
(LR + G)2β3/2dρ−1/c0, C2 =

(
1 +√

log(8K/ε)/d
)4
ρ−1

[
448Hd3/2 + 160L(LR+G)d1/2β

]
/c0 are problem-dependent constants.

A.5 PROOF OF COROLLARY 5.3

Proof of Corollary 5.3. From (A.2), we know that µ0 is a λ-warm start with respect to π? with λ = eO(d). Then in order to
guarantee that the sampling error ‖µSGLD

k − π‖TV ≤ ε, it suffices to set

λ(1− C0η)k = ε/6, C1B
−1η1/2 = ε/6 , C2η = ε/6.

Note that we have R = R̄(ε/12) = O
(
d1/2β−1/2 log1/2(ε)

)
, C0 = O(ρ2β−1), C1 = Õ(d2ρ−1β1/2) and C2 =

Õ
(
d3/2ρ−1 + dβ1/2ρ−1

)
, plugging these into the above equation gives

η = Õ

(
ρ2B2ε2

d4β
∧ ρε

d3/2 + dβ1/2

)
k = O

(
log(λ/ε)

C0η

)
= Õ

(
d5β2

ρ4B2ε2
+
d5/2β + d2β3/2

ρ3ε

)
.

This completes the proof.



B PROOF OF LEMMAS IN SECTION 6

In this section, we provide the proof of Lemmas used in Section 6.

B.1 PROOF OF LEMMA 6.1

The idea is to show if the quantities R and r satisfy

R ≥ max

{
25

(
d log(4K/δ)

mβ

)1/2

, 4

(
b+G2 + dβ−1

m

)1/2}
, r ≥

√
2ηd/β(2 +

√
2 log(2K/δ)/d), (B.1)

and ‖x0‖2 ≤ R/2 holds with probability at least 1− δ/2 for arbitrary δ ∈ (0, 1), Algorithm 2 generates the same output as
that of the standard SGLD with probability at least 1− δ.

We first show why this is sufficiently to prove the upper bound on the total variation distance between µSGLD
K and µProj-SGLD

K .
In particular, we have ∥∥µSGLD

K − µProj-SGLD
K

∥∥
TV

= sup
A∈Rd

∣∣µSGLD
K (A)− µProj-SGLD

K (A)
∣∣.

Let xK and x̂K be the outputs of SGLD and projected SGLD, we can rewritten x̂K as

xK = x̂K · 1(xk = x̂K) + xK · 1(xk 6= x̂K).

Then for any set A, it holds that

1(xK ∈ A) = 1(x̂K ∈ A) · 1(xk = x̂K) + 1(xK ∈ A) · 1(xk 6= x̂K)

= 1(x̂K ∈ A)− 1(x̂K ∈ A) · 1(xk 6= x̂K) + 1(xK ∈ A) · 1(xk 6= x̂K).

This further implies that

1(xK ∈ A)− 1(x̂K ∈ A) ≤ 1(xK ∈ A) · 1(xk 6= x̂K) ≤ 1(xk 6= x̂K);

1(xK ∈ A)− 1(x̂K ∈ A) ≥ −1(x̂K ∈ A) · 1(x̂k 6= xK) ≥ −1(xk 6= x̂K).

Taking expectation on both sides, we can get that∣∣µSGLD
K (A)− µProj-SGLD

K (A)
∣∣ ≤ E[1(xk 6= x̂k)] ≤ δ,

for any A ∈ Rd, and thus ∥∥µSGLD
K − µProj-SGLD

K

∥∥
TV
≤ δ.

The next step is to show that Projected-SGLD generates the same outputs as that of the standard SGLD with probability at
least 1− δ, which suffices to show that with probability at least 1− δ, Projected-SGLD will accept all K iterates. In other
words, let {xk}k=0,...,K be the iterates generated by the standard SGLD (without accept/reject step), our goal is to prove
that with probability at least 1− δ, all xk’s stay inside the region B(0, R), and ‖xk − xk−1‖2 ≤ r for all k ≤ K. These
properties are summarized in the following two facts.

Fact 1: With probability at least 1− δ/2, all iterates stay inside the region B(0, R)

Fact 2: Given Fact 1, with probability at least 1− δ/2, ‖xk − xk−1‖2 ≤ r for all k ≤ K.

The following lemma will be useful to the proof.

Lemma B.1 (Lemma 3.1 in Raginsky et al. [2017]). Under Assumption 4.4, there exists a constantG = maxi∈[n] ‖∇fi(0)‖2
such that for any x ∈ Rd and i ∈ [n], it holds that

‖∇fi(x)‖2 ≤ L‖x‖2 +G.



Now we will proceed to proving these two facts.

Proof of Lemma 6.1. Regarding Fact 1, we first take a look at ‖xk‖22. By Assumption 4.3, we have

E[‖xk+1‖22|xk] = E
[∥∥xk − ηg(xk, I) +

√
2η/βεk

∥∥2

2
|xk
]

= ‖xk‖22 − 2ηE[〈xk,g(xk, I)〉|xk] + η2E[‖g(xk, I)‖22|xk] +
2dη

β

≤ (1− 2mη)‖xk‖22 + 2ηb+ η2(L‖xk‖2 +G)2 +
2dη

β

≤ (1− 2mη + 2L2η2)‖xk‖22 + 2ηb+ 2η2G2 +
2dη

β
,

where the first inequality follows from Assumption 4.3 and Lemma B.1, and the last inequality is due to Young’s inequality.
If we choose η ≤ 1 ∧m/(4L2), the above inequality implies that

E[‖xk+1‖22|xk] ≤ (1− 3mη/2)‖xk‖22 + 2ηb+ 2ηG2 +
2dη

β
.

Then it is clear that if ‖xk‖22 ≥ (4b + 4G2 + 4dβ−1)/m, the above inequality implies that E[‖xk+1‖22|xk] ≤ (1 −
mη)‖xk‖22. Note that in order to prove ‖xk‖2 ≤ R for all k ≤ K, we only need to consider xk satisfying ‖xk‖22 ≥
(4b+ 4G2 + 4dβ−1)/m since our choice of R satisfies R ≥ 2

√
(4b+ 4G2 + 4dβ−1)/m (see (B.1)), otherwise ‖xk‖2 ≤√

(4b+ 4G2 + 4dβ−1)/m ≤ R naturally holds. Then by the concavity of the function log(·), for any ‖xk‖2 ≥ R/2, we
have

E[log(‖xk+1‖22)|xk] ≤ log
(
E[‖xk+1‖22)|xk]

)
≤ log(1−mη) + log(‖xk‖22) ≤ log(‖xk‖22)−mη. (B.2)

Besides, by triangle inequality it holds that

‖xk+1‖2 − ‖xk‖2 ≤ η‖g(xk, I)‖2 +
√
η/β‖εk‖2.

