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Abstract
This paper introduces the notion of “Initial Align-
ment” (INAL) between a neural network at initial-
ization and a target function. It is proved that if a
network and a Boolean target function do not have
a noticeable INAL, then noisy gradient descent on
a fully connected network with normalized i.i.d.
initialization will not learn in polynomial time.
Thus a certain amount of knowledge about the
target (measured by the INAL) is needed in the
architecture design. This also provides an answer
to an open problem posed in (Abbe & Sandon,
2020a). The results are based on deriving lower-
bounds for descent algorithms on symmetric neu-
ral networks without explicit knowledge of the
target function beyond its INAL.

1. Introduction
Does one need an educated guess on the type of architecture
needed in order for gradient descent to learn certain target
functions? Convolutional neural networks (CNNs) have an
architecture that is natural for learning functions having to
do with image features: at initialization, a CNN is already
well posed to pick up correlations with the image content
due to its convolutional and pooling layers, and gradient
descent (GD) allows to locate and amplify such correlations.
However, a CNN may not be the right architecture for non-
image based target functions, or even certain image-based
functions that are non-classical (Liu et al., 2018). More
generally, we raise the following question:

Is a certain amount of ‘initial alignment’ needed
between a neural network at initialization and
a target function in order for GD to learn on a
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reasonable horizon? Or could a neural net that is
not properly designed but large enough find its
own path to correlate with the target?

In order to formalize the above question, one needs to de-
fine the notion of ‘alignment’ as well as to quantify the
‘certain amount’ and ‘reasonable horizon’ notions. This
paper focuses on the ‘polynomial-scaling’ regime and on
fully connected architectures, but we conjecture that a more
general quantitative picture can be derived. Before defining
the question formally, we stress a few connections to related
problems.

A different type of ‘gradual’ question has recently been
investigated for neural networks, namely, the ‘depth grad-
ual correlation’ hypothesis. This postulates that if a neu-
ral network of low depth (e.g., depth 2) cannot learn to a
non-trivial accuracy after GD has converged, then an aug-
mentation of the depth to a larger constant will not help in
learning (Malach & Shalev-Shwartz, 2019; Allen-Zhu & Li,
2020). In contrast, the question studied here is more of a
‘time gradual correlation’ hypothesis, saying that if at time
zero GD cannot correlate non-trivially with a target function
(i.e., if the neural net at time zero does not have an initial
alignment), then a polynomial number of GD steps will not
help.

From a lower-bound point of view, the question we ask
is also slightly different than the traditional lower-bound
questions posed in the learning literature that have to do with
the difficulties of learning a class of functions irrespective of
a specific architecture. For instance, it is known from (Blum
et al., 1994; Kearns, 1998) that the larger the statistical
dimension of a function class is, the more challenging it is
for a statistical query (SQ) algorithm to learn, and similarly
for GD-like algorithms (Abbe et al., 2021); these bounds
hold irrespective of the type of neural network architectures
used.

A more architecture-dependent lower-bound is derived
in (Abbe & Sandon, 2020b), where the junk-flow is es-
sentially used as replacement of the number of queries, and
which depends on the type of architecture and initialization
albeit being implicit. In (Shalev-Shwartz & Malach, 2021),
a separation between fully connected and CNN architec-
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tures is obtained, showing that certain target functions have
a locality property and are better learned by the latter ar-
chitecture. In a different setting, (Tan et al., 2021) gives a
generalization lower bound for decision trees on additive
generative models, proving that decision trees are statisti-
cally inefficient at estimating additive regression functions.
However, none of the bounds in these works give an explicit
figure of merit to measure the suitability of a neural network
architecture for a target.

One can interpret such bounds, especially the one in (Abbe
& Sandon, 2020b), as follows. If the function class is such
that for two functions F, F ′ sampled randomly from the
class, the typical correlation is not noticeable, i.e., if the
cross-predictability (CP) is given by

CP(F, F ′) := EF,F ′〈F, F ′〉2 = n−ωn(1), (1)

(where we denoted by 〈.〉 the L2-scalar product, namely, for
some input distribution PX , 〈f, g〉 = Ex∼PX [f(x)g(x)] and
by ωn(1) any sequence that is diverging to∞ as n→∞),
then GD with polynomial precision and on a polynomial
horizon will not be able to identify the target function with
an inverse polynomial accuracy (weak learning), because at
no time the algorithm will approach a good approximation
of the target function; i.e. the gradients stay essentially
agnostic to the target.

Instead, here we focus on a specific function — rather than
a function class — and on a specific architecture and initial-
ization. One can engineer a function class from a specific
function if the initial architecture has some distribution sym-
metry. In such case, if the original function is learnable, then
its orbit under the group of symmetry must also be learnable,
and thus lower bounds based on the cross-predictability or
statistical dimension of the orbit can be used. Such lower
bounds are no longer applying to any architecture but ex-
ploit the symmetry of the architecture, however they still
require knowledge of the target function in order to define
the orbit.

In this paper, we would like to depart from the setting where
we know the target function and thus can analyze the or-
bit directly. Instead, we would like to have a ‘proxy’ that
depends on the underlying target function and the initial-
ized neural net NNΘ0 at hand, where the set of weights
at time zero Θ0 are drawn according to some distribution.
In (Abbe & Sandon, 2020a), the following proposal is made
(the precise statement will appear below): can we replace
the correlation among a function class by the correlation
between a target function and an initialized net in order to
have a necessary requirement for learning, i.e., if

EΘ0〈f,NNΘ0〉2 = n−ωn(1), (2)

or in other words, if at initialization the neural net correlates
negligibly with the target function, is it still possible for GD

to learn1 the function f if the number of epochs of GD is
polynomial? We next formalize the question further and
provide an answer to it.

Note the difference between (1) and (2): in (1) it is the
class of functions that is too poorly correlated for any SQ
algorithm to efficiently learn; in (2) it is the specific network
initialization that is too poorly correlated with the specific
target in order for GD to efficiently learn.

While previous works and our proof relies on creating the
orbit of a target function using the network symmetries and
then arguing from the complexity of the orbit (using cross-
predictability (Abbe & Sandon, 2020a)), we believe that
the INAL approach can be fruitful in additional contexts.
In fact, the orbit approaches have two drawbacks: (1) they
cannot give lower-bounds on functions like the full parity2

that have no complex orbit (in fact the orbit of the full parity
is itself under permutation symmetries), (2) to estimate
the complexity measure of the orbit class (e.g., the cross-
predictability) from a sample set without full access to the
target function, one needs labels of data points under the
group action that defines the orbit (e.g., permutations), and
these may not always be available from an arbitrary sample
set. In contrast, (i) the INAL can still be small for the
full parity function on certain symmetric neural networks,
suggesting that in such cases the full parity is not learnable
(we do not prove this here due to our specific proof technique
but conjecture that this result still holds), (ii) the INAL can
always be estimated from a random i.i.d. sample set, using
basic Monte Carlo simulations (as used in our experiments,
see Section 5).

While the notion of INAL makes sense for any input distri-
bution, our theoretical results are proved in a more limited
setting of Boolean functions with uniform inputs. This fol-
lows the approach that has been taken in (Abbe & Sandon,
2020b) and we made that choice for similar reasons. Further-
more, any computer-encoded function is eventually Boolean
and major part of the PAC learning theory has indeed fo-
cused on Boolean functions (we refer to (Shalev-Shwartz &
Ben-David, 2014) for more on this subject). We nonetheless
expect that the footprints of the proofs derived in this paper
will apply to inputs that are iid Gaussians or spherical, using
different basis than the Fourier-Walsh one.

Our general strategy in obtaining such a result is as follows:
we first show that for the type of architecture considered, a
low initial alignment (INAL) implies that the implicit target
function is essentially high-degree in its Fourier basis; this
part is specific to the architecture and the low INAL property.
We next use the symmetry of the initialization to conclude

1Even with just an inverse polynomial accuracy, a.k.a., weak
learning.

2we call full parity the function f : {±1}n → {±} s.t.
f(x) =

∏n
i=1 xi.
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that learning under such high-degree Fourier requirement
implies learning a low CP class, and thus conclude by lever-
aging the results from (Abbe & Sandon, 2020b). Finally, we
do some experiments with the types of architecture used in
our formal results, but also with convolutional neural nets
to test the robustness of the original conjecture. We observe
that generally the INAL gives a decent proxy for the diffi-
culty to learn (lower INAL gives lower learning accuracy).
While this goes beyond the scope of our paper — which is
to obtain a first rigorous validation of the INAL conjecture
for standard fully connected neural nets — we believe that
the numerical simulations give some motivations to pursue
the study of the INAL in a more general setting.

