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Abstract

We introduce algorithms based on natural actor-
critic and analyze their sample complexity for
solving two player zero-sum Markov games in the
tabular case. Our results improve the best-known
sample complexities of policy gradient/actor-
critic methods for convergence to Nash equilib-
rium in the multi-agent setting. We use the er-
ror propagation scheme in approximate dynamic
programming, recent advances for global conver-
gence of policy gradient methods, temporal dif-
ference learning, and techniques from stochastic
primal-dual optimization. Our algorithms feature
two stages, requiring agents to agree on an eti-
quette before starting their interactions, which is
feasible for instance in self-play. However, the
agents only access to joint reward and joint next
state and not to each other’s actions or policies.
Our complexity results match the best-known re-
sults for global convergence of policy gradient al-
gorithms for single agent RL. We provide numer-
ical verification of our methods for a two player
bandit environment and a two player game, Alesia.
We observe improved empirical performance as
compared to the recently proposed optimistic gra-
dient descent-ascent variant for Markov games.

1. Introduction

We study two-player zero-sum Markov game framework
which is a fundamental formulation of competitive reinforce-
ment learning (RL). Competitive RL has important applica-
tions in self-play (Silver et al., 2017; Vinyals et al., 2019;
Brown & Sandholm, 2018), robust RL (Zhang et al., 2021b;
Tessler et al., 2019), and many other contexts (Zhang et al.,
2021a). This framework is introduced by (Shapley, 1953)
as stochastic games and popularized in RL with (Littman,
1994). In its basic form, two agents with competing in-
terests play simultaneously in an environment where the
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reward and the state transition depend on the actions of both
players.

Optimistic value based methods have received increasing
attention. In particular, they have been shown to achieve
complexity of O(e~2) in the episodic setting (Bai et al.,
2020; Bai & Jin, 2020; Xie et al., 2020; Tian et al., 2020)
and in the infinite horizon case with a generative model (Sid-
ford et al., 2020; Zhang et al., 2020) matching the respective
lower bounds (Jin et al., 2018; Bai & Jin, 2020; Azar et al.,
2012). On the contrary policy gradient (PG) methods, in-
cluding actor-critic (AC) and their natural counterparts natu-
ral PG (NPG) (Kakade, 2001) and natural AC (NAC) (Peters
& Schaal, 2008) have still not been shown to achieve the
optimal dependence on € in the game setting.

The existing results on PG methods for tabular two-player
zero-sum Markov games mostly focus on decentralized al-
gorithms with sample complexities O (e~12-5) (Daskalakis
et al., 2020) in the episodic setting, O(¢%), and even
O(e*) in the infinite horizon case, yet with some limi-
tations (Wei et al., 2021); see Section 1.1 for the details.
With function approximation, (Zhao et al., 2022) obtains
@(6*6) sample complexity when given access to unbiased
sampling oracles of the value functions. In terms of e de-
pendence, these complexity results are far from @(6_2)
achieved by optimistic value-based methods. However, PG
methods enjoy a model-free and easy-to-implement struc-
ture (Schulman et al., 2015; 2017; Wang et al., 2016) that is
often desirable for practical applications.

Therefore, closing the gap with value-based methods is an
important open research question. Interestingly, the gap
has been recently closed in the single agent tabular setting.
Indeed, (Lan, 2021) have shown (7)(6’2) sample complex-
ity for global optimality for policy mirror descent without
requiring the exact gradient knowledge. Our work bridges
the same gap for the two-player Markov Games design-
ing a natural actor-critic algorithm achieving @(672) sam-
ple complexity to attain a one sided e-Nash Equilibrium.
This dependence on e also matches the best-known sample
complexity for single agent tabular setting, under similar
assumptions.

Contributions. We propose algorithms based on natural
actor-critic (NAC) framework for solving two-player zero-
sum Markov games in the tabular case, without requiring
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the knowledge of exact gradients or value functions. Our
sample complexity results match the best-known ones for
global optimality in the single agent setting (Lan, 2021;
Khodadadian et al., 2021b; Hong et al., 2020; Xu et al.,
2020b). In particular, we show that by using inner loops
for policy evaluation and a carefully designed algorithm,
the sample complexity to get an e-approximate Nash equi-
librium, is (7)(6’2), by assuming a uniform lower bound
on the policies, which is the same assumption required for
single agent problem (Lan, 2021). Without this assumption,
we show @(674) complexity, which also improves similar
results in the literature in terms of dependence of the sizes
of the state and action spaces.'

Surprisingly, we achieve these results—to our knowledge,
for the first time with policy gradient methods—mostly by
a careful adaptation of the recent results for policy gradi-
ent methods in single agent setting, temporal difference
learning, two-stage error propagation framework of policy
iteration (Perolat et al., 2015), and by employing techniques
from stochastic primal-dual optimization.

These developments require a careful algorithm design and
analysis. In particular, two-stage nature of the algorithm
incurs biases between the stages that we have to control
carefully. Obtaining O(e~2) (and O(e~*) without the uni-
form lower bounded policy assumption) requires a tighter
analysis for both stages of the algorithm, with strict control
on the aforementioned bias. Therefore, it requires more ad-
vanced techniques and algorithms, inspired from the stochas-
tic primal-dual optimization literature. We explicitly high-
light our important new techniques as insights in the sequel.
The full proofs are included in the appendices.

1.1. Related works

Policy gradient methods. The PG methods (Kakade,
2001; Sutton et al., 2000) directly optimize the value func-
tion in the policy space— a non-convex optimization prob-
lem even in the basic single agent, tabular setting. Intrigu-
ingly, recent results demonstrate globally optimal conver-
gence of PG methods by identifying a hidden convexity
structure for single agent RL (Agarwal et al., 2020; Cen
et al., 2020; Mei et al., 2020; Bhandari & Russo, 2019;
2021; Xu et al., 2020b; Lan, 2021; Khodadadian et al.,
2021b; Hong et al., 2020; Xu et al., 2020a; Khodadadian
et al., 2021b) Several works showed convergence rates of
natural policy gradient (NPG) in the tabular setting by as-
suming access to exact value function oracle (Agarwal et al.,
2020; Cen et al., 2020; Mei et al., 2020; Bhandari & Russo,

'In Appendix F, we design an algorithm based on single loop
NAC with the complexity of O(e*) (and O(e~") without as-
suming lower bounded policies). Our results on this algorithm is,
to our knowledge, the first finite-sample analysis of single loop
NAC-based methods for two-player zero-sum Markov games.

2019; 2021) or when value functions are estimated from
the data (Shani et al., 2020; Xu et al., 2020b; Lan, 2021;
Khodadadian et al., 2021b; Hong et al., 2020; Xu et al.,
2020a; Khodadadian et al., 2021b). To our knowledge, the
best sample complexity for NPG methods with inner loop
for policy evaluation (which we refer to as NAC) is O(e~2)
and is due to (Lan, 2021). For single loop NAC with online
policy evaluation, the best sample complexity is O (¢ ™) as
obtained in (Hong et al., 2020; Xu et al., 2020b) (see (Kho-
dadadian et al., 2021a, Table 1)). For a general overview of
results in MARL we refer to (Zhang et al., 2021a).

Policy gradient methods for two-player zero-sum
Markov games. With the positive results on global conver-
gence of PG methods, translating these results to the compet-
itive MARL has been the goal of many recent works. In par-
ticular, independent policy gradient methods with the agents
interacting symmetrically has been considered in Daskalakis
et al. (2020); Wei et al. (2021). The work of Daskalakis et al.
(2020) built on Agarwal et al. (2020) by using REINFORCE
estimator (Williams, 1992) and obtained sample complexity
of O(e~12%) for reaching to one-sided Nash equilibrium.

The algorithm of (Wei et al., 2021) built on optimistic gradi-
ent descent-ascent (OGDA) with Euclidean projections onto
the simplex, combined with a running estimate of the value
function, obtaining @(6_8) sample complexity for finding
a policy pair with small duality gap. In addition, (Wei et al.,
2021) showed improved complexity O(e~*) with metric
subregularity assumption. As pointed out in (Daskalakis
et al., 2020), metric subregularity constant can be arbitrarily
small, resulting in degradation of the rate. This work did not
consider NPG with softmax policy update, which requires
projection with KL divergence. The algorithm of (Wei et al.,
2021) can be seen similar to the gradient ascent algorithm
in (Agarwal et al., 2020). As shown in (Agarwal et al., 2020)
for single agent problems, NPG methods have better conver-
gence properties than Euclidean projected gradient ascent
methods. For comparison with (Daskalakis et al., 2020; Wei
et al., 2021), we also refer to Remark 2.2 and Table 1.

Another very related work to ours is by (Zhao et al., 2022)
which considered (i) tabular setting with exact value func-
tions and (ii) online setting with function approximation,
also using the error propagation scheme of (Perolat et al.,
2015). Building on (Agarwal et al., 2020), this work showed
O(e~%) sample complexity with function approximation,
with access to unbiased samples of the value functions. In a
similar setting, (Guo et al., 2021) showed a total complexity
O(e*). In contrast, we focus on the tabular setting and we
do not assume access to unbiased value function oracles. In-
deed, lack of unbiased samples for value functions required
us to use new insights described in the sequel, to derive the
tighter complexities O(e~2) and O(e~4).
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Assumption

Complexity Non-Euclidean

(Daskalakis et al., 2020)
(Wei et al., 2021)

(Wei et al., 2021)
Section 3.1

Section 3.1

Cs,a,b > g > 0.*

Assumption 2.1
Assumption 2.1, 3.3

s—s’ 1
maxy,y s s Toy® = > 0.f

—s’ _ 1
maxy 5 o " = 5o p> 0.1

O((lA‘ Vi |B|)10'75|S‘1'256_12'5) %
O((|A]® +|BJ*)IS['5e) x
O((|A]P +|BP)IS|*Pe 40710t x
O(|SP*(|A] v |B|)?e) v
O(SP (1Al v |B])e?)! v

Table 1. *In a game with finite steps, s,q,5 is the probability that the game will end at state s, after taking actions a, b (Daskalakis et al.,

2020, Sec. 2). TT;ZS/ is the time that it takes to go from state s to state s’ by using policy pair x, y (Wei et al., 2021, Assumption 1). *C'
is the metric subregularity constant (Wei et al., 2020). The complexity results by (Wei et al., 2021) use Euclidean projections onto the
simplex instead of softmax updates and the (’3(6’4) depends on the metric subregularity constant. Dependence of metric subregularity
constant on | S|, | A, | B| are not given on (Wei et al., 2021). This specific result is given for the distance to the optimal set of policies
rather than the gap function we have. They are both valid optimality measures. IThis result cannot be compared to others, see Sec. 1.2.

Policy gradient methods for linear quadratic regulator
(LQR). For zero-sum LQR, (Zhang et al., 2019; Bu et al.,
2019) showed global convergence of PG with exact value
function oracles. These methods have a nested structure
where one player computes best-response and the other does
policy gradient updates. Recently, (Zhang et al., 2021b) built
on (Zhang et al., 2019) to derive sample complexities when
value functions are estimated from data.

1.2. Discussion of the results.

Natural policy gradient/Natural actor critic. NPG cor-
responds to using softmax-based rule for policy updates,
which we refer to as non-Euclidean in Table 1. The exist-
ing results on PG-based methods for our setting restrict to
using Euclidean projections onto the simplex (Wei et al.,
2021), (Daskalakis et al., 2020). Hence, to our knowledge
our complexity results are the first with a natural policy
gradient approach.

Policy gradient/Actor critic. PG corresponds to Euclidean
projections onto the simplex, rather than the softmax-based
rule of NPG. For this specific case, (Wei et al., 2021) could
use metric subregularity assumption to show the complexity
O((JA]? + |B|?)|S|*%e~*)*, for the distance of the iterates
to the optimal set. Although this is a different optimality
measure than the gap function we use, this result also has
a dependence of C 10 where C is the metric subregularity
constant. This constant’s dependence on |S|, | A|, | B| is not
explicitly computed in (Wei et al., 2021) and such constants
are mentioned in (Daskalakis et al., 2020) to be potentially
arbitrarily small. Therefore, a direct comparison in terms of
|S],]A4l, | B| is not possible. Our work shows that to get the
O(e~*) dependence, these restrictions made in (Wei et al.,
2021) are not necessary.