Note that ‖εk‖2 is the square root of a χ(d) random variable, which is subgaussian and satisfies P(‖εk‖2 ≥
√
d +√

2t) ≤ e−t
2

for all z ≥ 0. Besides, if ‖xk‖2 ≤ R, by Lemma B.1 we have ‖g(xk, I)‖2 ≤ LR + G, then assume
η ≤ d(LR+G)−1/β, this further implies that

P
(
‖xk+1‖2 − ‖xk‖2 ≥ 2

√
ηd/β +

√
2η/βt

)
≤ e−t

2

.

for all z ≥ 0. Further note that we assumed ‖xk‖2 ≥ R/2, it follows that

log(‖xk+1‖22)− log(‖xk‖22) = 2 log(‖xk+1‖2/‖xk‖2) ≤ ‖xk+1‖2/‖xk‖2 − 1 ≤ 2‖xk+1‖2 − 2‖xk‖2
R

.

Therefore we have log(‖xk+1‖22)− log(‖xk‖22) is also a subgaussian random variable and satisfies

P
(

log(‖xk+1‖22)− log(‖xk‖22) ≥ 4
√
ηd/βR−1 + 2t

√
2η/βR−1

)
≤ exp(−t2). (B.3)

We will consider any subsequence among {xk}k=1,...,K , with all iterates, except the first one, staying outside the region
B(0, R/2). Denote such subsequence by {yk}k=0,...,K′ , where y0 satisfies ‖y0‖2 ≤ R/2 and K ′ ≤ K. Then it can be
seen that yk,yk+1 satisfy (B.2) and (B.3) for all k ≥ 1. Further note that by our assumption on the initialization µ0,
with probability at least 1 − δ/4 we have the initial point x0 satisfies ‖x0‖2 ≤ R/2. Then it suffices to prove that with
probability at least 1 − δ/4 all points in {yk}k=1,...,K′ will stay inside the region B(0, R). Then let Ek be the event that
‖yk′‖2 ≤ R for all k′ ≤ k, and Fk = {y0, . . . ,yk} be the filtration, it is easy to see that Ek ⊆ Ek−1 and thus the sequence
{1(Ek−1) · (log(‖yk‖22) +kmη)|Fk−1}k=1,...,K′ is a super-martingale. Besides, we can show that the martingale difference
has a subgaussian tail, i.e., for any t ≥ 0,

P
(
‖yk+1‖22 + (k + 1)mη − log(‖yk‖22)− kmη ≥ 5

√
ηd/βR−1 + 2t

√
2ηd/βR−1

)
≤ exp(−t2),



where we use the fact that η ≤ dβ−1m−2 and d ≥ 1. Let z = 5
√
ηd/βR−1 + 2t

√
2ηd/βR−1, we have t =

√
β/(8ηd) ·(

Rz − 5
√
ηd/β

)
. Then note that (a− b)2 ≥ a2

4 − b
2/3 for all a, b ∈ R, we have

t2 ≥ βR2z2

32ηd
− 25

24
.

Therefore, for any z ≥ 0 we have

P
(
‖yk+1‖22 + (k + 1)mη − log(‖yk‖22)− kmη ≥ z

)
≤ exp

(
− βR2z2

32ηd
+

25

24

)
≤ 3 exp

(
− βR2z2

32ηd

)
,

which implies that the martingale difference is subgaussian. Then by Theorem 2 in Shamir [2011] (one-side), we have for a
given k, conditioned on the event Ek−1, with probability at least 1− δ′,

log(‖yk‖22) + kmη ≤ log(‖y0‖22) + 52
√
kηd log(1/δ′)/(βR2)

for some absolute positive constant R. Taking union bound over all k = 1, . . . ,K ′ (K ′ ≤ K) and defining δ = 4δ′K ′, we
have with probability at least 1− δ/4, for all k = 1, . . . ,K ′ it holds that

log(‖yk‖22) ≤ 2 log(R/2) + 52
√
kηd log(2K/δ)/(βR2)−mkη

≤ 2 log(R/2) +
700d log(2K/δ)

mβR2
.

Applying our choice of R in (B.1) gives

700d log(2K/δ)

mβR2
≤ 2 log(2).

Therefore, for all k = 1, . . . ,K, we have with probability at least 1− δ/4 that

log(‖yk‖22) ≤ 2 log(R/2) + 2 log(2) = log(R2),

which is equivalent to ‖yk‖2 ≤ R. Combining with the fact that with probability at least 1− δ/4 the initial point x0 stays
inside B(0, R/2), we can conclude that with probability at least 1− δ/2, all iterates stay inside the region B(0, R), which
completes the proof of Fact 1.

Now we proceed to prove Fact 2, of which the key is to prove ‖xk − xk−1‖2 ≤ r for all k ≥ K. Note that in each iteration,
the proposal distribution of xk+1 is an expected Gaussian distribution. Besides, note that for all possible mini-batch, the
drift term satisfies

η‖g(xk, I)‖2 ≤ η(LR+G).

This implies that the probability that xk+1 /∈ B(xk, r) can be upper bounded by

P[xk+1 /∈ B(xk, r)] ≤ Pz∼χ2
d

[
2ηβ−1z ≤ (r − η(LR+G))2

]
= Pz∼χ2

d

[√
z ≤ [r − η(LR+G)]/(2ηβ−1)1/2

]
.

Note that η ≤ (LR + G)−2β−1d, we have η(LR + G)/(2ηβ−1)1/2 ≤ d1/2. Then by standard tail bound of Chi-square
distribution and our choice of r in (B.1),

P[xk+1 /∈ B(xk, r)] ≤ Pz∼χ2
d

[√
z ≤ d1/2 +

√
2 log(2K/δ)

]
≤ 1− δ/(2K).

Taking union bound over all iterates, we are able to complete the proof of Fact 2.

Combining Fact 1 and Fact 2 and set δ = ε/4 complete the proof of Lemma 6.1.



B.2 PROOF OF LEMMA 6.2

Before providing the detailed proof of Lemma 6.2, we first present the following useful lemma.

Lemma B.2. Let g(x, I) be the stochastic gradient with mini-batch size |I| = B < n, then for any vector a and ‖x‖2 ≤ R,
there exists a constant M = LR+G such that

EI
[

exp
(
〈a,g(x, I)−∇f(x)〉

)]
≤ exp(M2‖a‖22/B).

Moreover, we have EI
[

exp
(
〈a,g(x, I)−∇f(x)〉

)]
= 1 if B = n.