2. Definitions and Theoretical Contributions
For the purposes of our definition, a neural network NN con-
sists of a set of neurons VNN, a random variable Θ0 ∈ Rk
which corresponds to the initialization and a collection of
functions NN

(v)
Θ0 : Rn → R indexed with v ∈ VNN, repre-

senting the outputs of neurons in the network. The Initial
Alignment (INAL) is defined as the average squared corre-
lation between the target function and any of the neurons at
initialization:
Definition 2.1 (Initial Alignment (INAL)). Let f : Rn →
R be a function and PX a distribution on Rn. Let NN be a
neural network with neuron set VNN and random initializa-
tion Θ0. Then, the INAL is defined as

INAL(f,NN) := max
v∈VNN

EΘ0〈f,NN
(v)
Θ0 〉2, (3)

where we denoted by 〈.〉 the L2-scalar product, namely
〈f, g〉 = Ex∼PX [f(x)g(x)].

While the above definition makes sense for any neural net-
work architecture, in this paper we focus on fully connected
networks. Thus, in the following NN will denote a fully
connected neural network. Our main thesis is that in many
settings a small INAL is bad news: If at initialization there
is no noticeable correlation between any of the neurons
and the target function, the GD-trained neural network will
not be able to recover such correlation during training in
polynomial time.

Of particular interest to us is the notion of INAL for a
single neuron with activation σ and normalized Gaussian
initialization.
Definition 2.2. Let f : Rn → R, σ : R→ R and let PX be
a distribution on Rn. Then, we abuse the notation and write

INAL(f, σ) := Ewn,bn
[(

Ex∼PX f(x)σ((wn)Tx+ bn)
)2
]
,

(4)

where wn is a vector of iid N (0, 1/n) Gaussians and bn is
another independent N (0, 1/n) Gaussian. In the following,

for readability, we will write w = wn and b = bn, omitting
the dependence on n.

In the following, we say that a function f : N → R≥0

is noticeable if there exists c ∈ N such that f(n) =
Ω(n−c). On the other hand, we say that f is negligible
if limn→∞ ncf(n) = 0 for every c ∈ N (which we also
write f(n) = n−ωn(1)).

Definition 2.3 (Weak learning). Let (fn)n∈N be a sequence
of functions such that fn : Rn → R and (Pn) a sequence
of probability distributions on Rn. Let (An) be a family
of randomized algorithms such that An outputs a function
NNn : Rn → R. Then, we say that An weakly learns fn if
the function

g(n) :=
∣∣Ex∼Pn,An [fn(x) ·NNn(x)]

∣∣ (5)

is noticeable.

In this paper, we follow the example of (Abbe & Sandon,
2020b) and focus on Boolean functions with inputs and
outputs in {±1}. We consider sequences of Boolean func-
tions fn : {±1}n → {±1}, with the uniform input distri-
bution Un, meaning that if x ∼ Un, then for all i ∈ [n],
xi

iid∼ Rad(1/2). We focus on fully connected neural net-
works with activation function σ, and trained by noisy GD
— this means GD where the gradient’s magnitude per the
precision noise is polynomially bounded, as commonly con-
sidered in statistical query algorithms (Kearns, 1998; Blum
et al., 1994) and GD learning (Abbe & Sandon, 2020b;
Malach et al., 2021; Abbe et al., 2021); see Remark 3.5
for a remainder of the definition. We consider activation
functions that satisfy the following conditions.

Definition 2.4 (Expressive activation). We say that a func-
tion σ : R → R is expressive if it satisfies the following
conditions:

a) σ is measurable and polynomially bounded i.e. there
exists C, c > 0 such that |σ(x)| ≤ Cxc + C for all
x ∈ R.

b) Let the Gaussian smoothing of σ be defined as Σ(t) :=
EY∼N (0,1)[σ(Y + t)]. For each m ∈ N either
Σ(m)(0) 6= 0 or Σ(m+1)(0) 6= 0 (where Σ(m) denotes
the m-th derivative of Σ).

Remark 2.5. i) Note that we have the identities dm =
Σ(m)(0)
m! , and σ =

∑∞
m=0 dmHm, where Hm are

the probabilist’s Hermite polynomials. Therefore, an
equivalent statement of the second condition in Defi-
nition 2.4 is that there are no two or more consecutive
zeros in the Hermite expansion of σ.

ii) Many functions are expressive, including ReLU and
sign (see Appendix B for the proofs of those two cases).
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iii) On the other hand, it turns out that polynomials are
not expressive, as they do not satisfy point b). This
is necessary for our hardness results to hold, since
for an activation function P which is a polynomial of
degree k and M a monomial of degree k + 1 it can be
checked that INAL(M,P ) = 0, but constant-degree
monomials are learnable by GD.

Let us give one more definition before stating our main
theorem.

Definition 2.6 (N-Extension). For a function f : Rn → R
and for N > n, we define its N-extension f : RN → R as

f(x1, x2, ..., xn, xn+1, xn+2, ..., xN ) = f(x1, x2, ..., xn).
(6)

We can now state our main result which connects INAL and
weak learning.

Theorem 2.7 (Main theorem, informal). Let σ be an
expressive activation function and (fn) a sequence of
Boolean functions with uniform distribution on {±1}n. If
INAL(fn, σ) is negligible, then, for every ε > 0, the n1+ε-
extension of fn is not weakly learnable by poly(n)-sized
fully-connected neural networks with iid initialization and
poly(n)-number of steps of noisy gradient descent.

Remark 2.8. Theorem 2.7 says that Boolean functions that
have negligible correlation for some expressive activation
and Gaussian iid initialization, cannot be learned by neu-
ral networks utilizing any activation on a fully-connected
architecture and any iid initialization.
Remark 2.9. Consider a sequence of neural networks (NNn)
utilizing an expressive activation σ. We believe that the
notion of INAL(fn,NNn) is relevant to characterizing if
a family of Boolean functions (fn) is weakly learnable by
noisy GD on those neural networks. On the one hand, if
INAL(fn,NNn) is noticeable, then at initialization there
exists a neuron from which a weak correlation with fn can
be extracted. Therefore, in a sense weak learning is achieved
at initialization.

On the other hand, assume additionally that the architecture
is such that there exists a neuron computing σ(wTx + b),
where x is the input and (w, b) are initialized as iid
N (0, 1/n) Gaussians. (In other words, there exists a fully-
connected neuron in the first hidden layer.) Then, by defi-
nition of INAL, if INAL(fn,NNn) is negligible, then also
INAL(fn, σ) is negligible. Accordingly, by Theorem 2.7,
an extension of (fn) is not weakly learnable.

While we do not have a proof, we suspect that a similar
property might hold also for some other architectures and
initializations.

Note that we obtain hardness only for an extension of fn,
rather than for the original function. Interestingly, in some

settings GD can learn the function, while the 2n-extension
of the same function is hard to learn3. However, we are not
sure if such examples can be constructed for the continuous
Gaussian initialization that we consider.

3. Formal Results
In this section, we write precise statements of our theorems.
For this, we need a couple of more definitions.

Definition 3.1 (Cross-Predictability). Let PF be a distribu-
tion over functions from Rn to R and PX a distribution over
Rn. Then,

CP(PF , PX ) = EF,F ′∼PF [EX∼PX [F (X)F ′(X)]2] . (7)

Definition 3.2 (Orbit). For f : Rn → R and a permutation
π ∈ Sn, we let (f ◦ π)(x) = f(xπ(1), . . . , xπ(n)). Then,
we define the orbit of f as

orb(f) := {f ◦ π : π ∈ Sn} . (8)

Let us now give the full statement of our main theorem.

Theorem 3.3. Let (fn) be a sequence of Boolean functions
with fn : {±1}n → {±1} and x ∼ Un and let σ be an
expressive activation.

If INAL(fn, σ) is negligible, then, for every ε > 0, the
cross predictability CP(orb(fn),UN ) is negligible, where
N = n1+ε and orb(fn) denotes (uniform distribution on)
the orbit of the N -extension of fn.