The result of (Wei et al., 2021) independent of metric subreg-
ularity is O(|S|'%5(JA[> + | B|?)e~®). Note that under As-
sumption 2.1, which is similar to the assumption of (Wei
et al., 2021) tabulated in the first column of Table 1 (see

also Remark 2.2), we obtain O(|S|3(|A|V|B]|)3¢~*). There-
fore, our complexity improves e dependence and | S| depen-
dences, while having the same dependence on |A|, | B].

Faster rates. By additionally requiring Assumption 3.3,
we can improve the € dependence further. An important
point here is that this result is not directly comparable
to (Daskalakis et al., 2020; Wei et al., 2021) since a similar
assumption was not made in these works. On the other hand,
it is not clear to us if this additional assumption would help
to improve the € dependence in these works. This additional
assumption is required to obtain O(e~2) complexity even
for single agent problems (Lan, 2021). The message of this
result is that the same € dependence to single agent problem
can be obtained for MARL, with the same assumption.

2. Preliminaries

Notation. We consider the tabular setting with finite state
and action spaces denoted by .S, A, B and the discount factor
v < 1. The policy of the min agent is  and the max agent
is y, with action sets A, B, respectively. At state s, both
agents take actions independent of each other: a ~ z(:|s)
and b ~ y(-|s). Based on the actions, the environment
transitions to the next state s’ ~ P(:|s, a, b) and the agents
receive reward |r(s, a,b)| < 1. Given a policy pair z, y, we
denote the induced steady-state distribution as p®¥. Let U
denote the uniform distribution for states that we also take
as the initial state distribution for simplicity. We denote the
probability simplex as A. Given a policy x, we sometimes
use the notation 2* for z(-|s) in the proofs. We use e(s;) €
RIS to denote the vector such that e(s) = 1if s = s; and
e(s) =0, if s # s;. We use the same notation for e(s¢, at).
The value function for state s is defined as

o
VEY(s) = Eqy Z’Ytr(staat,btﬂso =s|,
t=0

where [, ,, is over random variables s, a;, b, forall ¢ > 0
as atNZC('|St), bt'\/y(|8t) and St+1NP('|St, ag, bt) Simi-
larly, the action value function is defined as Q%Y (s, a, b) =
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Egy (Yoo v'r(se,a,be)|so = s,a0 = a, by = b].  With
these definitions, we can state the formal problem. For
all s € S, we aim to solve
min  max V¥Y(s).
z(-|s)EA y(-|s)EA
We denote the information needed in algorithms as oracles.
We provide the background on NPG, NAC, TD(0) in App. A.

Nash equilibrium. We assume the existence of a pair of
policies z*, y* that are Nash equilibrium, namely, for all
s, VEY(s) < V*(s) := V¥ ¥ (s) < V5% (s). We are
interested in finding a one-sided Nash equilibrium, similar
to (Daskalakis et al., 2020; Zhao et al., 2022; Zhang et al.,
2019; Bu et al., 2019). As mentioned in (Daskalakis et al.,
2020), for the other player, one can re-run the algorithm by
switching roles to have the guarantee for both players. In
particular, for the initial state distribution I/, we seek x ¢
such that

Esors[max VFout¥ (sg) — V*(s0)] < e.
y

It is easy to prove that this quantity on the LHS is 0 if and
only if z,,; is a Nash equilibrium (see Lemma C.6).

Interaction procedure. We use the interactions of the
agents with the environment to estimate the value functions
and related oracles for the running of the algorithm. At each
interaction, agents have access to (s;, a;, 7(s;, @i, b;), Si+1)
and (s;, b, 7(s;, a;, b;), Si11), respectively. In terms of ac-
cess of agents, our oracle model is similar to (Daskalakis
et al., 2020; Wei et al., 2021). However, one difference
is that we require a game etiquette: Our algorithms have
two stages where the agents have to behave differently. As
long as this etiquette is respected by the agents (for example
embedded to players in the beginning of the game), they do
not need further communication.

Softmax update rule/NAC. Given Kullback-Leibler diver-
gence KL and action-value function Q*t,

21 (-s) = PEE(24(]5), Q7 (s, )

|
= arg_min (Q" (5.7 2([3)) +KL(a(-|s). 21 (s)).
(D

is known as NPG with softmax parameterization (Agarwal
et al., 2020, Lemma 5.1). When there is a critic estimating
@™t (policy evaluation), along with actor updating z; with
NPG, this algorithmic framework is called natural actor-
critic, in short, NAC. We focus on KL divergence for sim-
plicity and its wide use. Our developments also hold for
more general Bregman divergences as Zhan et al. (2021).
The inner loops in our algorithms initialize the variables with
uniform distribution as is common with KL divergence.

We start with a blanket assumption used in all the results in
the paper. In the sequel, we will introduce another assump-
tion to improve some of the results

Assumption 2.1. There exists p such that, for any policy
iterate pair xy, y;, for any state s, it holds that prev(s) >
p > 0, where p®#'¥t is the stationary state distribution in-
duced by the policy pair.

Our rationale on the assumptions. Assumption 2.1 essen-
tially mean positive definiteness of the sampling matrices in
policy evaluation (see Equations (32), (36) and (45)). Hence,
it is only needed for policy evaluation and not when we have
the true value functions. To our knowledge, some form of
this assumption is required in most of the existing work on
temporal difference (TD) (including TD(0)) methods for
policy evaluation (Bhandari et al., 2018; Xu et al., 2020b;
Khodadadian et al., 2021a; Lan, 2021; Hong et al., 2020; Xu
et al., 2020a; Wu et al., 2020; Zou et al., 2019) (see App. A).

Remark 2.2. As summarized in Table 1, similar assump-
tions to Assumption 2.1 are used in (Daskalakis et al., 2020;
Wei et al., 2021). In particular, each of these assumptions
ensure that all action-state pairs are observed with nonzero
probability throughout the game. Under this assumption,
our results improve existing results on PG, see Table 1
and Sec. 1.2. Moreover, by additionally requiring Assump-
tion 3.3, we can obtain the complexity O(e~2), matching
the single-agent counterpart.

Markovian bias. For simplicity, we assume that we sam-
ple from the steady state distribution of a given policy pair,
which for example can be implemented as shown in (Agar-
wal et al., 2020). However, during normal interaction with
the environment, this is not the case and we obtain a single
stream of data. Hence, TD(0) update is biased—commonly
referred to as the Markovian bias. A large body of literature
in the single agent literature showed that the effect of this
bias in TD(0) update is essentially additive and can be han-
dled by assuming uniform mixing of the induced Markov
chain (Wu et al., 2020; Bhandari et al., 2018; Zou et al.,
2019; Khodadadian et al., 2021b; Xu et al., 2020b;a). These
analyses apply to our policy evaluation routines, extending
them to the Markovian setting. For simplicity, we show our
techniques with i.i.d. assumption and then illustrate how
the extension with Markovian data follows with the uniform
mixing assumption in Appendix E.

Error propagation for approximate dynamic program-
ming. Perolat et al. (2015) proposed error propagation anal-
ysis for approximate version of generalized policy iteration
for zero-sum Markov games (see Appendix D). The authors
showed that the following two-stage algorithm converges:

e Stage 1: Given a fixed value function V},_1, find the policy
pair which is an e-equilibrium.

z(a|s)y(al$)Qr—-1(s,a,b)
b

min max
zSEA ySEA
a

= 2°Qr 1y, ()
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Algorithm 1 Reflected NAC with a game etiquette and (-greedy exploration

Require: PXT defined in (1) in Sec. 2. Exploration parameter ¢ > 0 (with equality if Assumption 3.3 holds). Subroutines
Policy-Eval-V,Policy-Eval-f, Policy-Eval-v (see Alg. 2, 3, 4 and note 5%, 32, 3% are potential step
sizes for this routine). Initial policies o, 4o, §o. =¥, 4" denote outer, x, y; denote inner loop’s iterate.

1: fork=1,... do

2:  Stage 1 // Approx1mately solve a matrix game

33 fort=0,1,...,7—1do

4: V,C | =Policy-Eval-V(zF~1 y*=1 N, 3v) ka | =Policy-Eval-V(zF=1 yk=1 N, 2
// Both players compute their own estimations of Vk 1, denoted as V* and V¥
9t+1 =Policy-Eval-0(z,y, N, Vk 18007 V41 = Policy-Eval-0(xs,y:, N, Vk 162

6 aina(ls) = PR (wils)n (207 (s,) = 07 (5.)) )
7 yaCls) = PRE (wCls) < (2001 (s,0) — 015, ) )

: end for
9:  Output 2" = £ Z 1 Ty
10:  Stage 2 // Approximately find best response
11: fort=20,1,...,T—1do

el

12: Py11 = Policy-Eval-v(z* g, N, = (Y)

13: Jev1(:18) = PRUGe([s), =i (s, )

14:  end for

15:  Output y* = 7;, where { € [T] is selected uniformly at random.

16: end for

where Qr—1(s,a,b) = r(s,a,b) + Algorithm 2 Vy = Policy-Eval-V (x, y, N,

> o P(s|s,a,b)Vi—1(s’).  When it is clear from )
the context, we drop the subscript of Q1. This is a matrix  Require: Policy pair x, y, iteration counter N, step size

game and is the sample-complexity bottleneck (Perolat /3, initial value function estimate Vp. &(-|s) = (1 —
etal., 2015). Let 2 denote the accuracy and z¥ the output Oz(-]s) + Iifll’ J(1s) = (1 = Oy(-|s) + ﬁ'
of this stage at iteration k: 1: forn =0, N —1do
k . ~ (. ~ & ~ (-

]E[IESNM[;I}ELX( ) Qr_1y" — r?éri Hlaiaj *Qi1v]] =€, 2 i:-l:]lp}f ?l( |Snfjan§b);)an Z(:[sn), bn ~ G(-[sn),

3) 3 Vag1r = Vi — Bre (Sn)( n(Sn) - T(Snyanybn) -
where the outer expectation is over the randomness of the YVn (5n+1))
algorithm used to generate x*. 4: end for

o Stage 2: This step finds an approximate best response. The

fixed policy (z*), can be viewed as a part of the environment. 3, Reflected NAC algorithm with a game
Denote y* as the approximate best-response computed in etiquette

this stage, at iteration k. The resulting value function V}, =

Vet ' s fed to stage 1 in the next iteration. Let €5 be the ~ Our approach. We introduce NAC-based algo-

accuracy for this stage, yk the output of this stage: rithms (Konda & Tsitsiklis, 2000; Peters & Schaal, 2008) to
k o . solve these two stages in an alternating fashion to obtain an
E[Esu [mjix VE(s) = VT (s)]] = €3, “4) approximate Nash equilibrium, in view of (5). We leverage

primal-dual algorithms to solve the matrix game in Stage 1
where the outer expectation is over the randomness of the efficiently (Malitsky & Tam, 2020; Nemirovski et al., 2009)
algorithm used to generate yk. Then, Perolat et al. (ZQIS, and NPG for the single agent problem in Stage 2. For es-
Theorem 1), Zhao et al. (2022) show that the following  {imating value functions that are used as oracles in these

holds (see also Appendix D). algorithms, we employ TD(0) (Tsitsiklis & Van Roy, 1997;
oKy ) Bhandari et al., 2018; Sutton, 1988). To our knowledge, the
E[Es [I;leag( VE(s) = V*(s)]] best complexities in the single agent setting are obtained

with this approach (Lan, 2021).
m(’j sup eF + sup €8 | + O lo} S . . . .
T 17 k<K 1 k<K 2 1—7 Stage 1. In this step, at iteration k£, we compute an approxi-
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Algorithm3éN = Policy-Eval-f(x, y, N, V,
B) for player y
Require: i(-Js) = (1— Qa(ls) + 5. §(ls) =
Qy(-ls) + -
1: forn=0,1,...,N—1do
2: Sample s, ~ p*9("), an ~ 2(:[sn), by ~ Y(:|5n),
Sn41 ™~ P('|Sn7anabn)~
en - Bne(svmbn)(gn(sn;bn)

T(Sn, Ap,y bn) - ’Yv(anrl))
4: end for

(1-

3: 9n+1 S

Algorithm 4 oy = Policy-Eval-v(x, y, N, ()

for player vy
Require: &(-|s) = (1 — Q)a(|s) + 5. §(-Is) =
Qy(-ls) + -
1: forn=0,1,...,N—1do
2: Sample s, ~ pP9(-), an ~ 2(:|sn), bn ~ J(:|sn),
sn-i-lNP("Snvanvbn)s bn+1Ny('|5n+l)-

(1-

3 Upy1 = Un — Bne(sn, bn)(f/n(s’m bn) —
T(Sna Qn, bn) - ’Yﬁn(sn—&-la b7z+1))
4: end for

mate equilibrium of the matrix game (2). As Vj_; is fixed,
this is a standard matrix game. Throughout the following
discussion, we leave implicit the dependence of () on k. Our
discussion here is for x player and it would be symmetric
for the y player. Due to its simplicity and generality, we use
forward-reflected-backward (FoRB) algorithm (Malitsky &
Tam, 2020).> FoRB takes a reflected step rather than us-
ing By (y,)s Q(s, -, b) directly, which is the case in gradient
descent-ascent (GDA). The FoRB update is

Tey1(c|s) =

pKL (sct(~|s),n(2]EbN(yt)sQ(s, 5 0) = Ep(y, 1) Q(s, -,b))) .