Proof of Lemma 6.2. Note that the Markov processes defined by T ?u (·) and Tu(·) are 1/2-lazy according to (6.5). We prove
the lemma by considering two cases: u 6∈ A and u ∈ A. We first prove the lemma in the first case. Note that when u /∈ A,
we have

T ?u (A) =

∫
A
T ?u (w)dw =

∫
A
αu(w)Tu(w)dw. (B.4)

By (6.4), we know that w is restricted in w ∈ B(u, r) ∩ B(0, R)\{u}. For sufficiently small step size η, we can ensure
δ ≤ 1/2. In the rest of this proof we will show that αu(w) ≥ 1− δ/2 for all w ∈ B(u, r) ∩ B(0, R)\{u}, which together
with (B.4) implies

(1− δ/2)Tu(A) ≤ T ?u (A) ≤ Tu(A),

and thus (6.6) also holds since αu(w) ≥ 1− δ/2. Then, it suffices to prove that

Tw(u)

Tu(w)
· exp(−β(f(w)− f(u))) ≥ 1− δ/2. (B.5)

By the definition of Tu(w), it is equivalent to proving

EI1

[
exp

(
− βf(w)− ‖u−w+ηg(w,I1)‖22

4η/β

)∣∣∣∣w]
EI2

[
exp

(
− βf(u)− ‖w−u+ηg(u,I2)‖22

4η/β

)∣∣∣∣u] ≥ 1− δ/2,

where I1, I2 ⊆ [n] are two independent mini-batches of data. Let I1 and I2 denote the numerator and denominator of the
L.H.S. of the above inequality respectively. Then regarding I1, by Jensen’s inequality and convexity of the function exp(·),
we have

I1 ≥ exp

(
− βf(w)− EI1

[‖u−w + ηg(w, I1)‖22|w]

4η/β

)
= exp

(
− βf(w)− ‖u−w‖22 + 2η〈u−w,∇f(w)〉+ η2EI1 [‖g(w, I1)‖22|w]

4η/β

)
≥ exp

(
− βf(w)− ‖u−w‖22 + 2η〈u−w,∇f(w)〉+ η2‖∇f(w)‖22 + η2M2d/B

4η/β

)
, (B.6)

where the last inequality is by Lemma B.2. Then we move on to upper bounding I2,

I2 = exp
(
− βf(u)

)
· EI2

[
exp

(
− ‖w − u‖22 + 2η〈w − u,g(w, I2)〉+ η2‖g(u, I2)‖22

4η/β

)∣∣∣∣u]
= exp

(
− βf(u)− ‖w − u‖22 + 2η〈w − u,∇f(u)〉

4η/β

)
· EI2

[
exp

(
− 2β〈w − u,g(u, I2)−∇f(u)〉+ βη‖g(u, I2)‖22

4

)∣∣∣∣u]︸ ︷︷ ︸
I3

.



Note that

‖g(u, I2)‖22 = ‖∇f(u)‖22 + 2〈∇f(u),g(u, I2)−∇f(u)〉+ ‖g(u, I2)−∇f(u)‖22
≥ ‖∇f(u)‖22 + 2〈∇f(u),g(u, I2)−∇f(u)〉.

Then we have the following regarding I3,

I3 ≤ EI2

[
exp

(
− 2β〈w − u + η∇f(u),g(u, I2)−∇f(u)〉

4

)∣∣∣∣u] · exp

(
− βη‖∇f(u)‖22

4

)
≤ exp

(
β2M2‖w − u + η∇f(u)‖22

4B

)
· exp

(
− βη‖∇f(u)‖22

4

)
,

where the last inequality holds due to Lemma B.2. Then by Young’s inequality, I3 can be further upper bounded by

I3 ≤ exp

(
β2M2

(
‖w − u‖22 + η2‖∇f(u)‖22

)
2B

− βη‖∇f(u)‖22
4

)
≤ exp

(
β2M2

(
‖w − u‖22 + (LR+G)2η2

)
2B

− βη‖∇f(u)‖22
4

)
,

where the second inequality is by Lemma B.1. Combining the previous results for I1 and I2, we have

I1
I2
≥ exp

(
− β

(
f(w)− f(u)

)
− β〈u−w,∇f(w) + f(u)〉

2

)
· exp

(
βη
(
‖∇f(u)‖22 − ‖∇f(w)‖22

)
4

−
β2M2

(
‖w − u‖22 + (LR+G)2η2

)
+ βηM2d/2

2B

)
. (B.7)

It is well known that the smoothness condition in Assumption 4.4 [Nesterov, 2018] is equivalent to the following inequalities,

f(w) ≤ f(u) + 〈w − u,∇f(u)〉+
L‖w − u‖22

2
,

f(u) ≥ f(w) + 〈u−w,∇f(w)〉 − L‖w − u‖22
2

,

which immediately implies

∣∣f(w)− f(u)− 〈w − u,∇f(w) + f(u)〉/2
∣∣ ≤ L‖w − u‖22

2
. (B.8)

In addition, by Lemma B.1 and Assumption 4.4, it holds that∣∣‖∇f(u)‖22 − ‖∇f(w)‖22
∣∣ ≤ ‖∇f(u)−∇f(w)‖2 · ‖∇f(u) +∇f(w)‖2
≤ 2L(LR+G)‖w − u‖2. (B.9)

Now, substituting (B.8) and (B.9) into (B.7) and using the fact that ‖w − u‖2 ≤ r =
√

10ηd/β
(
1 +

√
log(8K/ε)/d

)
, we

have

I1
I2
≥ exp

(
− Lβ‖w − u‖22

2
− βηL(LR+G)‖w − u‖2

2

−
β2M2

(
‖w − u‖22 + (LR+G)2η2 + ηdβ−1/2

)
2B

)
≥ exp

[
−
(

1 +

√
log(8K/ε)

d

)2

·
(

5Ldη + 5L(LR+G)d1/2β1/2η3/2 +
6βM2dη

B
+
β2M2(LR+G)2η2

2B

)]
≥ 1−

[
5Ldη − 5L(LR+G)d1/2β−1/2η3/2 − 6βM2dη/B − β2M2(LR+G)2η2/B

]
·
(

1 +

√
log(8K/ε)

d

)2

= 1− δ/2,



where we plug in the fact that K = LR+G in the last equality. This completes the proof for the case u /∈ A.

In the second case that u ∈ A, we can split A into {u} and A\{u}. Note that by our result in the first case, we have
(1− δ)T ?u (A\{u}) ≤ Tu(A\{u}) ≤ (1 + δ)T ?u (A\{u}). Therefore, it remains to prove that (1− δ)T ?u (u) ≤ Tu(u) ≤
(1 + δ)T ?u (u). Note that starting from u, the probability of the Markov chain generated by T ? stays at u is

T ?u (u) = Tu(u) + (1− Tu(u)) ·
(
1− Ew∼Tu(w|w 6=u)[αu(w)|u]

)
.

By our previous results, we know that αu(w) ≥ 1− δ/2 for all w ∈ B(u, r) ∩ Ω\{u}. Therefore, we have

Tu(u) ≤ T ?u (u) ≤ Tu(u)(1 + δ/2),

where the inequality on the right hand side of T ?u (u) is due to the fact that Tu(u) ≥ 1/2 and thus Tu(u) ≥ (1− Tu(u)).
Then it is evident that we have (1− δ)T ?u (u) ≤ Tu(u) ≤ (1 + δ)T ?u (u), which completes the proof for the second case.