More precisely, if INAL(fn, σ) = O(n−c), then
CP(orb(fn),UN ) = O(n−

ε
1+ε (c−1)).

Applying (Abbe & Sandon, 2020b)[Theorem 3] to Theo-
rem 3.3 implies the following corollary. We refer to Ap-
pendix E for additional clarifications on the notion of a fully
connected neural net.

Corollary 3.4. Let fn and σ be as in Theorem 3.3 with
negligible INAL(fn, σ) and let ε > 0 with N = n1+ε and
fn denote the N -extension of fn.

Let NN = (NNn) be any sequence of fully connected neural
nets of polynomial size. Then, for any iid initializaton, and
any polynomial bounds on the learning rate, learning time
T = (Tn), noise level and overflow range, the noisy GD
algorithm after T steps of training outputs a neural net
NN(T ) such that the correlation

g(n) :=
∣∣ENN(T )〈NN(T ), fn〉

∣∣ (9)

is negligible.

3For example, for the Boolean parity function Mn(x) =∏n
i=1 xi with both the input distribution and the weight initial-

ization iid uniform in {±1} and cosine activation (Boix-Adsera,
2021).
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More precisely, if INAL(fn, σ) = O(n−c), then for a noisy
GD run for T steps on a fully connected neural network
with E edges, with learning rate γ, overflow range A and
noise level τ it holds that

g(n) = O

(
γT
√
EA

τ
· n−

ε
4(1+ε)

(c−1)

)
. (10)

Remark 3.5. In the result above, the neural net can have
any feed-forward architecture with layers of fully-connected
neurons and any activation such that the gradients are almost
surely well-defined. The initialization can be iid from any
distribution (which can depend on n). We remark that the
result of Corollary 3.4 can be strengthen to apply to any
initialization such that the distribution of the weights in the
first layer is invariant under permutations of input neurons.
We refer to Appendix E for more details.

The algorithm considered is noisy gradient descent4 using
any differentiable loss function, meaning that at every step
an iid N (0, τ2) noise vector is added to all components of
the gradient, where τ is called the noise level. Furthermore,
every component of the gradient during the execution of the
algorithm whose evaluation exceeds the overflow range A
in absolute value is clipped to A or −A, respectively. This
covers in particular the bounded ‘precision model’ of (Abbe
et al., 2021).

For the purposes of function g(n), it is assumed that the
neural network outputs a guess in {±1} using any form
of thresholding (eg., the sign function) on the value of the
output neuron. See (Abbe & Sandon, 2020b)[Section 2.3.1].

4. Proof of Main Theorem
In this section we sketch the proof of Theorem 3.3. We first
state basic definitions from Boolean function analysis, then
we give a short outline of the proof, and then we state main
propositions used in the proof. Finally, we show how the
propositions are combined to prove Theorem 3.3 and Corol-
lary 3.4. Further proofs and details are in the appendices.

We introduce some notions of Boolean analysis, mainly
taken from Chapters 1,2 of (O’Donnell, 2014). For every
f : {±1}n → R we denote its Fourier expansion as

f(x) =
∑
S⊆[n]

f̂(S)MS(x), (11)

where MS(x) =
∏
i∈S xi are the standard Fourier basis

elements and f̂(S) are the Fourier coefficients of f , defined

4In fact, it can be SGD with batch size m for large enough m.

as f̂(S) = 〈f,MS〉. We denote by

W k(f) =
∑

S:|S|=k

f̂(S)2 (12)

W≤k(f) =
∑

S:|S|≤k

f̂(S)2 , (13)

the total weight of the Fourier coefficients of f at degree k
(respectively up to degree k).

Definition 4.1 (High-Degree). We say that a family of func-
tions fn : {±1}n → R is “high-degree” if for any fixed k,
W≤k(fn) is negligible.

Proof Outline of Theorem 3.3.

1. We initially restrict our attention to the basis Fourier
elements, i.e. the monomials MS(x) :=

∏
i∈S xi for

S ∈ [n]. We consider the single-neuron alignments
INAL(MS , σ) for expressive activations. We prove
that these INALs are noticeable for constant degree
monomials (Proposition 4.3).

2. For a general f : {±1}n → R we show that the initial
alignment between f and a single-neuron architecture
can be computed from its Fourier expansion (Proposi-
tion 4.4). As a consequence, for any expressive σ, if
INAL(f, σ) is negligible, then f is high-degree (Corol-
lary 4.5).

3. We construct the extension of f and take its orbit
orb(f). Since the extension has a sparse structure of
its Fourier coefficients, that guarantees that the cross-
predictability of orb(f) is negligible (Proposition 4.6).

4. In order to prove Corollary 3.4, we invoke the lower
bound of (Abbe & Sandon, 2020b) (Theorem 4.7) ap-
plied to the class orb(f) .

A crucial property of the expressive activations is that they
correlate with constant-degree monomials. To emphasize
this, we introduce another definition.

Definition 4.2. An activation σ is correlating if for every k,
the sequence INAL(Mk, σ) is noticeable, where we think
of Mk(x) =

∏k
i=1 xi as a sequence of Boolean functions

for every input dimension n ≥ k.

Furthermore, if there exists c such that for every k it holds
INAL(Mk, σ) = Ω(n−(k+c)), then we say that σ is c-
strongly correlating.

Proposition 4.3. If σ is expressive (according to Defini-
tion 2.4), then it is 1-strongly correlating.

The proof of Proposition 4.3 is our main technical contri-
bution. Since the magnitude of the correlations is quite
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small (in general, of the order n−k for monomials of degree
k), careful calculations are required to establish our lower
bounds.

In fact, we conjecture that any polynomially bounded func-
tion that is not a polynomial (almost everywhere) is corre-
lating.

Then, we show that INAL(f, σ) decomposes into monomial
INALs according to its Fourier coefficients:

Proposition 4.4. For any f : {±1}n → R and any activa-
tion σ,

INAL(f, σ) :=
∑
T∈[n]

f̂(T )2 INAL(MT , σ) . (14)

As a corollary, functions with negligible INAL on correlat-
ing activations are high-degree:

Corollary 4.5. Let σ be an activation with
INAL(Mk′ , σ) = Ω(n−k0) for k′ = 0, 1, . . . , k. Then,
W≤k(fn) ≤ INAL(fn, σ)O(nk0).

In particular, if σ is correlating and INAL(fn, σ) is negli-
gible, then (fn) is high degree.

Finally, the cross-predictability of orb(fn) is negligible for
high degree functions.

Proposition 4.6. Let ε > 0 and (fn) a family of Boolean
functions. Let (fn) denote the family of N -extensions of fn
for N = n1+ε, and consider the uniform distribution on its
orbit.

If (fn) is high degree, then CP(orb(fn),UN ) is negligible.
Furthermore, if for some universal c and every fixed k it
holds W≤k(fn) = O(nk−c), then CP(orb(fn),UN ) =
O(n−

ε
1+ε ·c).

Theorem 4.7 ((Abbe & Sandon, 2020b), informal). If the
cross-predictability of a class of functions is negligible, then
noisy GD cannot learn it in poly-time.

We provide here an outline of the proof of Proposition 4.3,
and refer to Appendix A for a detailed proof. We further
prove Proposition 4.6 and Theorem 3.3. The proofs of the
remaining results are in appendices.

Proof of Proposition 4.3 (outline). The main goal of the
proof is to estimate the dominant term (as n approaches
infinity) of INAL(Mk, σ), and show that it is indeed notice-
able, for any fixed k. We initially use Jensen inequality to
lower bound the INAL with the following

INAL(Mk, σ) ≥ E
[
E|θ|,x

[
Mk(x)σ(wTx+ b) | sgn(θ)

]2]
,

(15)

where for brevity we denoted θ = (w, b), |θ| and sgn(θ)
are (n + 1)-dimensional vectors such that |θ|i = |θi| and

sgn(θ)i = sgn(θi), for all i ≤ n + 1. By denoting
|w|>k, x>k the coordinates of |w| and x respectively that do
not appear in Mk, and by G :=

∑k
i=1 wixi + b we observe

that

E|w|>k,x>k [σ(wTx+ b)] = EY∼N (0,1− kn ) [σ(G+ Y )] ,

(16)

since
∑n
i=k+1 wixi is indeed distributed as N (0, 1 − k

n ).
We call the RHS the “n-Gaussian smoothing” of σ and we
denote it by Σn(z) := EY∼N (0,1− kn ) [σ(z + Y )]. We will
compare it to the “ideal” Gaussian smoothing denoted by
Σ(z) := EY∼N (0,1)[σ(z + Y )].