In standard matrix game notation, we can view 6 (s, ) =
Epys Q(s, -, b) as the matrix-vector multiplication between
the dual vector y; and game matrix ). To get this oracle,
we have to solve a linear equation by sampling the policies
T, ¥¢. The linear equation is obtained by using the definition
of @, given after (2). However, the difficulty is that we
do not have access to Vj_1. Given that V},_; is the value
function of policies z°~1, *~1, in Step 4, we use TD(0)
to learn this value function and obtain a biased estimation
Vk_l (see also Alg. 2). Using this estimation, we can then
proceed to solve the linear equation by sampling the policies
Ty, Y4 to find an estimate for 05 (s, -) = Epy; Q(s, -, b), in
Step 5 (see also Alg. 3). This step is similar to stochastic

*In principle, this part can be replaced with mirror-prox (Ne-
mirovski, 2004) or OGDA.

approximation/SGD approaches (Nemirovski et al., 2009;
Lan, 2021). Using the oracle, we perform one FORB step
for each player, in Steps 6 and 7.

As we detail in App. G, for Steps 4, 5 and correspond-
ing policy evaluation routine Alg. 3, z agent only accesses
st,7(8t, at, by), s¢+1 and its own action a; to form the
stochastic oracle and y accesses s, (¢, at, by), s¢+1 and
its own action b;. We have additional bias coming from the
approximation of Vj_; by Vie_1, the estimation of which
is important for getting our complexity results. We take
special care for the stochastic dependency to make sure
to decompose bias and variance of Vk_l estimate (See In-
sight 1). Markovian data would bring additional bias as
mentioned before.

Remark 3.1. For the best complexity, we use fresh esti-
mates of Vj,_1 at every inner iteration of stage 1 (see Algo-
rithm 1 and Insight 4). This gives a tight bound for the bias
to get the O(e2) complexity. This insight is in contrast
to the black box view of (Perolat et al., 2015), which uses
an estimate of Vj,_; from the stage 2 within the stage 1.
Our analysis behooves both agents to remember the output
policies of stage 2 instead, so that they can recompute Vj,_1
with a lower bias in the stage 1.

Stage 2. In this step, at iteration k, x player fixes its policy
and y computes an approximate best response by solving
the single agent problem in (4) by using NPG in (Lan, 2021;
Agarwal et al., 2020). The estimated value function Vj,_
used in stage 1 approximates the value function of the pol-
icy outputted at this stage in iteration £ — 1. For NPG up-
date (Step 13 in Alg. 1), y player needs an oracle returning
anzk(_‘s)ka@* (-, a,-). This is the joint @ function after
taking the expectation over the actions of player x according
to the fixed policy z*. Since z player’s policy is fixed, we
only use policy z* in this loop, whereas y player continue to
update its policy y;. We can view the abovementioned ora-
cle output as a single agent Q-function and then use standard
policy evaluation (known as TD(0) (Bhandari et al., 2018)
or SARSA(O) (Sutton & Barto, 2018) (see Algorithm 4).
In particular, as long as s, a¢, by, s¢+1 are sampled using
the interaction procedure described earlier, there is no need
for 7, update to see the actions or policy of z*. A similar
formulation for policy evaluation in MARL is considered
in (Perolat et al., 2018) in a slightly different setting.

Greedy exploration. If Assumption 3.3 does not hold,
one way to lower bound the policies is to use (-greedy ex-
ploration which we incorporate into our algorithm. The
idea of the analysis is to pick the exploration parameters
depending on the final accuracy. Since the bounds have
inverse dependence with this parameter, using greedy explo-
ration results in a worse complexity compared to what we
get when Assumption 3.3 holds. In the latter case, we can
take ¢ = 0.
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3.1. Main Result

Theorem 3.2. (Overall performance bound with only As-
sumption 2.1, see App. H.2.2) Let Assumption 2.1 hold. Let

¢ = U0 i Alg. 1.

E[ESONU[mg’X VxK’y(So)—V*(SO)H <0 <T(K|S>

1—7)?
KISP(A] v |B)? «
+o( N(1— ) gie? )+o6).

Consequently, the sample complexity is O(|S|3(|A] v
[B)*(1 =)~ p™?).

In this bound, the first term is for solving the outer loops in
stages 1 and 2. The second term is due to the bias and the
variance of the stochastic oracles that we got by sampling the
policies. The final term is due to approximating generalized
policy iteration in the outermost loop (Perolat et al., 2015).

To improve e dependence further, to match the single agent
setting (Lan, 2021), we introduce the following assumption,
which is also used in (Lan, 2021, Rem. 1, Sec. 5.2).

Assumption 3.3. There exist z, y such that, for any policy
iterate pair x, y;, for any state action tuple s, a, b, it holds
that 2 (als) > z > 0,y:(b|s) >y > 0.

Theorem 3.4. (Overall performance bound with Assump-
tion 2.1, 3.3) For Alg. 1 with ( =0,

B e V" (50) =V (s50)]] < O <TK|5>

(1—7)3
K|S|*(|A] v |Bl) 1 1
o ( N1 —=7)7"p? [ (min{z,y})? Y (y(1— v))QD
+ O (’yK) .

In particular, the overall complexity is O(|S|*(|A| v
|[B)e™?(1 =)~ ?p~Cy~*(min{z, y})~?).

3.2. Convergence analysis

Proof sketch. Next, we show how to obtain the required
bounds for Thm. 3.4, in view of eq. (3), (4), (5). Proof of
Thm. 3.2 builds on similar ideas. Our strategy is to char-
acterize the error of each stage by using the outer/inner
structure given in the algorithm. The innermost algo-
rithms (see Alg. 2) are estimating the required oracles de-
pending on value functions, by sampling the policies, and
applying either SGD or TD(0).

As per (5), the next lemma will characterize the error of
stage 1 (see (3)): solving the matrix game. A critical point
to derive the fastest rate as observed by (Lan, 2021) in
the single agent setting is to characterize the bias and vari-
ance separately. As the algorithm in (Lan, 2021) is akin

to gradient descent, we extend the ideas there to the more

complicated FoRB algorithm.
Insight 1. The existing analyses for stochastic FORB are
not suitable for us. In the stochastic variant in (Malitsky
& Tam, 2020), deterministic oracle is computed at each
iteration. (Bohm et al., 2020) uses unbiased oracles with
bounded variance and decreasing step size. In our case,
we have biased oracles and we use inner loops to decrease
bias and variance. Next, we develop an analysis with
constant step size and characterization of the bias and
variance explicitly.

Lemma 3.5. (Bound for stage 1) Let Assumption 2.1, 3.3
hold. Denote Loyt = 7{ Zf 1 Ty and Yo = % ZZ;I y; and

letn = . Then, it holds that

Elf <E |:Es~1/{ |:max 5, Q%Y — stsyom:H
s,y
(1 1 &
=0 <77T> + O (T ;EH]E[@&-Q-H%] - 9*,:&)

- 9*7t—1 2)

1
—E[E,. .
+ Tn [Es uzg}gi);[&,t(z) + &2,.4(2)]]

T
+0O <;Z ;EH&H — 0,42+ E||6,

For a free variable z = (z,y), we defined & +(z) +
E2,4(2) = (07,1 (-[5) —E[OF, 1 (-[s)|e], 2 (-] s) =24 (-s)) —
1(0¢11 (Is) = E07, 1 (1) vl y(|s) — we(]s).

Remark 3.6. When bias and variance are 0, this reduces
to 1/7 rate as in (Zhao et al., 2022). Bounding e’f (see (3))
is via bounding LHS of Lem. 3.5. This allows to bound
the suboptimality thanks to (5). To this end, we bound the
second term in RHS of Lem. 3.5 in Lem. 3.8 and the third
term in Lem. 3.7.

Insight 2. The last error term in the lemma involv-
ing &14,&4 is due to the coupling between the free
variables x°, y° and randomness of the algorithm. For
this error, we adapt the “ghost iterate” trick from (Ne-
mirovski et al., 2009) for stochastic primal-dual algo-
rithms (see Lemma G.6).

This lemma analyzes the behavior of FoRB for solving
the matrix game with biased oracles. The bound therefore
reflects the bias and variance of these oracles. For simplicity,
we suppress some dependencies in the following bounds,
however we include them in Thm. 3.4 and in the appendices.

Next is the the variance estimation, which is similar to (Lan,
2021), except handling the error term coming from Vi1
as in Insight 3. Apart from that subtlety, this part is similar
to SGD-type analysis with a biased oracle, where we mea-
sure the squared distance of the iterate to the solution. For
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Figure 1. Bandits We plot the probability of action a™ for the x policy and b* for the y policy. Results are averaged over 10 seeds. Alesia:

Experiments in a Alesia with length . = 3 and coin budget C' = 6. The suboptimality gap on the vertical axis is max, V¥ (so) —
V*(s0)| for y where s is the initial state that is deterministic in Alesia. Results are averaged over 5 seeds.

for x and | min, V=¥ (s0) —

the next Lemmas, we drop the superscripts from 6, Vi1
(see Alg. 1) as estimations are symmetric.

Lemma 3.7. (Variance estimation for step 5) Let Assump-
tion 2.1, 3.3 hold. Let 3% = forng > 1.

Then, for Algorithms 1 and 3,

2
pmin{y,z}(n+no)

1
EHQN - 0*,t||§ S O<]V2+

1 1
m( +E||Vk 1*Vk 1”00))

Insight 3. Different from standard critic analyses (Hong
et al., 2020; Khodadadian et al., 2021b), we account for
the additional bias coming from having Vj_1 instead of
real Vi (see (2) and Step 4 in Alg. 1).We exploit struc-
ture of the underlying problem to make sure the error term
appears as E||V_; — Vi_1|% in the bound instead of
E||Vk,1 — Vik—1l|00» Which would deteriorate the rate.

Next estimation is critical for obtaining the complexity re-
sult. In particular, we bound the bias of ;4. To this
end we define the filtration F, ; that represents all the ran-
domness up to the inner iteration ¢ of step k. Since in
Lem. 3.5, we need a tight bound for | E[0;41|Fk ] —0
IE[On|Fk,t] — O], we have to be careful with the addi-
tional bias from Vj,_1. This part is similar to SGD-type
analysis with a biased oracle, where we measure the dis-
tance of the expectation of the iterate to the solution.

ot =

Lemma 3.8. (Bias estimation for step 5)) Let Assump-
tion 2.1, 3.3 hold, [3° ng =

ey

. (W) For Algorithms 1 and 3

1
IE[Ox|Fi] — 0% < o(Nz

! % 2
+ m”EH/h_ﬂfk’d — Vk_l'oo) . (6)

V*(s0)

Insight 4. The reason to use fresh estimates for Vi1
at each ¢ as in Algorithm 1 is the result of this lemma
(see Remark 3.1). Since the bias term in the algorithm’s
analysis is | E[0x|Fk.¢] — O.¢]| in Lem. 3.5, we take the
square root of the result of Lem. 3.8. If Vie—1 is estimated
before x; at iteration k, then we will have EHVk_l —
Vi—1]| in the bound of Lem. 3.5, which will have the
rate O(1/v/N). On the other hand, if we estimate Vj_,
freshly for every inner step ¢ of the outer iteration £ as in
Alg. 1, then we are able to use the improved bias bound
IE[Vi_1|Fk.e] = Vi1|| < O(1/N) as in the next lemma.

The next lemma is for the estimation of the value function
Vi_1 using the policies ¥~ y*~! with TD(0). Therefore,
this is an analysis for TD(0), similar to (Lan, 2021).