B.3 PROOF OF LEMMA 6.4

Now we characterize the convergence of the projected SGLD to the truncated target distribution π?. Note that Markov
chains defined by Tu(·) and T ?u (·) are restricted in the set Ω = B(0, R). Here we slightly abuse the notation by denoting µk
be the distribution of the iterate xk of Project SGLD (Algorithm 2). Then define the following function

hk(p) = sup
A:A⊆Ω,π?(A)=p

µk(A)− π?(A), ∀p ∈ [0, 1].

Based on definition of the total variation distance between µk and π∗, we have

‖µk − π∗‖TV = sup
A:A⊆Ω

|µk(A)− π?(A)|

= sup
A:A⊆Ω

max
{
µk(A)− π?(A), π?(A)− µk(A)

}
= sup
A:A⊆Ω

max
{
µk(A)− π?(A), µk(Ω\A)− π?(Ω\A)

}
= sup
A:A⊆Ω

µk(A)− π?(A).

Then in order to prove the result in Lemma 6.4, it suffices to show that

hk(p) ≤ λ
(
1− φ2/8

)k
+

16δ

φ
,

for all p ∈ (0, 1).

Lemma B.3. Let T ?u (·) be a time-reversible Markov chain with unique stationary distribution π?(·). Then for any approxi-
mate Markov chain Tu(·) satisfying (1 − δ)T ?u (·) ≤ Tu(·) ≤ (1 + δ)T ?u (·) with δ ≤ min{1 −

√
2/2, φ/16}, there exist

three parameters φk, φ̃k and φ̂k depending on µk(·) that satisfy φk ≥ φ,

2(1− δ)φk ≤ φ̃k ≤ φ̂k ≤ 2(1 + δ)φk, and
√

1− φ̃k +

√
1 + φ̂k ≤ 2(1− φ2

k/8),

such that the following inequality holds for all p ∈ (0, 1),

hk(p) ≤ 1

2
hk−1

(
p− φ̃kΓp

)
+

1

2
hk−1

(
p+ φ̂kΓp

)
+ 2δφk

√
Γp,

where Γp = min{p, 1− p}.

Proof of Lemma 6.4. By Lemma B.3, we know that if δ ≤ min{1−
√

2/2, φ/16}, there exist three parameters φk, φ̃k and
φ̂k depending on µk(·) such that when p ∈ (0, 1/2],

hk(p) ≤ 1

2

[
hk−1

(
p− φ̃kp

)
+ hk−1

(
p+ φ̂kp

)]
+ 2δφk

√
p, (B.10)



and when p ∈ (1/2, 1),

hk(p) ≤ 1

2

[
hk−1

(
p− φ̃k(1− p)

)
+ hk−1

(
p+ φ̂k(1− p)

)]
+ 2δφk

√
1− p.

Then, we will prove the desired result via mathematical induction. Instead of directly proving the inequality in this lemma,
we aim to prove a stronger version,

hk(p) ≤ min
{√

p,
√

1− p
}
·
[
λ
(
1− φ2/8

)k
+

16δ

φ

]
, (B.11)

We first verify the hypothesis (B.11) for the case k = 0, based on the definition of h0(p) we have that there exists a set
A0 ⊆ Ω satisfying π?(A0) = p such that

h0(p) = µ0(A0)− π?(A0).

When p ≤ 1/2, by the definition of λ-warm initialization in (4.1) , it holds that

h0(p) ≤ max{µ0(A0)− π?(A0), π?(A0)− µ0(A0)} ≤ λp ≤ √p ·
(
λ+

16δ

φ

)
.

When p ≥ 1/2, similarly we have

h0(p) = (1− µ0(Ω\A0))− (1− π?(Ω\A0))

≤ λ(1− p)

≤
√

1− p ·
(
λ+

16δ

φ

)
,

which verifies the hypothesis for the case k = 0. Now we assume the hypothesis (B.11) holds for 0, . . . , k − 1. According
to Lemma B.3, the following holds when p ∈ (0, 1/2],

hk(p) ≤ 1

2

[
hk−1

(
p− φ̃kp

)
+ hk−1

(
p+ φ̂kp

)]
+ 2δφk

√
p

≤

√
p− φ̃kp+

√
p+ φ̂kp

2

(
λ(1− φ2/8)k−1 +

16δ

φ

)
+ 2δφk

√
p

=

√
p
(√

1− φ̃k +

√
1 + φ̂k

)
2

(
λ(1− φ2/8)k−1 +

16δ

φ

)
+ 2δφk

√
p,

where the second inequality is based on the hypothesis for k − 1. Again from Lemma B.3, we know that
√

1− φ̃k +√
1 + φ̂k ≤ 2(1− φ2

k/8), which further implies

hk(p) ≤ √p ·
(
1− φ2

k/8
)(
λ(1− φ2/8)k−1 +

16δ

φ

)
+ 2δφk

√
p

≤ √p ·
(
λ(1− φ2/8)k +

16δ

φ
− 2δφ2

k/φ+ 2δφk

)
≤ √p ·

(
λ(1− φ2/8)k +

16δ

φ

)
,

where the last inequality is due to φ ≤ φk. Similar result can be proved when p ∈ (1/2, 1) and thus we omit it here. Thus
we are able to verify the hypothesis for k.



B.4 PROOF OF LEMMA 6.5

In order to prove a lower bound of the conductance of T ?u (·), we follow the same idea used in Lee and Vempala [2018],
Mangoubi and Vishnoi [2019], which is basically built upon the following lemma.

Lemma B.4 (Lemma 13 in Lee and Vempala [2018]). Let T ?u (·) be a time-reversible Markov chain on Ω with stationary
distribution π?. Fix any ∆ > 0, suppose for any u,v ∈ Ω with ‖u− v‖2 ≤ ∆ we have ‖T ?u (·)− T ?v (·)‖TV ≤ 0.99, then
the conductance of T ?u (·) satisfies φ ≥ Cρ∆ for some absolute constant C, where ρ is the Cheeger constant of π?.

Similar results have been shown in Dwivedi et al. [2018], Ma et al. [2018] for bounding the s-conductance of Markov chains.
In order to apply Lemma B.4, we need to verify the corresponding conditions, i.e., proving that as long as ‖u− v‖2 ≤ ∆
we have ‖T ?u (·)− T ?v (·)‖TV ≤ 0.99 for some ∆. Before moving on to the detailed proof, we first recall some definitions.
Recalling (6.3), we define

P (z|u) = EI [P (z|u, I)] = EI
[

1

(4πη/β)d/2
exp

(
− ‖z− u + ηg(u, I)‖22

4η/β

)∣∣∣∣u]
as the distribution after one-step standard SGLD step (i.e., without the accept/reject step). Note that Algorithm 2 only
accepts the candidate iterate in the region Ω ∩ B(u, r), we can compute the acceptance probability as follows,

p(u) = Pz∼P (·|u)

[
z ∈ Ω ∩ B(u, r)

]
.