For polynomially bounded σ, we can prove that Σn has
some nice properties (see Lemma A.1), specifically it is
C∞ and polynomially bounded and it uniformly converges
to Σ as n → ∞. These properties crucially allow to write
Σn in terms of its Taylor expansion around 0, and bound
the coefficients of the series for large n. In fact, we show
that there exists a constant P > k, such that if we split the
Taylor series of Σn at P as

Σn(G) =

P∑
ν=0

aν,nG
ν +RP,n(G), (17)

(where aν,n are the Taylor coefficients and RP,n is the re-
mainder in Lagrange form), and take the expectation over
|θ|≤k as:

E|θ|≤k,x≤k [Mk(x)Σn(G)] (18)

=

P∑
ν=0

aν,nE|θ|≤k,x≤k [Mk(x)Gν ] (19)

+ E|θ|≤k,x≤k [RP,n(G)] (20)

=: A+B, (21)

then A is Ω(n−P/2) (Proposition A.3), and B is
O(n−P/2−1/2) (Proposition A.4), uniformly for all val-
ues of sgn(θ). For A we use the observation that
E|θ|≤k,x≤k [Mk(x)Gν ] = 0 for all ν < k (Lemma A.5),
and the fact that |aP,n| > 0 for n large enough (due to hy-
pothesis b in Definition 2.4 and the continuity of Σn in the
limit of n→∞, given by Lemma A.1). For B, we combine
the concentration of Gaussian moments and the polynomial
boundness of all derivatives of Σn.

Taking the square of (21) and going back to (15), one can
immediately conclude that INAL(Mk, σ) is indeed notice-
able.

4.1. Proof of Proposition 4.6

Let f = fn and let f̂ be the Fourier coefficients of the
original function f , and let ĥ be the coefficients of the aug-
mented function f̄ . Recall that f̄ : {±1}N → {±1} is such
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that f̄(x1, ..., xn, xn+1, ..., xN ) = f(x1, ..., xn). Thus, the
Fourier coefficients of f̄ are

ĥ(T ) =

{
f̂(T ) if T ⊆ [n],

0 otherwise.
(22)

Let us proceed to bounding the cross-predictability. Below
we denote by π a random permutation of N elements:

CP(orb(fn),UN ) (23)

= Eπ
[
Ex
[
f̄(x)f̄(π(x))

]2]
(24)

= Eπ


 ∑
T⊆[N ]

ĥ(T )ĥ(π(T ))

2
 (25)

= Eπ


 ∑
T⊆[n]

f̂(T )ĥ(π(T )) · 1 (π(T ) ⊆ [n])

2

(26)

C.S
≤ Eπ

∑
S⊆[n]

ĥ(π(S))2

 (27)

·

 ∑
T⊆[n]

f̂(T )21 (π(T ) ⊆ [n])

 (28)

≤
∑
T⊆[n]

f̂(T )2 · Pπ (π(T ) ⊆ [n]) . (29)

Now, for any k we have

CP(orb(fn),UN ) (30)

≤
∑

T :|T |<k

f̂(T )2 · Pπ (π(T ) ⊆ [n]) (31)

+
∑

T :|T |≥k

f̂(T )2 · Pπ (π(T ) ⊆ [n]) (32)

≤W<k(f) + Pπ (π(T ) ⊆ [n] | |T | = k) , (33)

where the second term in (33) is further bounded by (recall
that N = n1+ε):

Pπ (π(T ) ⊆ [n] | |T | = k) =

(
n
k

)(
N
k

) (34)

≤
(
ne
k

)k(
N
k

)k (35)

= ek
nk

Nk
= ekn−ε·k. (36)

Accordingly, for any k ∈ N>0 it holds that

CP(orb(fn),UN ) ≤W<k(f) + ekn−εk . (37)

Now, if (fn) is a high degree sequence of Boolean functions,
then W<k(f) is negligible for every k, and therefore the
cross-predictability in (34) is O(n−k) for every k, that is
the cross-predictability is negligible as we claimed.

On the other hand, if for some c and every k it holds that
W≤k(fn) = O(nk−c), then we can choose k0 := c

1+ε and
apply (37) to get CP(orb(fn),UN ) = O(n−

ε
1+ε ·c).

4.2. Proof of Theorem 3.3

Let σ be an expressive activation and let (fn) be a sequence
of Boolean functions with negligible INAL(fn, σ). By
Proposition 4.3, σ is correlating, and by Corollary 4.5 (fn)
is high-degree. Therefore, by Proposition 4.6, the cross-
predictability CP(orb(fn),UN ) is negligible.

For the more precise statement, let (fn) be a sequence
of Boolean functions with INAL(fn, σ) = O(n−c). By
Proposition 4.3, σ is 1-strongly correlating. That means
that for every k we have INAL(Mk, σ) = Ω(n−(k+1)).
By Corollary 4.5, for every k it holds W≤k(fn) =
O(nk+1−c). Finally, applying Proposition 4.6, we have
that CP(orb(fn),UN ) = O(n−

ε
1+ε (c−1)).

5. Experiments
In this section we present a few experiments to show how the
INAL can be estimated in practice. Our theoretical results
connect the performance of GD to the Fourier spectrum of
the target function. However, in applications we are usually
given a dataset with data points and labels, rather than an
explicit target function, and it may not be trivial to infer
the Fourier properties of the function associated to the data.
Conveniently, the INAL can be estimated with sufficient
datapoints and labels, and do not need an explicit target.

Experiments on Boolean functions. In our first
experiment, we consider three Boolean functions,
namely the majority-vote over the whole input
space (Majn(x) := sgn(

∑n
i=1 xi)), a 9-staircase

(S9(x) := sgn(x1 + x1x2 + x1x2x3 + ...+ x1x2x3...x9)

and a 3-parity (M3(x) =
∏3
i=1 xi), on an input space of

dimension 100. We take a 2-layer fully connected neural
network with ReLU activations and normalised Gaussian
iid initialization (according to the setting of our theoretical
results), and we train it with SGD with batch-size 1000
for 100 epochs, to learn each of the three functions. On
the other hand, we estimate the INAL between each
of the three targets and the neural network, through
Monte-Carlo. Our observations confirm our theoretical
claim, i.e. that low INAL is bad news. In fact, for the
3-parity and the 9-staircase, that have very low INAL
(∼1/20 of the majority-vote case), GD does not achieve
good generalization accuracy after training (Figure 1).
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Figure 1: Comparison of INAL and generalization accuracy for three Boolean functions. On the left, we estimate the INAL between each
target function and a 2-layers ReLU fully connected neural network with normalized gaussian initialization. On the right, we train the
network to learn each target function with SGD with batch 1000 for 100 epochs. We observe that low INAL is bad news.
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Figure 2: Comparison of INAL and generalization accuracy for binary classification in the CIFAR dataset. On the left, we estimate the
INAL between the neural network and the target function associated to each task. On the right we train a CNN with 1 VGG block with
SGD with batch size 64 for 100 epochs. We observe that a significant difference in the INAL corresponds to a significant difference in the
generalization accuracy achieved.

Experiments on real data. Given a dataset D =
(xm, ym)m∈[M ], where xm ∈ Rn, and ym ∈ R, and given a
randomly initialized neural network NNΘ0 with Θ0 drawn
from some distribution, we can estimate the initial align-
ment between the network and the target function associated
to the dataset as

max
v∈VNN

EΘ0

( 1

M

M∑
m=1

ym ·NN
(v)
Θ0 (xm)

)2
 , (38)

where the outer expectation can be performed through
Monte-Carlo approximation.

We ran experiments on the CIFAR dataset. We split the
dataset into 3 different pairs of classes, corresponding to
3 different binary classification tasks (specifically cat/dog,

bird/deer, frog/truck). We take a CNN with 1 VGG block
and ReLU activation, and for each task, we train the net-
work with SGD with batch-size 64, and we estimate the
INAL according to (38). We notice that also in this setting
(not covered by our theoretical results), the INAL and the
generalization accuracy present some correlation, and a sig-
nificant difference in the INAL corresponds to a significant
difference in the accuracy achieved after training. This may
give some motivation to study the INAL beyond the fully
connected setting.