Lemma 3.9. (Variance/Bias estimation for step 4)) Let As-

sumption 2.1, 3.3 hold and B% m, with

ng = QO (W) The variance and bias of Vk,l, com-
puted as in Algorithm 1 satisfies

E[Vi-1|Frt] = Via |3 <O (N72),
E|[Vi_1 — Vi1 <O (N"Hp(1—7)7?).

Unlike stage 1, the stage 2 (finding the best response)
mirrors the single agent analysis closely. Due to space
constraints, we defer the details to App. G. Combin-
ing Lemma 3.5 with the bound for elg in (5) gives Theo-
rem 3.4. The main idea of Thm. 3.2 is to use (-greedy ex-
ploration to replace the policy values z,y (see Theorem 3.4,
Lemmas 3.7, 3.8, 3.9), which might be 0 without Assump-
tion 3.3 (see App.H.2.2).

4. Numerical verification

We validate our algorithm in tabular domains com-
paring against OGDA (Wei et al., 2021) and REIN-
FORCE (Daskalakis et al., 2020). In particular, we consider
two domains: a two players bandits environment with 100
arms and a board game known as Alesia ((Perolat et al.,
2015)). A game where the players bet coins from their
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budget to move the “wrestler” on their side of the board.
Additional details are given in App. . We emphasize that
our main contribution is theoretical; the preliminary compu-
tational results are for verification purposes.

Observations. Both domains challenge theoretical assump-
tions. In the bandit domain, there exists a unique pure
Nash equilibrium. Therefore, the equilibrium policies are
deterministic and our best complexity result O(e~2) from
Thm. 3.4 does not apply. Similarly, the assumptions in Ta-
ble 1 do not hold. The assumption of (Wei et al., 2021) and
our Assumption 2.1 do not hold because in Alesia the play-
ers can only lose coins. Therefore the initial state cannot be
reached in finite time from any state. Finally the assumption
of Daskalakis et al. (2020) does not hold since in Alesia the
game ends only when either one player wins or both players
finish their coin budget. The game ends with probability 0 in
all other cases. Thus, it follows that we cannot lower bound
the termination probability at any state. Nevertheless, we
observe that all the algorithms converge. Figures 1a,1b show
the value of the bandit player policies evaluated at the NE ac-
tions (a*,b*): z(a*) and y(b*). Reflected NAC converges
faster than OGDA and REINFORCE. Similar conclusions
arise from Figures lc, 1d where we plot suboptimality.
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A. Background on NPG and NAC

Natural policy gradient and natural actor-critic. As we work in the tabular setting, in this paper, we focused on the
natural policy gradient (Kakade, 2001) in softmax parameterization which admits a simple update rule. In particular, the
update rule for NPG in single agent setting is (Agarwal et al., 2020, Lemma 5.1)

i1 (t]s) o< mi(-]s) exp(n@™ (s, ),

which is the closed form solution of the update in (1). To get a sample-based version of this algorithm, one needs to learn
Q™ typically in an inner policy evaluation loop as in (Lan, 2021). This is also called natural actor-critic (NAC) since the
actor updates the policy 741 and critic learns the value function Q™.

Note that the update rule in (Agarwal et al., 2020, Lemma 5.1) is written with the advantage function, however, due to
softmax parameterization, it is equivalent to the form we give.

We can also generalize (1), by using Bregman distances instead of the KL divergence

Tep1(-]s) = P(xe(]s), Q% (s, ) = argz(ﬂgi)réA@“ (5,),z(:[5)) + D(x(:|s), 2:(:|5)), (7

Finally, for the formal setup of Bregman distances, we refer to (Tseng, 2008; Nemirovski et al., 2009). Throughout the paper,
we focus on the case when D is KL divergence, so that the update rule corresponds to NPG rule. This choice corresponds to
the distance generating function of D being strongly convex in #; norm which gives the standard inequality

1
D(w,y) > 5z =yl (8)
that is used frequently throughout the proofs.

Single loop NAC. Unlike the previous case, single loop NAC (Hong et al., 2020; Khodadadian et al., 2021b) does not
have an inner loop for computing Q)™ at iteration ¢. In contrast, single loop NAC keeps a running estimate for this oracle
(which corresponds to one iteration of policy evaluation) and due to its two time-scale nature, still converges. In the tabular
case, the simplest single loop NAC update takes the form

Or11 = 0r — Bre(se, ar) (0e(se,ar) — (s, ) — Y0 (Se41, ar41)) 9)
mep1(t|s) o< me(+|s) exp(nebesa(s, -)),

with properly selected S, 1, generally with 7, /8; — 0.

Temporal difference learning. For constructing state or action value functions from samples, we will use temporal
difference learning and in particular TD(0) (Sutton, 1988; Bhandari et al., 2018; Tsitsiklis & Van Roy, 1997). This algorithm
can be seen as a stochastic approximation scheme for solving a linear equation (Tsitsiklis & Van Roy, 1997; Lan, 2021). In
particular, by denoting the stationary state distribution under 7 as p™, we define

F7(8)(s,0) = p" () (als) (8(s,0) = (s,0) =7 Y P(s'ls, a)m(a[s)0(s',a")).

First, we note that F'™(6*) = 0 where 0* = Q™. Under Assumption 2.1, 3.3 F'™ is strongly monotone (see (Bhandari et al.,
2018, Lemma 3), (Lan, 2021, Section 5.2). The main tools to show this are Assumption 2.1, 3.3 and Bellman operator being
~-contraction. Then, one can use for example (Bauschke et al., 2011, Example 22.6, Example 20.7).

One can sample s; ~ p™, a; ~ 7(:|s¢) and sp41 ~ P(|st, at), az41 ~ 7(:|s¢41) and one step of TD(0) corresponds to (9).
Note that under i.i.d. assumption, the update in (9) is an unbiased estimate of the update that we would get by using the true
operator F'™. The results for TD(0) can be extended to Markovian setting without the i.i.d. assumption by using a uniform
mixing assumption (Bhandari et al., 2018) (see also Appendix E).
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B. Additional related works

Additional works on zero sum games (Guo et al., 2021) proposed an actor critic scheme with linear function approxi-
mation, showing a total complexity O(e~*) assuming unbiased oracles. Similar to our setting, this algorithm requires the
players to agree on an etiquette and their policies are updated asymmetrically. Our work is related also to (Cen et al., 2021)
that however assumes knowledge of exact gradient. Another recent work (Sayin et al., 2021) consider no coordination
between the agents and shows asymptotic convergence.

In the function approximation case, (Chen et al., 2021) proposed an optmistic algorithm and analyzed it under the linear
MDP asumption. Moreover, (Huang et al., 2021) studied general function approximation in episodic zero sum Markov
Games.

Multi-agent and general sum games There is an increasing interest also in the field of multi agent Markov Games. For
example, (Leonardos et al., 2021) studied policy gradient in Markov Potential Games or (Perolat et al., 2021) that studied
mirror descent in mean field games. Furthermore, (Wai et al., 2019) analyzed a primal dual scheme for general multi agent
reinforcement learning problems while (Suttle et al., 2019) focuses on off-policy policy gradient and temporal difference for
multi agent reinforcement learning. Finally, (Zhong et al., 2021) proposed an optimistic algorithm achieving sublinear regret
to converge to Stackelberg-Nash equilibrium in general sum multi agent games.

The extension of our algorithm to this settings may be an interesting question for future investigation.

C. Basic results on RL and optimization

Some notation. We say that an operator 6 + F'(6) is Apin-strongly monotone if (F'(61)—F(02), 01 —62) > Amin |61 —02]/3
and A\pax-Lipschitz if ||[F'(61) — F(62)||2 < Amax||@1 — 02||2- These conditions can be defined with other norms, but we
stick to /5-norm for simplicity.

Lemma C.1. Define 0; recursively as 0,11 = 0; — Btﬁ’(et, &) where r(s,a,b) < 1 and F(@h &) =e(s,a)(0:(s,a") —
r(s,a,b) —v0:(s",a")) and recall the definition of Qi (s,a,b) = r(s,a,b) +v>_ ., P(s'|s,a,b)Vi(s"). Then, it follows
foranyt, k

1
B0lloe < 1
Y
S||A
o < 2,

WVicilloo € ——,

||F(9t>§t)”2

IN

1Qk(s,,0)loc

IN

Proof. The first inequality is proven by induction, for example see (Khodadadian et al., 2021b, Lemma 5.5). Following
inequalities are either basic consequences of the first inequality or directly follow from definition. O

A classical result that we use frequently in the proofs is performance difference lemma by (Kakade & Langford, 2002). The
statement of the lemma is slightly different due to multi agent setting, but since one policy is held fixed while changing the
other one, the original proof of the lemma extends straightforwardly. The proof for this case is given in (Daskalakis et al.,
2020).

Lemma C.2 (Performance difference lemma. See (Kakade & Langford, 2002; Daskalakis et al., 2020)). For any policies
T, Y1, Yo and any state g

1
VP (s0) = VI (s0) = 7 Funary (Bana(1n @77 (5,0,), 11.(ls) = 12(1s))
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Proof. From Lemma 3 in (Daskalakis et al., 2020), we have that:
, . 1
Ve (So) —V®Y2(s9) = 1~ V]ESNd%m ]Ea~1(4|5),bwyl(.|s)Ax’y2 (S, a, b) (10)

where the advantage function is defined as A*Y(s, a,b) := Q%Y(s,a,b) — V*¥(s). At this point, with similar steps to
Lemma 3 in (Lan, 2021), we have:

Eana(-]s),brys (1) A2 (8, 0,0) = Eqan(1s) (A" (550, ), y1(+]8))
=Eona(1s){Q"(s,a,-) = V¥ (s)1,y1(:]s))
= Eana(5) (@7 (s,a,-),1(:s)) = V¥ (s)
= IEaNT( |€)< 2(5a a, - )vyl( |S)> aNT( \9)<Q$7y2 (57 a, )vy2(|s)>
= (Bana(15) Q" (s,a,°), y1(:[s) — y2(:|s))

Plugging in the last estimation in (10) concludes the proof. O

A standard result that we use is Lipschitzness of y — V*¥(sq). For example, see (Hong et al., 2020, Lemma 7). We provide
proofs as we use the precise constants and use them slightly differently than (Hong et al., 2020).

Lemma C.3. For any policies x,y1, yo,

2 4
vEu vy < ———max||y1(]s) — y2(+|8) |1 £ ——-.
! o < g max s (ls) — o)l < =

Proof. By the performance difference lemma (Kakade & Langford, 2002) and Cauchy-Schwarz inequality, for any s,

1
VI (s0) = VEP2(80) = T Bnarr (B9 Q77 (5:0,), 91 (tls) = 2(1]3))

< T Bzt [Bana( 19 @72 (5,0, ) [loolly1 (ls) = m2(ls)ll1-

Next, we are going to further upper bound the right hand side using Lemma C.1
xr xT 1 xT
VEY(s0) = VE¥2(s0) < mﬂngllan(-\s)Q 2 (s, a5 Moy (-ls) — y2(-[s) 2

2

< ———7 max [lya(-[s) — ya(|s)]l1-
(1=7)2 s |

We take maximum over sy and note for all s that [|y1 (-|s) — y2(-[s)|l1 = > _pc g [y1(b]s) — y2(b[s)| < D e p(lyr(bls)] +

ly2(b]s)]) = 2 due to y1 (+|s), y2(+|s) being probability distributions, to conclude. O

Lemma C.4. We have 9
x T 7
@ = Qoo < =35 maxllyi (19) = paCls)

Proof. We note that by the definition of Q*-¥! it follows that for all s, a, b

Q™Y1 (s, a,b) — Q™¥2(s,a,b)| =~ ZP(S/|5, a,b) (V59 (s') — V¥ (5'))] .

Jensen’s inequality, and the previous lemma gives the result. O
Lemma C.5. Let z; be defined as for all s,

ze+1(:[8) = P(z(|8), mbOi41(s,-)),
where P is defined in (1). In particular,

P(zt(ls), Oer1(s, ) = arg_min (mebeyr(s, ), 2([s)) + D(2(]s), 2:(|s))-

z(|s)en

Then, it holds that for all s,
2641 (-[s) = 2e(-[s)ll1 < 0el|O41loo-
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Proof. By the update rule of z;, it holds for all z that (for example, see (Tseng, 2008, Property 1))
(VD(zt41(-[5), 2 (-[5)) + b1 (s, -), 2(-[s) = ze41(-]s)) = 0.
By plugging in z = z; and using three point identity gives
D(zi41(:[s), 2e(|s)) + D(ze(:|s), ze41(:[s)) < me(Orsa(s,-), 2 (-[s) = zega(c]s))-

Using (8) we can lower bound the left-hand side of the previous expression as || z¢(:|s) — z¢11(+|s)||3. In addition, we
use Holder inequality for upper bounding the right hand side as 7¢||0;41(s, *)|| o ||2¢(:]8) — 241 (-|s)||1. Hence, we get the
inequality, [120(-15) — 2041 (15)12 < m118041(5. )2t (1) — 2011 (1) |1 Diving by [[2(-]s) — z41(-|s)]l1 both sides,
we obtain

241 (:s) = ze(-[s)ll < mellOrra(s, ) oo
The result follows by [|60:41(8, ) |oo < ||0+1]]00- O

Lemma C.6. We have that max, V*Y — V¥ U = 0 iff x}, is in the set of Nash equilibrium points.