Therefore, for any z ∈ Ω ∩ B(u, r), the transition probability T ?u (z) takes form

T ?u (z) =
2− p(u) + p(u)(1− αu(z))

2
δu(z) +

αu(z)

2
P (z|u) · 1[z ∈ Ω ∩ B(u, r)].

Then the rest proof will be proving the upper bound of ‖T ?u (·) − T ?v (·)‖TV , and we state another two useful lemmas as
follows.

Lemma B.5. If the step size satisfies η ≤ [40d−1(LR+G)2β]−1, for any u ∈ Ω, the acceptance probability p(u) satisfies
p(u) ≥ 0.4.

Lemma B.6. Under Assumption 4.4, for any two points u,v ∈ Rd, it holds that

‖P (·|u)− P (·|v)‖TV ≤
(1 + Lη)‖u− v‖2√

2η/β
.

Lemma B.5 gives a lower bound of the probability p(u) and Lemma B.6 provides an upper bound of the total variation
distance between the distributions P (·|u) and P (·|v). Then we are ready to complete the proof of Lemma 6.5 as follows.

Proof of Lemma 6.5. Let Su = Ω∩B(u, r) and Sv = Ω∩B(v, r), by triangle inequality and the definition of total variation
distance, we have there exists a set A ∈ Ω such that

‖T ?u (·)− T ?v (·)‖TV = |T ?u (A)− T ?v (A)|

≤ max
u,z

[
2− p(u) + p(u)(1− αu(z))

2

]
︸ ︷︷ ︸

I1

+
1

2

∣∣∣∣ ∫
z∈A

αu(z)P (z|u)1(z ∈ Su)− αv(z)P (z|v)1(z ∈ Sv)dz

∣∣∣∣︸ ︷︷ ︸
I2

.

Then we aim to upper bound the quantities I1 and I2 separately. In terms of I1, Lemma 6.2 combined with (B.5) implies that

max
u,z

αu(z) ≥ 1− δ/2, (B.12)



where δ is the approximation factor between Tu(·) and T ?u (·) defined in Lemma 6.2. By Lemma B.5, we know that
p(u) ≥ 0.4 for any I and u ∈ K. Then combining with (B.12), I1 can be upper bounded by

I1 ≤ 0.8 + 0.1δ.

Regarding I2, by triangle inequality we have

I2 ≤
∫
z∈A

(1− αu(z))P (z|u)1(z ∈ Su)dz +

∫
z∈A

(1− αv(z))P (z|v)1(z ∈ Sv)dz

+

∣∣∣∣ ∫
z∈A

p(u)P (z|u)− p(v)P (z|v)dz

∣∣∣∣
≤ δ +

∣∣∣∣ ∫
z∈A

P (z|u)1(z ∈ Su)− P (z|v)1(z ∈ Sv)dz

∣∣∣∣︸ ︷︷ ︸
I3

,

where the last inequality is by (B.12). Regarding I3, we further have,

I3 ≤
∣∣∣∣ ∫

z∈A
1(z ∈ Sv)

(
P (z|u)− P (z|v)

)
dz

∣∣∣∣+

∣∣∣∣ ∫
z∈A

[
1(z ∈ Su)− 1(z ∈ Sv)

]
P (z|u)dz

∣∣∣∣
≤ ‖P (·|u)− P (·|v)‖TV + max

{∫
z∈Sv\Su

P (z|u)dz,

∫
z∈Su\Sv

P (z|u)dz

}
≤ ‖P (·|u)− P (·|v)‖TV + max

{∫
z∈Rd\Su

P (z|u)dz,

∫
z∈Rd\Sv

P (z|u)dz

}
.

For any I, note that P (z|u, I) is a Gaussian distribution with mean u− ηg(u, I) and covariance matrix 2ηI/β, thus we
have ∫

Rd\Su
P (z|u, I)dz ≤ Pz∼χ2

d

(
z ≥ 0.5β(r − η‖g(u, I)‖2)2/η

)
∫
Rd\Sv

P (z|u, I)dz ≤ Pz∼χ2
d

(
z ≥ 0.5β(r − η‖g(u, I)‖2 − ‖u− v‖2)2/η

)
.

Note that the above inequalities hold for any choice of I. Thus, if ‖u − v‖2 ≤ 0.1r and η ≤ 0.1dβ−1/(LR + G)2, by
Lemma B.1, we have r − η‖g(u, I)‖2 − ‖u− v‖2 ≥

√
6.4ηd/β since r ≥

√
10ηd/β, and then

max

{∫
z∈Rd\Su

P (z|u)dz,

∫
z∈Rd\Sv

P (z|u)dz

}
≤ Pz∼χ2

d

(
z ≤ 3.2d

)
≤ 0.1.

Then combining the above results and apply Lemma B.6, assume η ≤ 1/L, we have

I3 ≤ 0.1 + ‖P (·|u)− P (·|v)‖TV ≤ 0.1 +
√

2β‖u− v‖2/
√
η.

This immediately implies that I2 ≤ δ +
√

2β‖u− v‖2/
√
η + 0.1 and finally

‖T ?u (·)− T ?v (·)‖TV ≤ I1 + I2/2 ≤ 0.85 + 0.1δ +

√
β‖u− v‖2√

2η
.

By Lemma 6.2, we know that if η ≤ [25β(LR+G)2]−1, we have

δ = 10Ldη + 10L(LR+G)d1/2β1/2η3/2 + 12β(LR+G)2dη/B + 2β2(LR+G)4η2/B

≤ 14Ldη + 14(LR+G)2βdη/B.

Thus if

η ≤ 1

25β(LR+G)2
∧ 1

35(Ld+ (LR+G)2βd/B)
and ‖u− v‖2 ≤

√
2η

10
√
β
≤ 0.1r,

we have ‖T ?u (·)−T ?v (·)‖TV ≤ 0.99. Then by Lemma B.4, we have the following lower bound on the conductance of T ?u (·)

φ ≥ c0ρ
√
η/β,

where c0 is an absolute constant. This completes the proof.



B.5 PROOF OF LEMMA 6.6

We present the following useful lemma that characterizes the probability measure of the region B(0, R) under the target
distribution π.

Lemma B.7. Under Assumptions 4.3 and 4.4, let Ω = B(0, R̄(ζ)) for some ζ ∈ (0, 1), it holds that

π(Ω) ≥ 1− ζ.

Proof of Lemma 6.6. According to the definition of total variation distance, we know that there exists a set A ∈ Rd such
that

‖π? − π‖TV = |π?(A)− π(A)| ≤ |π?(A ∩ Ω)− π(A ∩ Ω)|+ π
(
A\Ω

)
≤ |π?(A ∩ Ω)− π(A ∩ Ω)|+ π

(
Rd\Ω

)
,

where the first inequality is by triangle inequality. By Lemma B.7, we have π(Rd\Ω) ≤ ζ. For the first term on the R.H.S.
of the above inequality, we have

|π?(A ∩ Ω)− π(A ∩ Ω)| =
∣∣∣∣ ∫
A∩Ω

π?(du)−
∫
A∩Ω

π(du)

∣∣∣∣. (B.13)

Recall the definition of the truncated distribution π?, for any u ∈ Ω, we have

π(du) =
e−βf(u)du∫
Rd e

−βf(x)dx
, and π?(du) =

e−βf(u)du∫
Ω
e−βf(x)dx

=
π(du)

π(Ω)
,

which immediately implies

π?(du)− π(du) =

(
1

π(Ω)
− 1

)
π(du) ≤ ζ

1− ζ
π(du).