6. Conclusion and Future Work
There are several directions that can follow from this work.
The most relevant would be to extend the result beyond
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fully connected architectures. As mentioned before, we
suspect that our result can be generalized to all architec-
tures that contain a fully connected layer anywhere in the
network. Another direction would be to extend the present
work to other continuous distributions of intitial weights
(beyond gaussian). As a matter of fact, in the setting of
iid gaussian inputs (instead of Boolean inputs), our proof
technique extends to all weight initialization distributions
with zero mean and variance O(n−1). However, in the case
of Boolean inputs that we consider in this paper, this may
not be a trivial extension. Another extension on which we
do not touch here are non-uniform input distributions.

Acknowledgements We thank Peter Bartlett for a helpful
discussion.
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A. Proof of Proposition 4.3
For an activation σ : R→ R, we denote its v-Gaussian smoothing as

Σv(t) := EY∼N (0,v)[σ(Y + t)]. (39)

We also write Σ := Σ1 for brevity. As mentioned, we will be working with functions that are polynomially bounded, ie.,
such that there exists a polynomial P with |σ(x)| < P (x) holding for all x ∈ R. We will use the fact that such polynomial
can be assumed wlog to be of the form |σ(x)| < Cx` + C for some C > 0 and ` ∈ N≥0 (since any polynomial can be
upper bounded by a polynomial of such form). Note that if σ is a measurable, polynomially bounded function, then Σv is
well defined for every v > 0.

We now state the intermediate step in the proof of Proposition 4.3:

Lemma A.1 (Conditions on Σ and Σv). If σ is a measurable, polynomially bounded function, then it satisfies the following
conditions:

i) Σv ∈ C∞(R) for every v > 0;

ii) For every k ∈ N≥0 and v > 0, Σ
(k)
v (t) := ∂k

∂tk
Σv(t) is polynomially bounded. Furthermore, this bound is uniform,

that is, |Σ(k)
v (t)| < Ct` + C holds for every t ∈ R and every 1/2 ≤ v ≤ 1, for some C, ` that do not depend on v.

iii) For all k ∈ N≥0, it holds |Σ(k)
1−ε(0)− Σ(k)(0)| = O(ε).

Lemma A.1 is then used in the proof of

Lemma A.2. Let σ be expressive (according to Definition 2.4). Then, for every k ≥ 0 and P ≥ k such that Σ(P )(0) 6= 0, it
holds that INAL(Mk, σ) = Ω(n−P ).

In particular, from Lemma A.2 it follows that if σ is expressive, then it is correlating. Furthermore, since by condition b) in
Definition 2.4 for every k we have Σ(k)(0) 6= 0 or Σ(k+1)(0) 6= 0, by Lemma A.2 it holds INAL(Mk, σ) = Ω(n−(k+1))
and σ is 1-strongly correlating.

In the following subsections we prove Lemma A.1 and Lemma A.2.

A.1. Proof of Lemma A.1

In the following let φv denote the density function of N (0, v), ie., φv(t) = 1√
2vπ

exp
(
− t2

2v

)
. Note the relation to the

standard Gaussian density φ = φ1 where φv(t) = 1√
v
φ(t/
√
v).

We recall some useful facts about the derivatives of φv. First, it is well known that for φ it holds φ(k)(t) = Pk(t)φ(t) for
some polynomial Pk of degree k. This formula extends to φv according to

φ(k)
v (t) =

1√
v

dk

dtk
φ(t/
√
v) = v−k/2−1/2φ(k)(t/

√
v) = v−k/2−1/2Pk(t/

√
v)φ(t/

√
v) (40)

= v−k/2Pk(t/
√
v)φv(t) . (41)

i) Let us write φv(t) = (φv/2 ∗ φv/2)(t) where ∗ denotes the convolution in R, i.e. (g ∗ h)(y) =
∫
R g(x)h(y − x)dx. Thus,

Σv = σ ∗ φv = (σ ∗ φv/2) ∗ φv/2. (42)

Now, σ ∗ φv/2 is in L1(R), since σ is measurable and polynomially bounded. Furthermore, φv/2 is in L1(R) and C∞(R).
Therefore, by formulas for derivatives of convolution, Σv ∈ C∞(R).

ii) Let us start with the claim that Σ
(k)
v is polynomially bounded for every v and k. For that, we recall some facts. First, it is

easy to establish by direct computation that if σ is polynomially bounded, then Σv = σ ∗ φv is also polynomially bounded.
Furthermore, if P is any polynomial, then also σ ∗ (Pφv) is polynomially bounded (this can be seen, eg., by observing that
for every P and every v′ > v there exists C such that |Pφv| ≤ Cφv′ ).
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Accordingly, using (40) and (42) we have that

Σ(k)
v = (σ ∗ φv/2) ∗ φ(k)

v/2 = (σ ∗ φv/2) ∗ (Pk,vφv/2) (43)

is polynomially bounded.

Let us move to the second claim with uniform bound. For that let k ≥ 0 and 1/2 ≤ v ≤ 1. Let v′ := v − 1/4 and note that
1/4 ≤ v′ ≤ 3/4. Then, we have the sequence of bounds on functions which hold pointwise:

|Σ(k)
v | =

∣∣∣(σ ∗ φ1/4) ∗ φ(k)
v′

∣∣∣ ≤ C1

(
|σ ∗ φ1/4| ∗ |Pk(x/

√
v′)|φv′

)
(44)

≤ C1

(
|σ ∗ φ1/4| ∗ (C2 + C2(x/

√
v)2`)φv′

)
(45)

≤ C3

(
|σ ∗ φ1/4| ∗ (C4 + C4x

2`)φ
)
, (46)

which is now bounded by a polynomial which does not depend on v.

iii) Recall,

Σ(k)
v (0) =

∫ ∞
−∞

(φv/2 ∗ σ)(x) · ∂
k

∂tk
φv/2(x+ t)

∣∣∣
t=0

dx, (47)

where we denoted by φ(k)
v/2 the k-th derivative of φv/2. Firstly, note that

∂k

∂tk
φv/2(x+ t)

∣∣∣
t=0

=
∂k

∂(x+ t)k
φv/2(x+ t)

∣∣∣
t=0

= φ
(k)
v/2(x). (48)

Let us give a formula for the k-th derivative of the Gaussian density:

φ(k)
v (x) = φv(x) · (−1)kv−2k ·

k∑
l=0

Dl,k

(
x√
v

)k−l
, (49)

where Dl,k is a constant that does not depend on v, specifically

Dl,k := B
(2k+l)

1−(−1)l

2

· 2 l
2 ·

Γ( l+1
2 )

Γ( 1
2 )
· cos

(
lπ

2

)
(50)

where Γ(.) denotes the Gamma function and Bn are the Bernoulli numbers. The exact values of the Dl,k will not be relevant
for this proof. Thus,

Σ(k)
v (0) :=

∫ ∞
−∞

(φv/2 ∗ σ)(x)Pv/2,k(x)φv/2(x)dx, (51)

where we denoted Pv/2,k(x) = (−1)kv−2k ·
∑k
l=0Dl,k

(
x√
v

)k−l
. On the other hand,

Σ
(k)
1 (0) :=

∫ ∞
−∞

(φv/2 ∗ σ)(x)P1−v/2,k(x)φ1−v/2(x)dx, (52)

and

|Σ(k)
v (0)− Σ

(k)
1 (0)| =

∣∣∣ ∫ ∞
−∞

(φv/2 ∗ σ)(x) ·
(
Pv/2,k(x)φv/2(x)− P1−v/2,k(x)φ1−v/2(x)

) ∣∣∣. (53)
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We note that

P1−v/2,k(x) =
(1− v

2 )−2k

( v2 )−2k

(v
2

)−2k

(−1)k (54)

·

 k∑
l=0

Dl,k

(
x√
v/2

)k−l
+Dl,k

( x√
1− v/2

)k−l
−

(
x√
v/2

)k−l (55)

=
(1− v

2 )−2k

( v2 )−2k
Pv/2,k(x) (56)

+
(

1− v

2

)−2k

(−1)k
k∑
l=0

Dl,k

( x√
1− v/2

)k−l
−

(
x√
v/2

)k−l . (57)

Recalling ε = 1− v, and expanding for such ε we get(
1 +

2ε

1− ε

)−2k

Pv/2,k(x) + (1 + ε)−2k (−1)k

2−2k

k∑
l=0

Dl,kx
k−l (1− ε)k−l − (1 + ε)k−l

(1 + ε)
k−l
2 (1− ε) k−l2

(58)