Proof. Recall that we say that (x*, y*) is a Nash equilibrium if for any z, y

2, Q" Yy < 1, Q" y, < xQ Yy,

In particular, it is true when we plug in x = xp,y = yx.

Next, by definition of min operation, one can bound min, xQ%¥*y; < x,Q"*Y*y; and by the definition of max operation,
2 Q7Y+ y, < maxy x,Q"*Yy. In sum, we have

min zQ* Yy, < 2, Q" Yy, < 2, Q" Yy, < 2 QF Yy, < maxxp QT Yy (11)
x Yy

Of course, by definition, for any x,y, V*Y = zQ%Yy.

At this point we can easily conclude as follows: let x;, = x, for any x, which is a Nash equilibrium, then max, V**¥ =
V=¥« Now assume that max, V¥ = V&Y then by (11)

min Vz/yk S anuyk S VI*,y* S kavy* S max ka,,y — Vm*vy*
T Yy

Where the last equality holds by assumption. Then, it must be that max, V** ¥ = V®&¥« = V%«¥« Hence x;, = z,. O
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D. Error propagation framework

Error propagation of generalized policy iteration for Markov games is given in (Perolat et al., 2015).

Notation. We define the Bellman operators following (Perolat et al., 2015)

TeyV(s) =Y a(als)yls)r(s,a,b) + Y x(als)y(bls)P(s'|s,a, bV (s')

a,b s’ a,b

T,V(s) =maxT, ,V(s)
y

TV (s) = minmax Ty , V(s).
z oy

It is easy to derive that these operators are contractions in £, norm with constant . See also (Perolat et al., 2015; Zhao
etal., 2022).

We find the one-sided Nash equilibrium as (Daskalakis et al., 2020) and (Zhao et al., 2022).

max V®Y(s) — V*(s) <e.
y

This is in contrast to (Wei et al., 2021) that shows the rate in the duality gap. Two phases are characterized in (Perolat et al.,
2015) as

e Phase 1: Find x, such that T}, Vi,_1 ~ T'V},_;. By using the definitions of T, T;, this corresponds to

max Ty, Vi—1 — minmax T, ,Vi_1, (12)
Yy Ty

where

ToyViea(s) = 3 alals)y(bls)r(s, a,b) + v 3 w(als)y(bls)P(s]s, a,b)Via(s).

a,b s’,a,b
As Vj_; is fixed, this will give a standard matrix game for all s. By using a stochastic algorithm, we are going to make the
output xj, to be an approximate solution in expectation, therefore we write

Emax o Qf-yy” — minmaxa®Qp,y” = €i(s), (13

where the expectation is over the randomness of the specific algorithm used to generate xj.

In our analysis, we bound the stronger quantity, which is called duality gap
B max 2Q}_1y° — minz*Q3_ 3] > e (s),
Yy xr

by the definition of a Nash equilibrium since min, z°Q; _,y; < min, max, z°Q{_,y°.

e Phase 2: Find V}, such that Vi, ~ (T}, )™ Vj_1. Since Ty, is a contraction (Perolat et al., 2015; Zhao et al., 2022), as
m — oo, forany V, T, V — max, VY. Let us denote the best response as y;; and the approximate best response as yy.
We want to bound

VR () — EVTRYE(5) = b (s), (14)

where the expectation is over the randomness of the algorithm used to generate yy.

Our error propagation result is based on (Perolat et al., 2015). However, (Perolat et al., 2015) did not consider a randomized
algorithm therefore in the definition of the errors ¢}, and ¢, there is no expectation. In particular, (Perolat et al., 2015,
Theorem 1) defines the errors max, 2§ Q5 ,y® — min, max, 2°Q5 ,y* =: €} (s), Vo Vi (s) — V=¥ (s) =: ¢;(s)) and
states that

2y — Ak
Z,u(s) (max Vel (s) — V*(S)) < %C&Zk’o sup &7,
- v (1=7) jelo,k—1]
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(1= 7))t / 29" krrto
+——— sup |€i|lie + ——CZ "  min(||do||1,0, |Po]l1,0)
(1—')/)2 FELK] J o 1_,}/ 0o oy o)
where
k—1
Olkd — (1—7)2 > j g
= DY Vel d)
LA j=i
with
cq(j) = sup APy, ---ngj,yj)
q T1,YL ey Tj,Yj dO' 0.0

For given state distributions pu, o, let us define the concentrability coefficient (Perolat et al., 2015):

WPy 4, ---ng,yj
o

=:C)0 < +00.

J T1,Y1seees Tj,Y;j )

In particular, by upper bounding c,(j) < C,, , for simplicity (one can also use the tighter bounds; we use the loose upper
bounds for simplicity as they only affect the final bound slightly), the bound becomes

. 2kC, » kC, & ke,
E w(s) [ max VY (s —V*s)ﬁ”’ sup |2, + B2 sup [|€h|1.e + —22,
- ( ) ( P ( ) ( ) 1— v jel0.d—1] H J”l, (1 "Y) el || ]” ) 1— vy

where we also used an estimation from (Zhao et al., 2022, Lemma 2).

One important point here is that we will be making sure the inequalities in these stages hold in expectation. This is also
pointed out in (Zhao et al., 2022) with a short explanation. We describe here the details needed to ensure that these bounds
hold in expectation. For this, we have to track the analysis in (Perolat et al., 2015) and in (Scherrer et al., 2012) where the
derivations in (Perolat et al., 2015) build on. In particular, the relations in (Perolat et al., 2015, Lemma 1) are linear and
therefore, would also hold in expectation. Then, in derivation of (Perolat et al., 2015, Theorem 1), the arguments in (Scherrer
et al., 2012, Lemma 2, Lemma 3) are used. Tracking (Scherrer et al., 2012, Lemma 3), we see that after taking the total
expectation, the bounds become

S te) (B =40 - Vi) < o

kC ; 2vkC
1,0 4sup ||€%||1,0+M

: (15)
(1 =) jeq.n 1-

sup [le] )15, +
1= jeor-1] 1t

where e{ and eé are as defined in (13), (14). The crucial differerence between the bound i1_1 Equat_ion (15) and Equation (5) is
that the deterministic errors ej,e;-in Equation (5) are replaced with the expected errors €] and €} in Equation (15).

Remark D.1. For simplicity, throughout the paper we take o, i to be the uniform distribution and hence replaced C), , by
its worst case value |S|. As mentioned in (Munos, 2003), this value can be much smaller in general.

E. Markovian bias

As mentioned before, in this setting, the Markovian error is essentially additive in our arguments for policy evaluation steps,
and can be bounded by using uniform mixing assumption. In particular, this assumption holds when the induced Markov
Chain over the states, for any policy pair is aperiodic and irreducible (Lan, 2021; Khodadadian et al., 2021b). In this chapter,
we give an informal explanation to illustrate how Markovian sampling can be incorporated into our proofs with the uniform
mixing assumption. The main references for this kind of analysis is (Lan, 2021; Bhandari et al., 2018) for Algorithm 1
and (Khodadadian et al., 2021b; Zou et al., 2019) for single loop NAC.

We are going to sketch the arguments for Appendix G.1 which will be applicable also to other policy evaluation routines.

Recall that by using the oracle for stage 1, we can write

F(0,)(s,a) = p*t¥(s)x(als) (9n(s7a) — Zyt(b|s)r(s, a,b) — WZyt(b|s)P(s’\s, a, b)Vk,l(s’)), (16)
b b
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and ~ R
F(envgn) = G(Sn, an) (en(sna an) - 71(3na G,y bn) - ’Vkal(snjtl)) .

This time we have a Markovian data stream and we denote &, = (Sy, an, b, Spt1). Unlike the i.i.d. case Ean (0n,&n) #
F(6,).

Now we inspect the place in the proof of Lemma 3.7 where we used this estimation. Recall that the term we have
*<F(9m gn)a Hn - 0*>;

where we take conditional expectation in Lemma 3.7. As we can no longer compute the expectation, we are going to identify
the error term

~(F(O1,€0), 00— 0.) = —(F(80), 0 — 02) =(F (05, €0) — F(6), 05 — 6.

err(n)

We now separate the error off/k_l and identify the Markovian error, since we separately handled the error due to Vi1
in Lemma 3.7. Let us define F'(6,,,&,) = e(sn, an) (0n(Sn,an) — r(Sn, an, bn) — YVi—1(Sn+1))

err(n) = _<F(9nvfn) — F(6,),0, —04) _<F(9n7fn) - F(enagn)7 0, — 64).
C(0n,6n)

We notice that the last term in the above bound is simply —y{e(sy, an)(Vi—1(Sn+1) — Vi1 (Sn+1)), 0n — 05) which can
be bounded as in Lemma 3.7. Therefore we focus on the Markovian error which is defined as ((0,,,&,,).

We will argue as in (Bhandari et al., 2018). First, it is easy to see that as in (Bhandari et al., 2018), 6,, — F(Qn, &n)s
0, — F(6,) and 6 — 6,, — 0, are all Lipschitz. Therefore, it follows for some constant C that

|C(9n7§n) - C(QTL—T7£’IL)| < 01”911 - gn—THQ'

By triangle inequality and using the update rule 6,,,1 = 0,, — BnF(Hn, &) along with Lemma C.1 gives

30 -
C1[0 — Or—rll2 = C1| Z BiF(0:,6)ll2 < Ci Z BillF(6:,&)l|2 < — Z Bi,

i=n—T i=n—T i=n—T

that implies

C n—1
(Bnrn) < Cnr &) + 1= 3 B

Next, we bound E¢(6,,—-,&,) as in (Lan, 2021). Let F,,_; be the filtration generated by &, ..., &,—1 and note that 6,
depends on the same randomness as JF,,_1 for all n. In particular, by tower property,

v

]EC(en—*ry gn) = E<F(9n—7) - F(en—ﬁ fn), an—'r - 9*>
= E<F(9n—7) - E[F(Gn—ﬂgn”}—n—f—l]a On—r — 9*>
< 2E||F(0p—r) — E[F (0r—r, &) Fner—1l|
<Cp’,
for some C', where the last bound can be derived the same as (Lan, 2021, Lemma 16) under the assumption that the induced
Markov chain is aperiodic and irreducible.

log(1/¢)
) log(1/p)
n < 7™ and using the step size rule of 3,, which decays as 1/n, the same as (Bhandari et al., 2018; Lan, 2021) which will

only add logarithmic spurious terms to the final complexity.

Then, one can use the arguments in (Bhandari et al., 2018) by picking 7 ~ 7™ ~ ifn > 7% and 7 = n if

In the case of single loop NAC, the arguments are slightly more involved, however, they are well-studied. In particular, (Zou
et al., 2019) introduced the technique to handle Markovian noise for SARSA. These arguments are used for single loop
NAC in (Khodadadian et al., 2021b; Wu et al., 2020; Xu et al., 2020a), which also applies in our setting for Algorithm 5,
similar to how the above arguments apply in our setting for Algorithm 1.
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Algorithm 5 Single loop NAC with a game etiquette

Require: Vj such that ||V — Vo0 |2 < ¢
fork=1,2,... do
Stage 1
fort=0,1,...,7 —1do
Sample (s¢, a, b, s¢11), with policy pair ¢, y; observe sy, by, r(s¢, ae, by, Spp1
07 = 0F — Bre(se, ar) (0F (st,ar) — 1(s¢, ae,b) — YWa—1(s111)))
07,1 = 0 — Bre(se, be) (0F (s, be) — 750, a6, b) — YVe—1(se41)))
[es1(8), Yer1(tls)] = [P(4(|5), m0F1 (s, 7)), P(ye(-ls), —n0¢ 14 (s,-))]
end for
Output 7, = 7 23:1 Tt.
Stage 2
fort=0,1,...,T —1do
Sample (St, ag, bt, St+1, bt+1) with pohcy pair T, :ljt, observe St, bt7 T(St, ag, bt), St+1, bt+1
Vi1 = Ve — 5;’6(875, bt) (Vt(st, bt) - T(St, at7bt) - 'YVt(SzH—l; bt+1))
wiy1 = wy — Be(se) (we(se) — (e, ar, b) — ywi(si41))
Yer1(cls) = P(5(-|s), —nbisa (s, )
end for
Output y = §;, Vi = w; 1, where £ € [T7] is selected uniformly at random and V}, = V=,
end for

F. Single loop NAC with etiquette

We start analyzing an algorithm that does not include inner policy evaluation routines. This algorithm achieves an inferior
sample complexity but it serves to introduce the proof techniques in a simpler setting.