Plugging this into (B.13) yields

|π?(A ∩ Ω)− π(A ∩ Ω)| ≤ ζ

1− ζ

∫
A∩Ω

π(u)du ≤ ζ

1− ζ
.

Combining the above results, we have for any ζ ≤ 1/2 that

‖π? − π‖TV ≤ ζ +
ζ

1− ζ
≤ 3ζ.

Set ζ = ε/12 we are able to complete the proof.

C PROOF OF LEMMAS IN APPENDICES A AND B

C.1 PROOF OF LEMMA A.1

Proof of Lemma A.1. We will prove this for two cases: 1) ‖x‖2 ≤
√

2b/m and 2) ‖x‖2 ≥
√

2b/m. For the first case, it is
evident that

f(x) ≥ f(x∗) ≥ f(x∗) +
m

4
‖x‖22 −

b

2
.

where the last inequality is due to the fact that ‖x‖2 ≤
√

2b/m. For the second case, based on Assumption 4.3, define
g(x) = f(x)−m‖x‖22/4, it is clear that〈

∇g(x),x
〉

= 〈∇f(x),x〉 − m

2
‖x‖22 ≥

m

2
‖x‖22 − b.



Therefore, if ‖x‖2 ≥
√

2b/m, we have 〈∇g(x),x〉 ≥ 0 and thus we have 〈∇g(x), αx〉 ≥ 0 for any α ≥ 0. Then, for any x

with ‖x‖2 >
√

2b/m, let y =
√

2b/mx/‖x‖2, we have

g(x) = g(y) +

∫ 1

0

〈∇g(y + t(x− y)),x− y〉dt ≥ g(y), (C.1)

where the inequality is due to the facts that ‖y + t(x − y)‖2 ≥
√

2b/m and y + t(x − y) = α(x − y) with α =

t+
√

2b/m/(‖x‖2 −
√

2b/m). By the definition of function g(·), we have that for any y with ‖y‖2 ≤
√

2b/m,

g(y) = f(y)−m‖y‖22/4 ≥ f(x∗)− b/2. (C.2)

Plugging (C.2) into (C.1) gives

g(x) ≥ g(y) ≥ f(x∗)− b/2.

thus it follows that

f(x) ≥ m

4
‖x‖22 + f(x∗)− b

2
, (C.3)

which completes the proof.

C.2 PROOF OF LEMMA A.2

Proof of Lemma A.2. Similar to the proof of Lemma 6.2, the essential part is to prove that αu(w) ≥ 1 − δ/2 for all
w ∈ B(u, r) ∩ Ω\{u}. We will prove that under Assumption 5.1, the first term on the R.H.S. of (B.7) can be improved. By
Assumption 5.1 and Nesterov [2018], we know

f(w)− f(u) ≤ 〈w − u,∇f(u)〉+
1

2
(w − u)>∇2f(u)(w − u) +

H

6
‖w − u‖32,

f(u)− f(w) ≥ 〈u−w,∇f(w)〉+
1

2
(u−w)>∇2f(w)(u−w)− H

6
‖u−w‖32.

Thus it follows that ∣∣2f(w)− 2f(u)− 〈w − u,∇f(u) + f(w)〉
∣∣

≤ 1

2

∣∣(w − u)>
(
∇2f(u)−∇2f(w)

)
(w − u)

∣∣+
H

3
‖w − u‖32

≤ 5H

6
‖w − u‖32,

where the second inequality is by Assumption 5.1 as well. Then combining with (B.9), let I1 and I2 be the same as those in
the proof of Lemma 6.2 and note that ‖w − u‖2 ≤ r =

√
10ηd/β

(
1 +

√
log(8K/ε)/d

)
, we can derive the following by

(B.7),

I1
I2
≥ exp

(
− 5Hβ‖w − u‖32

12
− βηL(LR+G)‖w − u‖2

2

−
β2M2

(
‖w − u‖22 + (LR+G)2η2 + β−1ηd/2

)
2B

)
≥ exp

(
− 14Hd3/2β−1/2η3/2 − 5L(LR+G)d1/2β1/2η3/2 − 6βM2dη

B
− β2M2(LR+G)2η2

2B

)
≥ 1− 14Hd3/2β−1/2η3/2 − 5L(LR+G)d1/2β1/2η3/2 − 6β(LR+G)2dη/B − β2(LR+G)4η2/B

= 1− δ/2,

where we use the fact that M = LR+G in the last inequality. Then following the same procedure as in the proof of Lemma
6.2, we are able to complete the proof.



C.3 PROOF OF LEMMA B.2

Proof of Lemma B.2. Note that we have ‖x‖2 ≤ R, then by Lemma B.1 we know that

‖g(x, I1)−∇f(x)‖2 − ‖g(x, I2)−∇f(x)‖2 ≤ ‖g(x, I1)− g(x, I2)‖2 ≤ 2LR+ 2G,

for all x. Then by Hoeffding’s lemma, we have that there exists a constant M = LR+G such that

EI
[

exp
(
〈a,g(x, I)−∇f(x)〉

)]
≤ exp(M2‖a‖22)

for any a ∈ Rd. Moreover, note that I is uniformly sampled from [n] without replacement. Let I ′ be the stochastic
mini-batch sampled from [n] with replacement, by Lemma 1.1 in Bardenet et al. [2015] and the convexity of function exp(·),
we have

EI
[

exp
(
〈a,g(x, I)−∇f(x)〉

)]
≤ EI′

[
exp

(
〈a,g(x, I ′)−∇f(x)〉

)]
.

Then based on the fact that each element in I ′ is independently drawn from [n], we have

EI′
[

exp
(
〈a,g(x, I ′)−∇f(x)〉

)]
= EI′

[ ∏
i∈I′

exp

(
1

B
〈a,g(x, {i})−∇f(x)〉

)]
=
∏
i∈I′

Ei
[

exp

(
1

B
〈a,g(x, {i})−∇f(x)〉

)]
≤
∏
i∈I′

exp
(
M2‖a‖22/B2

)
= exp

(
M2‖a‖22/B

)
.

Furthermore, note that if B = n, we have EI
[

exp
(
〈a,g(x, I)−∇f(x)〉

)]
= 1. This completes the proof.

C.4 PROOF OF LEMMA B.3

Lemma C.1 (Lemma 1.2 in Lovász and Simonovits [1993]). For any atom-free distributions µ and ν on Ω, define function

l(p) = sup
g:Ω→[0,1]

∫
Ω

g(x)µ(dx) s.t.
∫

Ω

g(x)ν(dx) = p.