=

(
1− 4k

ε

1− ε
+ o(ε)

)
Pv/2,k(x) (59)

+ (1− 2kε+ o(ε))
(−1)k

2−2k

k∑
l=0

Dl,kx
k−l −2(k − l)ε+ (ε)

(1 + k−l
2 ε+ o(ε))(1− k−l

2 ε+ o(ε))
(60)

=

(
1− 4k

ε

1− ε

)
Pv/2,k(x) +O(ε)Pk(x), (61)

where Pk(x) is a polynomial in x of degree ≤ k. Moreover,

φ1−v/2(x) =
e−

x2

v√
2πv/2

·

√
v/2

1− v/2
· e
− x22

(
1

1− v
2
− 2
v

)
(62)

= φv/2(x) ·
(

1− 2ε

1 + ε

)1/2

· ex
2 2ε

(1+ε)(1−ε) (63)

= φv/2(x) ·
(

1− ε

1 + ε
+ o(ε)

)
·
(

1 + x2 2ε

(1 + ε)(1− ε)
+ o(ε)x4

)
(64)

= φv/2(x) ·
(
1 + (x2 − 1)O(ε)

)
. (65)

Plugging these bounds in the previous expression, we get

|Σ(k)
v (0)− Σ

(k)
1 (0)| (66)

=
∣∣∣ ∫ ∞
−∞

(φv/2 ∗ σ)(x) ·
(
Pv/2,k(x)φv/2(x)− P1−v/2,k(x)φv/2(x)

(
1 + (x2 − 1)O(ε)

)) ∣∣∣ (67)

=
∣∣∣ ∫ ∞
−∞

(φv/2 ∗ σ)(x)φv/2(x) ·
(
Pv/2,k(x)− P1−v/2,k(x)

(
1 + (x2 − 1)O(ε)

)) ∣∣∣ (68)

=
∣∣∣ ∫ ∞
−∞

(φv/2 ∗ σ)(x)Pv/2,k(x)φv/2(x) ·
(
1− (1−O(ε) + (x2 − 1)O(ε)) +O(ε)Pk(x)

) ∣∣∣ (69)

= O(ε) . (70)

A.2. Proof of Lemma A.2

Note that we only need to show that INAL(Mk, σ) = Ω(n−P ) for the first index P such that P ≥ k and Σ(P )(0) 6= 0. By
Definition 2.4, we only need with two cases P = k and P = k + 1. From now on, let us consider a fixed pair of k and P .
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We denote by x ∈ {±1}n the vector of all inputs, byw ∈ Rn the vector of all weights and by b ∈ R the bias. Additionally, we
denote τi := sgn(wi), and by τ ∈ {±1}n the vector of all weight signs. Recall that we consider wi, b

iid∼ N (0, 1
n ) and that

for g, h : {±1}n → {±1} and Un being the uniform distribution over the hypercube, we denote 〈g, h〉 = Ex∼Un [g(x)h(x)].
We have

INAL(Mk, σ) = Ew,b
[
〈Mk, σ〉2

]
(71)

= E|w|,τ,|b|,sgn(b)

[
〈Mk, σ〉2

]
(72)

(C.S.)

≥ Eτ,sgn(b)

[
E|w|,|b|

[
〈Mk, σ〉 | τ, sgn(b)

]2]
, (73)

where (73) follows by Cauchy-Schwartz inequality. We will prove a lower bound on the inner expectation
(
E|w|,|b|〈Mk, σ〉

)2
which is independent of τ and sgn(b). Accordingly, from now on consider τ and sgn(b) to be fixed at arbitrary values.

Let T := {1, . . . , k} and denote by xT the coordinates of x contained in T , and by x∼T := xTC the coordinates of x that
are not contained in T and hence do not appear in the monomial MT . Similarly, we denote by |w|T , |w|∼T the coordinates
of |w| that appear (respectively do not appear) in set T . We proceed,

E|w|,|b|〈MT , σ〉 = Ex,|w|,|b|

MT (x) · σ

∑
i∈[n]

wixi + b

 (74)

= E|w|T ,xT ,|b|

MT (x) · E|w|∼T ,x∼T σ

∑
i∈[n]

wixi + b

 (75)

Observe that
∑
i6∈T wixi ∼ N (0, n−kn ), and denote Σn(z) := Σ1− kn

(z) = EY∼N (0,n−kn )[σ(z + Y )]. Moreover, let
G :=

∑
i∈T wixi + b. Then,

E|w|,|b|〈MT , σ〉 = E|w|T ,|b|,xT [MT (x)Σn (G)] . (76)

Since, by condition i) in Lemma A.1, function Σn is C∞ and therefore CP , we apply Taylor’s theorem with Lagrange
remainder and write

Σn(z) =

P∑
ν=0

aν,nz
ν +RP,n(z), (77)

where aν,n =
Σ(ν)
n (0)
ν! and

RP,n(z) =
Σ

(P+1)
n (ξz)

(P + 1)!
zP+1 for some |ξz| ≤ |z|. (78)

Plugging this in (76), we get

E|w|,|b|〈MT , σ〉 =

P∑
ν=0

aν,nE|w|T ,|b|,xT
[
MT (x)Gν

]
+ E|w|T ,|b|,xT

[
MT (x)RP,n (G)

]
. (79)

The following two propositions give the asymptotic characterization of the first and second term in (79).

Proposition A.3.

P∑
ν=0

aν,nE|w|T ,|b|,xT
[
MT (x)Gν

]
= C(P )(−1)C

′(τT ,sgn(b))n−P/2 +O(n−P/2−1/2) . (80)

where C(P ) 6= 0 and C ′(τT , sgn(b)) ∈ Z are constants that do not depend on n.
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Proposition A.4.

E|w|T ,|b|,xT
[
MT (x)RP,n (G)

]
= O(n−P/2−1/2). (81)

Before proving Propositions A.3 and A.4, let us see how Lemma A.2 follows from them. But this is clear: substituting
into (79), we have (

E|w|,|b|〈MT , σ〉
)2

= C(P )2n−P +O(n−P−1/2) = Ω(n−P ) , (82)

where the claimed bound does not depend on τ nor on sgn(b).

A.2.1. PROOF OF PROPOSITION A.3

The main step for proving Proposition A.3 is the computation of 〈MT , G
ν〉, for ν ≤ P . This is summarized in the following

formula.

Lemma A.5. We have:

E|w|T ,|b|,xTMT (x)Gν =

0 if ν < k

C(ν)(−1)C
′(τT ,sgn(b))n−ν/2 if ν ≥ k ,

(83)

where C(ν) > 0.

Let us first see how to finish the proof once Lemma A.5 is established. Recall that aν,n =
Σ

(ν)

1−k/n(0)

ν! and let aν := Σ(ν)(0)
ν! .

We are considering a sum with P + 1 terms, so let sν := aν,nE|w|T ,|b|,xT
[
MT (x)Gν

]
. Accordingly, our objective is to

show that

P∑
ν=0

sν = C(P )(−1)C
′(τT ,sgn(b))n−P/2 +O(n−P/2−1/2) . (84)

We do that by considering the terms sν one by one. For ν < k, from (83) we immediately have sν = 0.

For k ≤ ν < P , by Definition 2.4 recall that the only possible case is P = k+ 1 and Σ(k)(0) = 0. Then, applying condition
iii) from Lemma A.1,

|aν,n| =

∣∣∣∣∣∣Σ
(ν)
1−k/n(0)− Σ(ν)(0)

ν!

∣∣∣∣∣∣ = O(n−1) , (85)

which together with (83) gives |sv| = O(n−P/2−1/2).

Finally, for ν = P , by assumption we have aP 6= 0. Then, by condition iii), we have |aP,n − aP | = O(1/n) and (83) gives
us the correct form for sP and the whole expression.

All that is left is the proof of Lemma A.5.