Theorem F.1. Let Assumption 2.1, 3.3 hold and . be a state distribution. For Algorithm 5, for the output of x-player

kCuo { 10TV IBI) | 1

Th,y RV
b V0| = VA0 S g T T =2 AL
N [SIVIA[V [B] n VISI(ATV [B]) L SVIAlV B

( ))\rgnm A;m)\gmn(l - ) ( )3>\g'11n

\/|S||B 1 V/|S||B kC, o
+\II\+ +|||}+O<7;L,>

(1=7)2 My (1=7)2 (1-9)1 T
(1 CWG)L%‘(,\(Q‘AXLB |§\V )4) sample complexity.

min”'min " min

which gives O (
Proof. Inserting the results of Lemmas F.7, F.11 and F.14 to (15) gives the result. O

F.1. Proofs for stage 1 of single loop NAC with etiquette in

In this part, we are going to formulate and present the results for solving stage 1 with single loop NAC. Unlike (Zhao et al.,
2022), we do not assume to have an unbiased access to Vj,_. Therefore, we have a stochastic oracle involving V_; which
is an estimate of V1. We characterize the error from this term and note that the goal of stage 2 will be to provide this
oracle Vj,_1 with small error. Therefore, the results in this part will contain the error term E||[Vi_1 — Vi_1 ||%,

F.1.1. FORMULATION

Notation. The problem is for all s

min max z(als)y(b]s)Qr-1(s, a,b) = 2°Qf_1y°,
x(-|s) y(-|s ab

where Qkfl(sa a, b) = T(Sa a, b) + Z P(8/|87 a, b)kal(S/)a
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where we also defined z°, y°, Q°.

Here, Vj,_1 is fixed (independent of z, y and iteration counter t), therefore the problem is standard matrix game, with a
restricted access to game matrix Qx—1 (8, a,b). In particular, Vj,_; = V®&—1:¥—1_For all s, the equilibrium condition is for
all z,y

Q5 1y < wLQh 1Yy < 2°Qk Yy
For lighter notation, we refer to Q_1 as @ since it is fixed during the loop.

At iteration ¢ of solving this matrix game, we will need the oracles E,, (.|s)Q(s, a,b) and Eq,, (.15 Q(, a, b) for the =
player and y player, respectively. This part is symmetric.

Let us write the oracle for z variable by using the definition of Q(s, a,b) = Qx—_1(s,a,b):

05 1(s,a) = Eypuy,(15)Q(5,a, D) (17)
= Zyt(b|s)r(s, a,b) + ’yZyt(b\s)P(s’|s7 a,b)Vi_1(s").
b

s'b

Given the sampling matrix diag(z;) ® diag(p®*¥*) as in (Lan, 2021, Sec. 5.2), where p®t-¥t is the steady state distribution
under x, y4; for the critic, define the operator

FF(0)(s,a) = p* ¥ (s)a(als) [ ny bls)r(s, a,b) — ny bls)P(s'|s,a,b)Vi—1(s)|,  (18)

which, by Assumption 2.1, 3.3 is strongly monotone with A\, and we would like to find 6, ; such that Fes,) =0
By (17), 0% 4(s,a) = Epwy,(.5)Q(S, a, b). Since sampling matrix is positive definite due to abovementioned assumptions,
the solution of (18) is unique.

As we do not have access to true V;_1, we have the stochastic operator with the estimate Vk,l and by sampling &; =

(8¢, at, b, 8e41), S¢ ~ PV ap ~ 4 (+]8¢), by ~ ye(-]Se), Se41 ~ P(+|s¢, az, by)

Fi(61, &) = e(s1, ar) (9t(3t7at) — (8¢, ae,by) — ’YVk—1(8t+1)) :
By assuming we can sample from the stationary state distributions p™*¥¢,

Ee, [Ft(etvgt) +e(st,ae)y (Vi—1(se41) — Vk71(3t+1)):|

= F(0)+ Y o ()nilals)u(bls) P(s |s, a,b)e(s,a) (Vi (s)) = Vi (s)

s,a,b,s’
= F(0:) + Py (Vior = Vie1) = F(00) + 80,6, (19)
where we defined the matrix P, ,,.

Above, the first equality is due to

Ee, [e(st, ar) (Be(se, ae) — r(se, ar, br) = YVi1(se41))]
= Z Pr(s,a,b,s")e(s,a) (0:(s,a) — r(s,a,b) —yVi—1(s"))

s,a,b,s’

Z p=rYe ()i (als)ys (b|s) P(s|s, a, b)e(s, a) (B¢(s,a) — r(s,a,b) —yVi_1(s"))

s,a,b,s’

= pr’ Ve (s)ay(als)e(s, (9,5 s,a) Zyt b|s)r(s,a,b) —’yzyt(b|s)P(s’|s,a,b)Vk_l(s’)),
s’,b

where the last line is due to )3, , y+(b|s) P(s[s, a,b)0:(s, a) = 04(s,a) >, ,, Pr(s’,bls, a) = (s, a) and
Db, Yt (Bl8) P(8'], 0, 0)r (s, a,0) = 32, ye(bls)r(s, a,b) 3oy P(s']s, a,0) = 32 44 (b]s)r(s, a, b)
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F.1.2. PROOFS

We will drop the superscript on 6%, 6Y as the algorithms are symmetric, so we will only analyze one case.

Lemma F.2. Under Assumption 2.1, 3.3, let By = W and ny = tg% Then for the critic computed in stage 1
of Algorithm 5, -

T
1 2(1+1logT)
— N "E|0 6 2
Tt; [6e41 — Oull3 < fll 1= 0x0ll2 + (0 21— )2yT

min

16|S[|A|(1 +1ogT) | 49°|S||4]
\/T(l - '7)4 (/\remn)

Corollary F.3. Extracting only the dependence on Apin, |S|, |Al, v, T gives

;gEnetH 0,413 < % {0 (AS_HI; ) +0 (M) o <(|IS—”;1; >}

e

E( Vi1 — Vi-1l/%.

7?IS] Al
(A\uin)?
Remark F.4. Different from the standard critic analyses, we have to account for the additional bias coming from only
having Vj,_; instead of real Vj,_;.

Remark F.5. Important point here is to exploit strong monotonicity of F; defined in (18), to make the error term
E||Vi—1 — Vi_1||% appear instead of the worse term E||V;_1 — Vi_1]||oo Which would deteriorate the complexity.

Remark F.6. With some extra work, we can obtain a step size /3; not depending on A\’ . | similar to (Khodadadian et al.,

2021b). We do not pursue this for brevity and keeping the analysis simple.

min?

Proof. Letus recall 0, ;(s,a) = Eyy, (.15 Q(s,a,b) (17) and that F; (6, ;) = 0 by the definition of F} in (18). Moreover,
Opr1 =0, — Btﬁ‘t(ﬂt, &:). Analyzing the update rule of critic in the standard way (for example see (Hong et al., 2020, Proof
of Thm. 3)), gives

10:11 — s, — 0012 = 2B:(Fi (01, 60), 0 — 0,0) + B2 Fi (6, &0)||3. (20)

We will take expectation w.r.t. to the sample &; = (s¢, ay, by, s¢+1), conditioned on 6y, =, y, and therefore on 6, ; and use
s¢ ~ pTt¥t. We also note (19) to separate the error due to Vj,_; and derive

— BiBe, (Fy(0,&), 0 — Ost) = —Be(F(04), 0 — Out) — Bt (Gust, O — Out)
< _ﬂt<Ft(9t)79t — 0, t> + Biell6u.e 3110 — Os.tll3

< B0, 0.0) + S, 3+ i g, —p,
2
< —Be(Fr(0r),0: — O 1) + f;g Py (Vi1 — V1) |2 + Bt =g, — 0,2,

min

where P, .. is the matrix denoting the probability matrix multiplying Vie_1—Vi_1in (19)and 8, 1 = v Py, .y, (Vi—1— Vk,l)
and we used Cauchy-Schwarz and Young’s inequalities. We can use standard inequalities to estimate || P, ,, (Vi1 —
Vie )3 < ISIAI Py e (Vi1 — Vie )12 < [SIJA|[ Vi1 — Vie—1]|%, and take E¢, in (20) by using the two estimations
above to get

Bev? (8|14
)\9

min

+ BN i l100 — Outll3 + BPEe, |FL(0:, €013 (21)

Ee, [10e11 — 0x 4 I3<Ee,[10: — 0. 4[5 — 28:(Fy(64), 0 — O4) + Vi1 — Vi1l|%



A Natural Actor-Critic Framework for Zero-Sum Markov Games

For the inner product, we would use Ft(0*7t) = 0 and strong monotonicity of F; (an estimation similar to (Bhandari et al.,
2018, Lemma 3)) to get

281 (Fi(61), 00 — 0x1) = 281 (Fu(0;) — Fi(0s0), 00 — Oxt) > 2B M0 [100 — Ostl3. (22)

Using this estimate, taking total expectation in (21), rewriting Ee, ||0; — 044]|3 = E¢, [|6: — 04.t—1 + 04 1—1 — 05 ¢||3 and
using Young’s inequality on the term involving ||0; — 6, ;|| gives,

E“6t+1 — 0x 75”2 (1 + Oé) (1 - 6t mm)EHGt - 0*,t—1||%

~ 25 A
(14 1)1~ BNGE 6 — 0o} + B2 F (0, €013 + 22 1AL

)\0

min

E| Vi1 = Vi-1]%-
W choice, and using ||0,,; — O, 1—1ll2 = || Do, (e(b]s) —

Ye-1(05))Q(s, a,0)[la < V/ISIAN 22, (yr b\ — pa (b)@Q(s,a.b) oo < 2¢/ISTAT/( — 7) max, lue(-]s) -

yt—1(+|s)||1 with Lemma Cl give

Picking o« = with ensuring 8; <

A0 -
Bl — 0,018 < (1= 20 ) B0, - 0,113 + B2E1 A, 6013

S||A 77| S| A
SSUAL b (wmae 1) — i (o)1) + 22150

B ol I B E||Vie1 — Vi1l
( )2ﬁt)‘10mn S )\mln H ' H

We only need to show that E (max ||y¢(-|s) — y¢—1(:|s)||1)? is small. This is easy since we use small step sizes 7; for the
policy update. In particular, the update rule of x; will give by Lemma C.5

lze41(18) — 2 (-[s) )11 < MellOer1llo0s

and by the symmetrical update for y;, it holds that ||y+1(:|s) — y:(-|s)[|1 < 7¢]|0¢+1 (|00 - This is a deterministic inequality
holding for all s, so we can take its maximum over s, square it, use Lemma C.1 and plug it into the main inequality.
2 675/\1?11111 2 2 I 2
Ellfrs1 = Ouellz < (1= =55 JE0 = One—allz + BIEIF (0, €012

85| AP 10e+1l5 , Ber*|SIIA|

E([ Vi1 — Vi1l

/Bt(l_ )2)‘ran1n )‘remn
We plug in the bounds from Lemma C.1
Bidoin 267 8/ Aln?
B0 0ol < (1= 25 B0 0l 4 (2 4
2I9114] ., -
+ P gy, v

min

Picking 7, = ¢ and 8, = s7—575. Letting for convenience u; = E||6;41 — 0, || the recursion will be w41 <

min

(1—co/ \/Z)ut +2Cr+ %CQ, where c1, o, C7, Cy are the corresponding terms from the inequality. We can rearrange the
terms as follows: %ut Sup —upr + FOL+ 2 Cg Note that using \C} > f and summing we obtain <% Zt up <
uy + 2¢1C1 log T + 2¢5Cy VT. T. Dividing by \/T , we obtain the final bound that is

1 4(1+logT)
= E|6 0,.|* < 0, —0,0]% +
T; || t+1 — t” f|| 1 0” ()\9 )2( 7)2\/T

min

16]S41(1 +10gT) 41215}/
\/T(]. — ")/)4 ()\Iemn)

E( Vi1 — Vi-1ll%.
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Lemma F.7. Denote x,,, = % ZZ;I xy and Yo = % Zthl y¢. Let Assumption 2.1, 3.3 hold and n; = ﬁ% For the actor
computed in stage 1 of Algorithm 5,

log (z~'y™1) 4

B T Q] S g e T ZEH% Pl

T
2: 1671 — 0% lo (23)

ﬂ\w

Corollary F.8. By plugging in the bound for 7 EZ;I E||0i+1 — 04 t||co from Lemma F.2 after Jensen’s inequality and by
noting 07 and 0} admit the same bounds, and by extracting only the dependence on Amin, |S|, |A|, 7, T gives

P 1 |S|(1A] v |BJ) 1 5 1
E s 8,8 s O O
s,g?;(,y) xoth Y (L‘Q yout:| T1/4 ( (1 _ 7)2 + T1/4 >\min(1 _ ’Y)

- S|(|A B
+¢kal—w>m&0<7"ﬂ'v'b>.<M>

min

Remark F.9. We make sure E||‘7k_1 — Vi—1]| oo is small by the estimation of Vi_y in stage 2, in Lemma F.14, Lemma F.11.