Then there exists a set A ∈ Ω with ν(A) = p such that `(p) = µ(A).

Proof of Lemma B.3. Similar to the proof of Lemma 1.3 in Lovász and Simonovits [1993], we first define the following
functions for all u,A ∈ Ω,

g1(u,A) =

{
2Tu(A)− 1, u ∈ A
0, u /∈ A g2(u,A) =

{
1, u ∈ A
2Tu(A), u /∈ A

It is easy to see that g1(u,A) + g2(u,A) = 2Tu(A) for all u ∈ Ω. In addition, for a 1/2-lazy Markov process Tu(·) defined
as in (6.5), we have g1(·, ·), g2(·, ·) ∈ [0, 1]. Based on the above definitions, we can further derive that∫

Ω

g1(u,A)π?(du) =

∫
A

[2Tu(A)− 1]π?(du)

=

∫
A

[1− 2Tu(Ω\A)]π?(du)

= π?(A)− 2

∫
A
T ?u (Ω\A)π?(du)− 2

∫
A

[
Tu(Ω\A)− T ?u (Ω\A)

]
π?(du)︸ ︷︷ ︸

r1

, (C.4)



and ∫
Ω

g2(u,A)π?(du) = π?(A) +

∫
Ω\A

2Tu(A)π?(du)

= π?(A) + 2

∫
Ω\A
T ?u (A)π?(du) + 2

∫
Ω\A

[
Tu(A)− T ?u (A)

]
π?(du)

= π?(A) + 2

∫
A
T ?u (Ω\A)π?(du) + 2

∫
Ω\A

[
Tu(A)− T ?u (A)

]
π?(du)︸ ︷︷ ︸

r2

, (C.5)

where the last equality is by the fact that T ?u (·) is a time-reversible Markov chain with stationary distribution π?(·). Note
that we have (1− δ)T ?u (A) ≤ Tu(A) ≤ (1 + δ)T ?u (A), the approximation error terms r1 and r2 can be upper bounded as
follows,

|r1| ≤ δ
∫
A
T ?u (Ω\A)π?(du)

|r2| ≤ δ
∫

Ω\A
T ?u (A)π?(du) = δ

∫
A
T ?u (Ω\A)π?(du).

Then, combining (C.4) and (C.5) gives∫
Ω

[g1(u,A) + g2(u,A)]π?(du) = 2π?(A)− 2r1 + 2r2. (C.6)

Based on the definition of hk(p), we know that there exists a set Ak satisfying π?(Ak) = p such that

hk(p) = µk(Ak)− π?(Ak). (C.7)

Moreover, note that the distribution µk(·) is generated by conducting one-step transition (based on transition distribution
Tu(·)) from distribution µk−1(·), we have

µk(Ak) =

∫
Ak
µk(du) =

∫
Ω

Tu(Ak)µk−1(du).

Based on the definitions of functions g1 and g2, the above equation can be reformulated as

µk(Ak) =
1

2

∫
Ω

[
g1(u,Ak) + g2(u,Ak)

]
µk−1(du). (C.8)

By (C.6), we know that ∫
Ω

[g1(u,Ak) + g2(u,Ak)]π?(du) = 2π?(Ak)− 2r1 + 2r2, (C.9)

where r1 and r2 are two approximation error terms satisfying

|r1|, |r2| ≤ δ
∫
Ak
T ?u (Ω\Ak)π?(du). (C.10)

Then based on Lemma C.1, we know that there exist two sets A1
k−1,A2

k−1 ⊆ Ω satisfying

p1 := π?(A1
k−1) =

∫
Ω

g1(u,Ak)π?(du) and p2 := π?(A2
k−1) =

∫
Ω

g2(u,Ak)π?(du), (C.11)

such that ∫
Ω

g1(u,Ak)µk−1(du) ≤ µk−1(A1
k−1) and

∫
Ω

g2(u,Ak)µk−1(du) ≤ µk−1(A2
k−1).



Therefore, based on (C.8) and (C.9), we have

hk(p) = µk(Ak)− π?(Ak)

=
1

2

∫
Ω

[
g1(u,Ak) + g2(u,Ak)

]
µk−1(du)− 1

2

∫
Ω

[
g1(u,Ak) + g2(u,Ak)

]
π∗(du)

− r1 + r2

≤ 1

2

[
µk−1(A1

k−1) + µk−1(A2
k−1)− π?(A1

k−1)− π?(A2
k−1)

]
+ |r1 − r2|

≤ 1

2

[
hk−1(p1) + hk−1(p2)

]
+ |r1 − r2|,

where the first inequality is by (C.9) and (C.11) and triangle inequality, and the last equality is by the definition of function
hk−1(·). Recalling (C.4), (C.5), and (C.11) the probabilities p1 and p2 can be reformulate as

p1 = p− φ̃k min{p, 1− p} and p2 = p+ φ̂k min{p, 1− p},

where

φ̃k =
2
∫
Ak T

?
u (Ω\Ak)π?(du)− 2r1

min{p, 1− p}
and φ̂k =

2
∫
Ak T

?
u (Ω\Ak)π?(du) + 2r2

min{p, 1− p}
.

We further define

φk =

∫
Ak T

?
u (Ω\Ak)π?(du)

min{p, 1− p}
.

Apparently, according to Definition 6.3, it holds that φk ≥ φs. In addition, by (C.10) and our definitions of φ̃k and φ̂k, it can
be also derived that

2(1− δ)φk ≤ φ̃k ≤ φ̂k ≤ 2(1 + δ)φk.

Since the transition kernel Tu(·) is 1/2-lazy, we have φ̃k ≤ 1. Then, if δ ≤ min{1−
√

2/2, φ/16}, we have φ̃k ≥
√

2φk
and φ̂k − φ̃k ≤ 4δφk ≤ φ̃2

k/4. Moreover, note that
√

1− x ≤ 1− x/2− x2/8 for all x ∈ (0, 1), we have√
1− φ̃k +

√
1 + φ̂k =

√
1− φ̃k +

√
1 + φ̃k + φ̂k − φ̃k

≤ 1− φ̃k
2
− φ̃2

k

8
+ 1 +

φ̃k
2

≤ 2− φ2
k

4
.

Moreover, (C.10) also implies that

|r1 − r2| ≤ 2δ

∫
Ak
T ?u (Ω\Ak)π?(du) = 2δφk min{p, 1− p} ≤ 2δφk min

{√
p,
√

1− p
}
.

Therefore, we can finally upper bound hk(p) as follows,

hk(p) ≤ 1

2

[
hk−1

(
p− φ̃k min{p, 1− p}

)
+ hk−1

(
p+ φ̂k min{p, 1− p}

)]
+ 2δφk min

{√
p,
√

1− p
}
,

which completes the proof.