Proof of Lemma A.5. The proof proceeds by using the linearity of expectation and independence and expanding the formula
for Gν . Recall that we assumed wlog that T = {1, . . . , k} and let zi := wixi for i ≤ k and zk+1 := b:

E|w|T ,|b|,xTMT (x)Gν = E|w|T ,|b|,xT

(
k∏
i=1

xi

)(
k∑
i=1

wixi + b

)ν
(86)

=
∑

I=(i1,...,iν)∈[k+1]ν

E|w|T ,|b|,xT

(
k∏
i=1

xi

)(∏
i∈I

zi

)
. (87)
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Let us focus on a single term of the sum in (87) for I = (i1, . . . , iν) ∈ [k + 1]ν . For j = 1, . . . , k + 1, let αj = αj(I) :=
|{m : im = j}|. Accordingly, we can rewrite a term from (87) as

E|w|T ,|b|,xT

(
k∏
i=1

xi

)(∏
i∈I

zi

)
(88)

= E|w|T ,|b|,xT

(
k∏
i=1

wαii x
αi+1
i

)
bαk+1 (89)

=

(
k∏
i=1

ταii

)
sgn(b)αk+1

(
k∏
i=1

E|w|i
[
|w|αii

]
· Exi

[
xαi+1
i

])
E|b|
[
|b|αk+1

]
. (90)

Since E[xαi+1
i ] = 0 if αi is even, for a term in (90) to be non-zero it is necessary that αi is odd for every 1 ≤ i ≤ k.

Consequently, since
∑k+1
i=1 αi = ν, in any non-zero term the parity of αk+1 is equal to the parity of ν − k. Therefore, every

non-zero term is of the form

E|w|T ,|b|,xT

(
k∏
i=1

xi

)(∏
i∈I

zi

)
=

(
k∏
i=1

τi

)
sgn(b)1[ν−k odd] ·

(
k∏
i=1

E|w|i
[
|wi|αi

])
E|b|
[
|b|αk+1

]
(91)

= (−1)C
′(τT ,sgn(b)) ·

(
k∏
i=1

E|w|i
[
|wi|αi

])
E|b|
[
|b|αk+1

]
. (92)

We now establish the first case from (83). If ν < k, then since ν =
∑k+1
i=1 αi at least one of αi, 1 ≤ i ≤ k must be zero, and

therefore even. Consequently, each term in (87) is zero and it follows that E|w|T ,|b|,xTMT (x)Gν = 0.

On the other hand, for ν ≥ k, there exists a non-zero term, for example taking α1 = . . . = αk = 1 and αk+1 = ν − k. Take
any such term arising from I ∈ [k+ 1]ν . Since wi, b ∼ N (0, 1/n), we have E|w|i

[
|wi|j

]
, E|b|

[
|b|j
]

= Cj · n−j/2 for some
Cj > 0 for every fixed j. Substituting in (92) and using ν =

∑k+1
i=1 αi, we get

E|w|T ,|b|,xT

(
k∏
i=1

xi

)(∏
i∈I

zi

)
= (−1)C

′(τT ,sgn(b))CIn
−ν/2 (93)

for some CI > 0. Therefore, C(ν)(−1)C
′(τT ,sgn(b))n−ν/2 with C(ν) > 0 follows since it is a sum of at most (k + 1)ν

positive terms.

A.2.2. PROOF OF PROPOSITION A.4

Let D be a positive constant. We apply the decomposition∣∣∣E|w|T ,|b|,xT [MT (x)RP,n(G)]
∣∣∣ ≤ E|w|T ,|b|,xT

[∣∣RP,n(G)
∣∣ · 1(|G| ≤ D)

]
(94)

+ E|w|T ,|b|,xT
[∣∣RP,n(G)

∣∣ · 1(|G| > D)
]

(95)

The proposition follows from Lemmas A.6 and A.7 applied to an arbitrary value of D, eg., D = 1.

Lemma A.6. For any D > 0,

E|w|T ,|b|,xT
[∣∣RP,n(G)

∣∣ · 1(|G| ≤ D)
]

= O
(
n−

P+1
2

)
. (96)

Proof. Let us observe that for a fixed b, G ∼ N (b, kn ), thus

E|w|T ,xT [|RP,n(G)|1(|G| ≤ D)] = Ey∼N (b, kn ) [|RP,n(y)|1(|y| ≤ D)] . (97)
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Recall that RP,n(x) =
Σ(P+1)
n (ξx)
(P+1)! xP+1 for some |ξx| ≤ |x|. Thus,

Ey∼N (b, kn ) [|RP,n(y)|1(|y| ≤ D)] ≤ sup
|y|≤D

|Σ(P+1)
n (y)|

(P + 1)!
· Ey∼N (b, kn )|y|

P+1. (98)

On the one hand, assuming that n ≥ 2k, we have Σn = Σv for some 1/2 ≤ v ≤ 1, and thus using the common polynomial
bound in property ii) sup|y|≤D |Σ

(P+1)
n (y)| ≤MD, where the constant MD does not depend on n. On the other hand,

Ey∼N (b, kn )|y|
P+1 = n−

P+1
2 · Ey

∣∣√n · y|P+1 (99)

≤ n−
P+1

2 · 2P+1 ·
(
|
√
nb|P+1 + Ez∼N (0,k)|z|P+1

)
(100)

= n−
P+1

2 · 2P+1 ·

(
|
√
nb|P+1 +

(2k)
P+1

2 Γ(P+2
2 )

√
π

)
, (101)

where in the last equation we plugged the (P+1)-th central moment of the Gaussian distribution (see, eg., (Winkelbauer,
2012)). Since |

√
nb| is also distributed like an absolute value of N (0, 1), taking the expectation over |b|, we get that for

fixed P, k,

E|w|T ,|b|,xT
[∣∣RP,n(G)

∣∣ · 1(|G| ≤ D)
]

= O
(
n−

P+1
2

)
. (102)

Lemma A.7. For any constant D > 0, there exist C1, C2 > 0 such that

E|w|T ,|b|,xT
[∣∣RP,n(G)

∣∣ · 1(|G| > D)
]
≤ C1 exp(−C2n). (103)

Proof. By Cauchy-Schwartz inequality,

E|w|T ,|b|,xT [|RP,n(G)|1(|G| > D)]
(C.S.)

≤ E|w|T ,|b|,xT [RP,n(G)2]1/2 · Pr|w|T ,|b|,xT [|G| > D]1/2 . (104)

For the first term, we use the universal polynomial bound from property ii):

∣∣∣E|w|T ,|b|,xT [RP,n(G)2]
∣∣∣ = E|w|T ,|b|,xT

( sup|y|≤|G|Σ
(P+1)
n (y)

(P + 1)!
|G|P+1

)2
 (105)

≤ E|w|T ,|b|,xT

( sup|y|≤|G| Cy
2` + C

(P + 1)!
|G|P+1

)2
 (106)

= E|w|T ,|b|,xT

[(
CG2` + C

(P + 1)!
|G|P+1

)2
]

= On(1) , (107)

using a similar reasoning as in Lemma A.6.

On the other hand, writing G = G′ + |b|, we have

Pr|w|T ,|b|,xT [|G| > D] ≤ Pr|b|[|b| > D/2] + Pr|w|T ,xT [|G′| > D/2] (108)

≤ 2 Pry∼N (0,1/n)[|y| > D/2] ≤ 4 exp(−D2n/8) . (109)

We get desired bound putting together (105) and (109).
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B. Expressivity of Common Activation Functions
In this section we show that ReLU and sign are expressive. It is clear that both of these functions are polynomially bounded,
so we only need to analyze their Hermite expansions for condition b) in Definition 2.4. In both cases we do it by writing a
closed form for Σ(k)(0).

Proposition B.1. ReLU(x) := max{0, x} is expressive.

Proof. We will see that in the case σ = ReLU we have Σ(z) = z
2 + z

2 erf(z) + 1
2
√
π

exp(−z2). Indeed,

Σ(z) =

∫ ∞
−∞

1(z + y ≥ 0)(z + y)φ(y) dy =

∫ ∞
−z

(z + y)φ(y) dy = zΦ(z) + φ(z) (110)

=
z

2
+
z erf(z/

√
2)

2
+ φ(z) . (111)

Using well-known Taylor expansions of erf and φ, this results in

Σ(k)(0) =


1
2 if k = 1 ,

(−1)k/2+1

√
2π2k/2(k−1)(k/2)!

if k is even,

0 otherwise.

(112)

In particular, Σ(k)(0) 6= 0 for every even k and ReLU is expressive.

Proposition B.2. The sign function sgn(x) is expressive.