Proof of Lemma F.7. Recall the notation 2°Q°y* = >~ , #(als)y(b|s)Q(s, a, b). First by definition of 74y and the standard
arrangement for duality gap, it holds for all s

1
T

1 T
<Ea~xt(~|s)Q(s a, Z ]Ebwy,( \G)Q ’ Ty ) (E( ‘8»
t:l

M=

x(s)thsyS - stSygut =

o+
Il

1

[<Ea~xt(~\s)Q(Sv a, ')a y('|5) - yt('

8)) = By, (19 @[5, b), 2 (|s) —2e(-]s))], (25

Il
N[ =
[M]=

t

Il
_

where the equality holds by adding and subtracting 27 Q°y; = (Eqmz,(.1s)@(S,a, "), y:(-|s)) to every summand. We now
bound the inner products in RHS. From the update rule of z; 1, for all s, z(:|s) € A, it holds that (see (Tseng, 2008,
Property 1))

(VD(xy1(:[8), 2 (-]5)) + 0041 (s, ), 2([8) — 241 (]s)) > 0.

By three point identity, the above inequality and adding and subtracting (6, . (s, ), z(:|s) — 141 (-|s))

D(z(-[s), we41(:|s)) < D(x(-[s), z4(-[5)) + m(Os,e (s, ), 2(-[s) — ze41(-[5))
+ 1e0r41(8, ) — Ot (5, ), 2(-[8) — 2e41(:]8)) — D(@e41(:[5), 24(:[5)).  (26)

We bound the inner products using Cauchy-Schwarz and Young’s inequalities and Equation (8), since z(-|s) € A),

N1 (s, ) = Ou(5:-), 2(|s) — @1 ([8)) < 2mel10p11 = O tlloos

N6(0n,i (), 2([8) = Teqa (|5)) = 1e(0ue (s, ), 2([s) = 24 (|9)) + 1 (Ou e (s, ), 2 ([8) = 2eqa(-]s))

< i (Oni(s,0), 2(-[s) — 2 ([s)) + %tllﬂ 3 + D@ (c]s), ze(-]s)

Using these estimations in (26), moving the term 7, (0, + (s, -), z(:|s) — z+(-|s)) to the left-hand side, and using the equality
Out(5,°) = Eyey,(19)Q(5, -, b) gives

(Epoy1) @5, ), 24 s) — 2(-|5)) + %D(x(-\s>,xt+1<~|s>> < %D(m(~|s>7xt<-\s>>

=+ 2||0t+1 — 9*,t||oo + %Hg*ngo
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We sum the inequality, use Lemma C.1 and max, », D(z(-|s), z(-|s)) < log 2 which is by Assumption 3.3 to get

T log §
! ; By, (10 @(5 - b), 2o ]5) — 2(-])) < —— D(2(|s), 21 (]s)) + %

ZT "t
+ = Z2||9t+1 Outll o + 2(1’5_*;)2]1.

At this point, we use that % Zthl N = % Zthl 1< %4T T= ﬁ to bound the step sizes sum in the last term. We use
the same estimation for the other player, since it is symmetric, to bound the RHS of (25). Then, we take maximum of both
sides w.r.t. s, z, take expectation and bring back superscripts of x, y to 6; since we will have error from both players. [

F.2. Proofs for stage 2 of single loop NAC with etiquette

Remark F.10. Stage 2 is asymmetric for both players. As we are computing best response to x,  player’s policy remains
fixed in this phase, it only computes V;_; to be used in its next stage 1 step.

First, we are going to show that while running this step, y-player can construct its stochastic oracle without access to policy
or actions of z-player. Then, as the best response problem is essentially a single agent problem where the other player is
part of the environment, our proofs are similar to the results for single agent setting (Khodadadian et al., 2021b; Hong et al.,
2020). Let us denote the approximate best response as ;. Main goal in this step is that we have to characterize explicitly the
error ||V, — V@7 | as it is used in the stage 1.

Note that this is generally not done in single agent setting as the goal is to compute a policy. However, here our main goal is
to have access to an oracle approximation V;, = V®* ¥ rather than the output policy ¥;, therefore, we keep track of w; that
tracks this value function with an explicit error estimate (see Lemma F.11).

F.2.1. FORMULATION

Notation. Here, the problem is to compute best response where the other player fixes its strategy. Let us fix z;, and denote
the best response as y;,. Here, since x, is fixed, it is a part of the environment for y-player and single agent MDP analyses
will go through. We only need to be careful to make sure the “gradient” for ¢, updates can be calculated by not knowing
policy or actions of xj.

For NPG updates, we will need to compute at iteration ¢, v, ;(s,0) = Eqy, (_‘S)meﬂt (s,a,b). Writing the Bellman
equation and using the definition of value functions

Q**Y (s,a,b) = r(s,a,b) +72P (s'|s,a,b)V=r¥t ()

(s,a,b) —i—’yZP (s'|s,a,b) ka (a'|s") g (V|8 ) Q™ ¥ (s, a’ V)

/b/

We note v, ¢ (s',b') = Eqrrug, (|s)@7* Y (8", a’, 1) and take expectation of previous equality with a ~ z(-|s),

Vi t(s,b) Zxk als)r(s,a,b) +~ Z (s'|s,a,b)xi(als)ge (b8 )ves(s', V)

s’ a,b’

We use the sampling matrix (as (Lan, 2021, Sec. 5.2)) diag(p®*-¥*) ® diag(y;) and define the operator

FY)(5,0) = "9 (5)5 (b)) [ (,) — D n(als)r(s,an) =7 3 anlals)P(Sls a1l )]
s’ a,b’
such that F}(v,,) = 0. Strong monotonicity of F} with constant A\, follows from Assumption 2.1, 3.3, and that
the operator T, v(s,b) = Y, zx(als)r(s,a,b) + ’st/yayb, zp(als)P(s'|s,a,b)g (V| )v (Y, s") is «y contraction in {o
norm, (Zhao et al., 2022, Lemma 1) (Bauschke et al., 2011, Example 22.6 and 20.7). We define the stochastic operator
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after sampling 61‘, = (st,at,bt,st+1,bt+1) with St ~ pxk”gt, Qg ~ SCk("St), bt ~ yt('|5t)7 St+1 ™~ P('|st,at,bt), bt+1 ~
Ge(-[se41), .
FY (v, &) = e(se,be) (Ve (¢, be) — r(8¢, at,be) — ye(se41,0041))

and as we assume we can sample s; ~ p"%, B, [FV(1,&)] = FY(). In particular, we see that as long as
St,Qt, by, St41, 41 are estimated in the prescribed way, there is no need for y; update to see the actions or policy of
xy, for FY (14, &) to be unbiased estimate of F}'(v;). It only needs to see its own actions bs, by11, (8¢, at, by) and sz 1.

Ee, FY (vi, &)
Z Pr(s; = s,a; = a,by = b, 8411 = 8", b1 = b)e(s,b) [ve(s,b) — (s, a,b) — v (s, V)]

s,a,b,s’ b’

Z p"E Y (8)zr (als) g (b]s) P (s |s, a, )i (V8" )e(s, b) [ve(s,b) — r(s,a,b) — yu4(s', b))

s,a,b,s’,b’

= Zp”’”t $)ge(b]s)e(s, [l/t s,b) — Zwk (als)r(s,a,b)

- Z xi(a|s)P(s'|s,a,b)g: (V| (s, 0')]. (27)
s’,a,b’

The same estimations as Lemma F.2, without the bias from Vk,l, as we have unbiased samples will give Lemma F.11.

Let us define the corresponding operator for learning state-value function

VERT(s) = ai(als)ge(bls)r(s,a,b) + Y wi(als)ge(bls)P(s|s, a, b)V o+ (s').
a,b

s’,a,b
Similar to the () function, we can define w, ; = = V*®¥t and the operator
Fi(wn)(s) = p™ 7 (s) (wi(s Zxk als)e(bls)r(s.a,b) =7 S wa(als)ge(bls) P(sls, a, bjwr(s') )
s’ a,b

By Assumption 2.1, 3.3, this operator is strongly monotone with A%, . the justification of which is the same as the F}
operator defined above. We also note that Fy’(w, ;) = 0. The corresponding stochastic operator is defined as

Fy (wrs &) = e(se) (wilse) = (86 ar, b) = ywi(se41))
where sy ~ p%0 Yt ay ~ z1(+]s), by ~ §i(+|5), stx1 ~ P(|s, a,b) and as we assume we can sample s; ~ p*r¥t,

Ee, [F¥ (wi, &) = Ff (wy).

F.2.2. THEORETICAL RESULTS

First, we characterize the critic of stage 2 in Algorithm 5, denoted by v, w, for action value function and state value function,
respectively.

Lemma F.11. Let Assumption 2.1, 3.3 hold. Let 3} = W, B = W and ny = t31/4_ Then for the critic computed
by stage 2 of Algorithm 5, min fin

r et st~ J{o (§255) +0 () o (1255)

et~y o 25) 0 rtmsn) 0}

Remark F.12. Using the same samples for §; and V, does not seem to cause a problem since the analysis in Lemma F.2
only takes conditional expectations conditioning on 6; and uses that max, ||z (-|s) — x;11(:|s)||? is small directly by small
step sizes 7.

S
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Remark F.13. V; is not used in the stage 2, but it is estimated to be used in the stage 1 and also to make the bound
of Lemma F.7 small since the bound implies E||w;, ; — V*#%||2 = E||V;—1 — Vi1 |2 < O (1/TY/?).

Proof. Let us recall v, 4(s5,0) = Eqgy (5@ (s,a,b) and w, ; = V¥,

We expand the squared norm
[Vesr = vaills = lve = venll3 = 2B00FY (i, &), v — ) + BEIIEY (v, &) 13-
We take expectation w.r.t. the randomness of & = (s, a, by, S¢+1, by41) and use from (27) that E, [Ft”(z/t, &) = FY ().

Ee, [Visr = vaills = Ve = vasll3 = 28:(FY (), ve — var) + BPBe, | FY (ve, &) 113
By strong monotonicity and F}' (v, ;) = 0, it follows that
2B (FY (i), ve — vae) = 2B(FY (i) = FY (Vit), vt — Vi)
> 2B A minllve — vasel3-

We use this estimation and then Young’s inequality to obtain
]Eft”VtJrl Ve tH2 (1_2675 mm) ||Vt_V*JH%+ﬁt2E§tHFty(Vt7£t)”g

< (1= Bidn) llve = vieall3 + e = veeall3 + B7Ee, | FY (ve, €013 (28)

2
ﬂt )\Zlil’l

‘We now have to bound the second term on RHS. For this, we will use Lemma C.4, but first we have to transform the term
into the form of Lemma C.4. We recall v, ;(s,b) = EaN:ck(.‘s)kaﬂh (s,a,b)

Vet = vat—lle < VISIIBl|[vas — Va1l
= \/WHSI%X |Eaman(ls) (Q7F P (s,a,b) — Q™" (s,a,b))|
< \/WH;%XEWM(-\S) |Q7 ¥ (s,a,b) — Q"*¥~1(s,a,b)|
VISIIBIIQ™ ¥ — Q™7
- 27\/W

< Ti- max [[g:(-|s) = ge-1(:[s)[[x

IN

where the second inequality is by Jensen and the last inequality is by Lemma C.4.