C.5 PROOF OF LEMMA B.5

Proof of Lemma B.5. For any I, we have∫
Ω∩B(u,r)

P (z|u, I)dz =

∫
B(u,r)

P (z|u, I)dz−
∫
B(u,r)\Ω

P (z|u, I)dz

≥
∫
B(u,r)

P (z|u, I)dz︸ ︷︷ ︸
I1

−
∫
Rd\Ω

P (z|u, I)dz︸ ︷︷ ︸
I2

. (C.12)

Thus the remaining part is to prove that the R.H.S. of the above inequality is greater than 0.4. Regarding I1, note that
P (z|u, I) is a Gaussian distribution with mean u− ηg(u, I) and covariance matrix 2ηI/β, thus we have∫

B(u,r)

P (z|u, I)dz ≥ Pz∼χ2
d

(
z ≤ 0.5β(r − η‖g(u, I)‖2)2/η

)
.

By Lemma B.1, we know that ‖g(u, I)‖2 ≤ LR+G. Therefore, based on our choice r =
√

10ηd/β, it is clear that if

η ≤ 0.1d

β(LR+G)2
,

we have r − η‖g(u, I)‖2 ≥
√

8ηd/β and thus∫
B(u,r)

P (z|u, I)dz ≥ Pz∼χ2
d
(z ≤ 4d) ≥ 0.95. (C.13)

Then we will prove the upper bound of I2. Note that the set Ω is a ball centered at the origin and u ∈ Ω, we can construct a
point w as follows,

w = u−
(
R−
√
R2 − r2

)
u

‖u‖2
.

It is easy to see that a half space of B(w, r) is contained by the set Ω. Let Q(z|w) = N(w, 2ηI/β), it follows that∫
Ω

Q(z|w)dz ≥
∫

Ω∩B(w,r)

Q(z|w)dz ≥ 1

2

∫
B(w,r)

Q(z|w)dz.

Note that Q(z|w) is a Gaussian distribution with mean w and covariance matrix 2ηI/β, thus we have∫
Ω

Q(z|w)dz ≥ 1

2
Pz∈χ2

d
(z ≤ 5d) ≥ 0.475.

Moreover, by Pinsker’s inequality [Cover and Thomas, 2012], we have∣∣∣∣ ∫
Ω

P (z|u, I)dz−
∫

Ω

Q(z|w)dz

∣∣∣∣ ≤ ‖P (·|u, I)−Q(·|w)‖TV ≤
√

2DKL

(
P (·|u, I), Q(·|w)

)
.

Note that P (·|u, I) and Q(·|w) are Gaussian distributions with the same covariance matrices, we have
DKL

(
P (·|u, I), Q(·|w)

)
= β‖u− v‖22/(4η). Therefore, it follows that∣∣∣∣ ∫

Ω

P (z|u, I)dz−
∫

Ω

Q(z|w)dz

∣∣∣∣ ≤ ‖w − (u− ηg(u, I))‖2√
2η/β

≤
√
β/2η ·

(
‖w − u‖2 + η‖g(u, I)‖2

)
.

By our construction of w, we have

‖w − u‖2 = R−
√
R2 − r2 = R

(
1−

√
1− r2/R2

)
≤ r2/R =

10ηd

βR
.



By Lemma B.1, we know that ‖g(u, I)‖2 ≤ LR+G. Therefore, if the step size satisfies

η ≤ 1

40

(
dβ−1R−1 + (LR+G)β1/2

)−1
,

we have ‖P (·|u, I)−Q(·|w)‖TV ≤ 0.025, and thus∫
Rd\Ω

P (z|u, I)dz = 1−
∫

Ω

P (z|u, I)dz ≤ 1−
∫

Ω

Q(z|w)dz + 0.025 = 0.55.

Combining with (C.13), we have the following by (C.12),∫
Ω∩B(u,r)

P (z|u, I)dz ≥
∫
B(u,r)

P (z|u, I)dz−
∫
Rd\Ω

P (z|u, I)dz ≥ 0.95− 0.55 = 0.4.

This completes the proof.

C.6 PROOF OF LEMMA B.6

Proof of Lemma B.6. By the definition of total variation distance, we know there exists a set A ∈ Rd such that

‖P (·|u)− P (·|v)‖TV = |P (A|u)− P (A|v)|

=

∣∣∣∣ ∫
A
P (z|u)− P (z|v)dz

∣∣∣∣
=

∣∣∣∣EI[ ∫
A
P (z|u, I)− P (z|v, I)dz

]∣∣∣∣
≤ EI [‖P (z|u, I)− P (z|v, I)‖TV ],

where the last inequality is by triangle inequality and the definition of total variation distance. By Pinsker’s inequality, we
have

‖P (z|u, I)− P (z|v, I)‖TV ≤
√

2DKL

(
P (·|u, I), P (·|v, I)

)
=
‖u− ηg(u, I)− (v − ηg(v, I))‖2√

2η/β
,

where the last equality follows from the fact that P (·|u, I) and P (·|v, I) are two Gaussian distributions with different
means and same covariance matrices. By triangle inequality, we have

‖u− ηg(u, I)− (v − ηg(u, I))‖2 ≤ ‖u− v‖2 + η‖g(u, I)− g(v, I)‖2 ≤ (1 + Lη)‖u− v‖2,

where the second inequality is by Assumption 4.4. Therefore, we have

‖P (·|u)− P (·|v)‖TV ≤ EI [‖P (z|u, I)− P (z|v, I)‖TV ] ≤ (1 + Lη)‖u− v‖2√
2η/β

.

This completes the proof.

C.7 PROOF OF LEMMA B.7

Proof of Lemma B.7. Define a Gaussian distribution q(x) = e−mβ‖x‖
2
2/8/[8π/(mβ)]d/2. Then by (A.3) and proof of

Corollary 4.8, we have q(x) ≥ π(x) if ‖x‖22 ≥ 4m−1(β−1d log(4L/m)+b). Thus, for any α ≥ 4m−1(β−1d log(4L/m)+
b), we have ∫

‖x‖22≥α
π(dx) ≤

∫
‖x‖22≥α

q(x)dx = Pz∼χ2
d
[z ≥ mβα/4],



where the last equality is due to the fact that q(x) is a Gaussian distribution with mean 0 and covariance matrix 4I/(mβ).
By standard tail bound of Chi-Square distribution, for any δ ∈ (0, 1) we have

Pz∼χ2
d

[
z ≥ d+ 2

√
d log(1/δ) + 2 log(1/δ)

]
≤ δ.

Therefore, define by Ω = B(0, R̄(ζ)) with

R̄(ζ) =

[
max

{
4d log(4L/m) + 4βb

mβ
,

4d+ 8
√
d log(1/δ) + 8 log(1/δ)

mβ

}]1/2

,

we have

π(Ω) =

∫
‖x‖22≤R̄(ζ)

π(dx)

= 1−
∫
‖x‖22≥R̄(ζ)

π(dx)

≥ 1− Pz∼χ2
d
[z ≥ mβR̄(ζ)/4]

≥ 1− ζ,

which completes the proof.
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