Proof. In this case, similarly, we have

Σ(z) = −
∫ −z
−∞

φ(z) dz +

∫ ∞
−z

φ(z) dz = 2Φ(z)− 1 = erf(z/
√

2) , (113)

which can be seen to have the expansion

Σ(k)(0) =

 2√
π
· (−1)(k−1)/2

2k/2( k−1
2 )!k

if k is odd,

0 otherwise.
(114)

Again, the sign function is expressive since Σ(k) 6= 0 for every odd k.

C. Proof of Proposition 4.4
Using the definition of INAL and the Fourier expansion of f , we get

INAL(f, σ) = Ew,b
[
〈f, σ〉2

]
(115)

= Ew,b


∑
T∈[n]

f̂(T )〈MT , σ〉

2
 (116)

= Ew,b

∑
T

f̂(T )2〈MT , σ〉2 +
∑
S 6=T

f̂(S)f̂(T )〈MT , σ〉〈MS , σ〉

 . (117)

We show that the second term of (117) is zero. Let S, T be two distinct sets. Without loss of generality, assume that
|S| ≥ |T |, and let i be such that i ∈ S but i 6∈ T (such i must exist since S 6= T ). Fix w and b and decompose w into
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w∼i, |wi|, sgn(wi) where w∼i denotes the vector of weights, excluding coordinate i. By applying the change of variable
sgn(wi)xi 7→ yi and noticing that xi has the same distribution of yi, we then get

〈MS , σ〉 = Ex[MS(x) · σ(xi sgn(wi)|wi|+
∑
j 6=i

xjwj + b)] (118)

= sgn(wi) · Ex∼i,yi [MS∼i(x) · yi · σ(yi|wi|+
∑
j 6=i

xjwj + b)] (119)

:= sgn(wi) · ES , (120)

where ES does not depend on sgn(wi). On the other hand,

〈MT , σ〉 = Ex[MT (x) · σ(xi sgn(wi)|wi|+
∑
j 6=i

xjwj + b)] (121)

= Ex∼i,yi [MT (x) · σ(yi|wi|+
∑
j 6=i

xjwj + b)], (122)

which means that 〈MT , σ〉 does not depend on sgn(wi). Thus, we get

Ew,b [〈MT , σ〉〈MS , σ〉] = Ew,b [sgn(wi) · 〈MT , σ〉 · ES ] = 0. (123)

Hence,

INAL(f, σ) =
∑
T

f̂(T )2Ew,b
[
〈MT , σ〉2

]
(124)

=
∑
T

f̂(T )2 INAL(MT , σ). (125)

D. Proof of Corollary 4.5
Indeed, by Proposition 4.4 for any f : {±1}n → R and k it holds

INAL(f, σ) =
∑
T

f̂(T )2 INAL(MT , σ) ≥W k(f) INAL(Mk, σ) . (126)

Accordingly, if INAL(Mk, σ) = Ω(n−k0), we have

W k(fn) ≤ INAL(fn, σ) ·O(nk0) , (127)

and then, under our assumptions, also

W≤k(fn) ≤ INAL(fn, σ) ·O(nk0) . (128)

For the “in particular” statement, let (fn) be a function family with negligible INAL(fn, σ) for a correlating σ. Let k ∈ N.
Since σ is correlating, the assumption INAL(Mk′ , σ) = Ω(n−k0) for k′ = 0, . . . , k holds. Therefore, (128) also holds and
W≤k(f) is negligible. Since k was arbitrary, the function family (fn) is high-degree.

E. Details and Proof of Corollary 3.4
Corollary 3.4 states a hardness results for learning on fully connected neural networks with iid initialization. This is a more
specific definition than the one we gave for a neural network in Section 2. Let us state it precisely, following the treatment
in (Abbe & Sandon, 2020b).

Definition E.1. For the purposes of Corollary 3.4, a neural network on n inputs consists of a differentiable activation
function σ : R → R, a threshold function f : R → {±1} and a weighted, directed graph with a vertex set labeled with
{1, x1, . . . , xn, v1, . . . , vm, vout}. The vertices labeled with x1, . . . , xn are called the input vertices, the vertex labeled with
1 is the constant vertex and vout is the output vertex.
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We assume that the graph does not contain loops, the constant and input vertices do not have any incoming edges, the output
vertex does not have outgoing edges and for the remaining vertices there are no edges (vi, vj) for i > j. Each vertex (a
neuron) has an associated function (the output of the neuron) from Rn to R which is defined recursively as follows: The
output of the constant vertex is y1 = 1 and the output of the input vertex is (abusing notation) yxi = xi. The output of any
other vertex vi is given by yvi = σ(

∑
v:(v,vi)∈E(G) wv,viyv). Finally, the output of the whole network is given by f(yvout).

We say that the neural network is fully connected if every vertex that has an incoming edge from an input vertex has incoming
edges from all input vertices.

Note that our definition of “fully connected network” covers any feed-forward architecture that consists of a number of fully
connected hidden layers stacked on top of each other.

Let us restate Theorem 3 from (Abbe & Sandon, 2020b) with the bound5 from their Corrolary 1 applied to the junk flow
term JFT :

Theorem E.2 ((Abbe & Sandon, 2020b)). Let PF be a distribution on Boolean functions f : {±1}n → {±1}. Consider
any neural network as defined in Definition E.1 with E edges. Assume that a function f is chosen from PF and then T steps
of noisy GD with learning rate γ, overflow range A and noise level τ are run on the initial network using function f and
uniform input distribution Un.

Then, in expectation over the initial choice of f , the training noise, and a fresh sample x ∼ Un, the trained neural network
NN(T ) satisfies

Pr
[

NN(T )(x) = f(x)
]
≤ 1

2
+
γT
√
EA

τ
· CP(PF ,Un)1/4 . (129)

Finally, we need to discuss the fact that Corollary 3.4 applies for any fully connected neural network with iid initialization.
What we mean by this is that the initial neural network has a fixed activation σ, threshold function f and graph (vertices and
edges), but the weights on edges are not fixed. Instead, they are chosen randomly iid from any fixed probability distribution.
More precisely, we can make a weaker assumption that the weights on all edges that are outgoing from the input vertices are
chosen6 iid from a fixed distribution and all the other weights have arbitrary fixed values.

We can now proceed to prove Corollary 3.4.

E.1. Proof of Corollary 3.4

Let randomly initialized, fully connected neural network NN be trained in the following way. First, a function fn ◦ π is
chosen uniformly at random from the orbit of fn. Then, a noisy GD algorithm is run with the parameters stated: T steps,
learning rate γ, overflow range A and noise level τ . Finally, a fresh sample x ∼ UN is presented to the trained neural
network. Then, Theorem E.2 says that

Pr
[

NN(T )(x) = (fn ◦ π)(x)
]
≤ 1

2
+
γT
√
EA

τ
· CP(orb(fn),UN )1/4 . (130)

Since we can apply Theorem E.2 to the class of all orbits of −fn, which has the same cross-predictability, the same upper
bound also holds for Pr[NN(T )(x) 6= (fn ◦ π)(x)]. Consequently, we have the expectation bound

∣∣∣E〈NN(T ), fn ◦ π〉
∣∣∣ ≤ 2γT

√
EA

τ
· CP(orb(fn),UN )1/4 . (131)

Recall that the neural network is fully connected and the weights on the edges outgoing from the input vertices are iid. The
expectation in (131) is an average of conditional expectations for different initial choices of permutation π. Consider the
action induced by π on the weights outgoing from the input vertices. By properties of GD, it follows that each conditional
expectation over π contributes equally to the left-hand side of (131). It follows that the same bound holds also for the single

5Since we are discussing GD, we are applying their bound with infinite sample size m =∞.
6Even more precisely, we can assume only that the distribution of these weights is symmetric under permutations of input vertices

x1, . . . , xn.
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function fn: ∣∣∣ENN(T )〈NN(T ), fn〉
∣∣∣ ≤ 2γT

√
EA

τ
CP(orb(fn),UN )1/4 . (132)

Accordingly, if INAL(fn, σ) is negligible, then, by Theorem 3.3, CP(orb(fn),UN ) is negligible and the right-hand side
of (132) remains negligible for any polynomial bounds on γ, T , E, A and τ , as claimed.

For the more precise statement, if INAL(fn, σ) = O(n−c), then again by Theorem 3.3 it holds CP(orb(fn),UN ) =

O(n−
ε

1+ε (c−1)) and we get the bound of O
(
γT
√
EA
τ · n−

ε
4(1+ε)

(c−1)
)

on the right-hand side of (132).