As used in the proof of Lemma F.2, update rule of g (-|s) gives ||g:(-|s) — Zt—1(-|$)|l1 < Mt]|¥t+1]| oo by Lemma C.5. Using

these estimates in (28) after taking total expectation gives

8151 B|v*n7 Ellve+1 I3
B (L =)

We get the result by using the same argument as the end of the proof of Lemma F.2, by also using Lemma C.1 to bound

IEY (v, €)113 and [[vg4 1%

The proof of the second inequality is exactly the same except that in (28), instead of ||vy; — vy ¢—1] we will have
lws,t — wy,t—1]| and we will therefore use Lemma C.3. O

Ellvesr — viells < (1= BeAin) Ellve — vee—all3 + + BEE|FY (ve, &0)13-

Next, we will upper bound V9t — Y%k ¥k which is a single agent problem as x}, is fixed and we showed in this section
how to do the policy evaluation without knowing the actions of x;. The next lemma will be proven similar to single agent
settings (Hong et al., 2020; Khodadadian et al., 2021b).

Lemma F.14. Let Assumption 2.1, 3.3 hold. Let B} = ﬁ, gy = W and ny = ts% Then for stage 2
of Algorithm 5,
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210gy*1 2
—)T1/4 + (1 —~)3T3/4

T
D BBy (V% (50) = Vo5 (50) ) <

=1 (

Nl =

+ ﬁ D Elvesn — vatlloo
1{O<wswg+@< ﬂfﬁ>+@<MﬂwU}

A N(EE N1 - (1=

min
where the second inequality follows by using the results in Lemma F.11.

Proof. By the update rule of §;11 for all s, y(+|s) € A, (see (Tseng, 2008, Property 1))

D(y(-[5); Gr41(-[s ) D(y(-15): G (-15)) = ne(vesa (s, ) y(ls) = Gear (ls)) = D(@ea ([s), 9 (-[s))
D(y(-[s), 5:(-[s)) = me(vae(s: ), y(s) = Gy (-]s))
= N1 (s, ) = va(85), y(ls) = Gea([s)) — DG (]5), G2 (-]s)) (29)

We estimate the inner products by Cauchy-Schwarz, Young’s inequalities and Equation (8)

Ne(ve41(8, ) = Vit (8,°), Y (18) = Ge1 (0[8)) < 2mef|vesa
and
= eV (8,), y(ls) — Gea1(]8)) = —ne(vae(s, ), yCls) — Ge([8)) — me(vie(s, ), Ge(-[s) — g (o]s))

< nlvea(o. Cls) = i) + 0 D (s, 1)

Consequently, by using the definition of v, ;(s,0) = Eqy,(.1s)@7*7 (s,a,b) and the last two estimations in (29), we
obtain after simple rearrangements that

(Banay (1@ (5,a,0),y([s) — 4 (-]s)) + %D(y(~|8)7ﬂt+1(-|5)) < —D(y(ls), 4 (-[9))

2
7
+ 2||Vt+1 _ V*7tHoo + 77tH Q,t” ) (30)

We sum the inequality and use maxy, ,, D(y1(-|s),y2(:|s)) < log % with KL divergence, to get

T
1 i 1 _ 1 1
7 2 (Bana, (1@ 7 (5,0,0), y([s) — ye(‘]s)) < o PWC1) 31 C18) + g log
t=1 Y
T T
2 Zt:l Ui
T z:: lVi41 — Vatl|oo + m (31)
and we conclude using & Zt 1M < 75 /4 Let us recall that y;; is a best response policy. By the performance difference
lemma
- - 1 o " _
VYR (30) — Vﬁk’yt(s ) = 1— 'yESNd koY, <Ea~mk('|S)Q$k’yt(57 a, ')a yk(ls) - yt(|5)>

As x, and y;; are independent of ¢ and fixed throughout the loop, in (31) we plug in y = y;; and take [E e O

S0
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Algorithm 6 Reflected NAC with a game etiquette. (See Algorithm 1)

Require: Subroutine Policy-Eval (see Algorithm 2, Algorithm 3, Algorithm 4 ). Initial policies x, Yo, Jo
fork=0,1,... do
Stage 1
fort=0,1,...,7—1do
Vi, VP ] =[Policy-Eval(zk_1,yk—1,N,BY), Policy-Eval(xk_1,Yk—1, N, B%)]
07,1, 07,,] = [Policy-Eval(ze,y:, N, f/,j”_17Bfl),Policy—Eval(act,yt7]\/'7 ka_l,ﬂz)}
o1 (t]8) = Pl (-]8), 1 (2071 (s, ) — 0 (s, )
yes1(1s) = P(yel-1s), = (207, ,(5,-) — 0%(s,-))
end for
Output z, = + Z;T:l Ty
Stage 2
fort=0,1,...,7 —1do
Viy1 = Policy-Eval(xy, g, N, B = 5%)
Yer1(cls) = P(@e(-]s), —=nvisa(s, )
end for
Output y;, = 7;, where € [T] is selected uniformly at random.
end for

Algorithm 7 Policy-Eval (See Algorithm 2, Algorithm 3, Algorithm 4)

Require: Policy pair z, y, iteration counter [V, oracle Vie—1, step size 3
forn=0,1,...,N—1do
Sample Sp ~ Pm’y('), Ap ~ I('|5n), bn ~ y('|5n)7 Sn+4+1 ™~ P('|5n7 Ap, bn)
if 3 = 3,; then
F((bna gn) = e(sn)((bn(sn) - T(Sru Qn, bn) - Py(bn(SnJrl))
else if 5 = BZ then .
F(¢n7 gn) = G(Sn, bn)(¢n(3n7 bn) - T(Sny Qn, bn) - 7Vk—1(5n+1))
else if 3 = 37 then
Sample also b, 41 ~ Y([Snt1).
F(¢nv fn) = e(snv bn) (¢n(5na bn) - 7”(Snv An, bn) - '7¢n(5n+17 bn+1)>
end if R
(bn-i-l = ¢n - BnF(¢na§n)
end for
Output: ¢n

G. Proofs for Reflected NAC with a game etiquette

G.1. Proofs for stage 1 of Reflected NAC with a game etiquette
G.1.1. FORMULATION

For single loop actor-critic in the previous section, it was acceptable to do rough analysis since we used small step sizes.
With inner-outer structure, as (Lan, 2021), we can do tighter analysis with constant step sizes for the outer loops (updates
of x,y). Therefore, we can no longer use GDA that we used for single loop NAC, and the techniques from (Lan, 2021)
are not sufficient as the algorithm therein would correspond to GDA in min-max setting. We will have to use a convergent
algorithm for the matrix game solver, such as Mirror Prox (Nemirovski, 2004; Korpelevich, 1976) or FoRB ((Malitsky &
Tam, 2020)) and extend the ideas from (Lan, 2021) to these more advanced algorithms to characterize the bias and variance
separately. Also, we would have to do a tighter analysis for V), estimation.

To obtain the desired oracle 0, ¢(s,b0) = Eqrq,(.]s)Q(S, a, ), as in (18),

F(0)(5,b) = p®¥ (s)y, (b]s) [9(3, b) = wials)r(s,a.b) — 7Y zi(als)P(s'|s, a, b)vk_l(s')] NG5
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We recall that F; is strongly monotone with )\mm under Assumption 2.1, 3.3. Moreover F} is Lipschitz with Ay,,x. We refer
to Appendix F.1.1 for how the oracles in the algorithm can be computed without accessing to other agent’s policy or actions.
Moreover, we do not put subscripts 6%, 6Y as the estimations will be symmetric again.

G.1.2. THEORETICAL RESULTS

Theorem 3.4. Let Assumption 2.1, 3.3 hold. For Algorithm 6, for the output of z-player

Cuck 5 1 ISI(AIVIB)
O prp +

EE y~p[max V¥ (sg) — V*(s9)] <

Y o (1 - 7) - ) )\Iemn( IY)QN
L ISR viBP) 1514
02N — 72 T (320, )2(1— 72N
15181 | NEIE Cpor®
-7 IN2 T N =) )2 +(1—7)2N}+0<(1—7))’
-|SI(JA|V|B])

which gives O( B 5 ) sample complexity.

2(1 ,Y)g()\e AY. AV

min” ' min " min

We used Remark D.1 to bound C,, , for the result in the main text.

Our theoretical results here bring together ideas from single agent NPG analysis of (Lan, 2021) and stochastic primal-dual
optimization techniques from (Malitsky & Tam, 2020; Nemirovski et al., 2009). In particular, we will be using ideas
from (Malitsky & Tam, 2020; Nemirovski et al., 2009) in the analysis we develop for extending ideas of (Lan, 2021) to the
stage 1.

We first analyze the policy evaluation routine in Algorithm 6. In particular, we will bound the variance and bias of 6;1
as an estimate of 0, +(s,b) = E,z,(.|s)@r—1(5,a,b). As this routine is in an inner loop (indexed by n), the policies we
sample, consequently F; is fixed, therefore we drop the subscript. The proofs of these lemmas will be similar to (Lan, 2021),
except the additional bias we have due to Vk_l.

Lemma 3.7. Let Assumption 2.1, 3.3 hold. Let 3% = for ng > 1. Then, for Algorithms 6 and 7,

AV (n+

SilA_ 1 S|4
T—PN? T NOG 20— ()

min min

Ell0n — 0x]3 < O ( SE[Vior — Vk1||§o) :

Proof. Throughout this proof, E[-] will stand for conditional expectation E|[-|x¢]. By the definition of 8,

H9n+1 - 9*,t||§ = ||9n - 9*,tH§ - 2ﬂn<ﬁ1(9m§n)ven - 9*,t> + B’rQL”FG(GWJé-n)”%

We will take expectation E¢ where &, = (Sns @ny by, Snt1) is the sample at iteration n of Algorithm 7

E¢, (0 6n) = F(0n) +7Ps, . (Vie1 — Vi),
as in (19) where P, ,, was also defined. As we stated, we omit the dependence of F; to ¢ as ¢ is fixed throughout this loop.
Thus,
Ee, [0n+1 = Out]3 = 100 — Oxtll3 = 28a(F (0), 0n — Ose)
- 26n'7< Tt, yt(Vk 1 Vk 1) 9 - 9*,t> + ﬂ?z”ﬁ(gmgn)”g

We use strong monotonicity (with F'(6, ) = 0) for the first inner product and Cauchy-Schwarz and Young’s inequalities for
the second inner product (exactly as in the proofs for policy evaluation with single loop NAC) to get

&ﬁ
3 57 P Vit = Vi) 3

min

Ee,

9n+1 * tHZ (1 - 26” mm) ||9’ﬂ - 9*,

+ 5n>‘ronin||9n - 9*,t||§ + gEﬁnHF(gmfn)”g

17215114 ;
B ISl PO, )13 (33)

min

= (1= BuXiuin) 10 — Osll3 + IVie1 = Vi l% + B2Ee,
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where we estimated || Py, 4, (Vi—1 — Vi_1)||3 as in Lemma E.2. We will use Lemma C.1 to upper bound || F(6,,,&,)|3 <

ﬁ. We define ©,, such that ©,,(1 — 8, Anin) < ©,-1 with ©g = ©; = 1. We multiply both sides of the inequality

with ©,, after taking total expectation, to get

0,,8,72|S||A| . - 20,32
OB 01 — O3 < O 1E0n — 0.3 + 22T IS gy vz g 2900
)\min (1 - 7)
Summing the inequality gives
N N
@n n 2 S A > 29“ 7%
ONE[On 11— 0xel3 < Oollfr — O, 4ll3+ %Em_l ~VialZ + > (1_5)2
n=1 min n=1

Using the definition of 3,, and setting ©,,(1 — By Amin) = On_1 gives O, = O % Letususe O =0; =1

and bounds from Lemma C.1 for ||6; — 6, |3,

B0y — 9,2 < 2ol + VIS SN
T T A= )P(NAno) (N +no—1) (N +n0)(N +no — 1)(1 = 7)?(Aj,)?
39218114l e 2
————5 E|[Vk—1 — Vi .
(g 7 Vet = Vil
In particular we used (%3 = % for the first term. Y.~ _, 0,8, = #@)H)N (8L 4+ng—1) that implies
o SN 8O, < ﬁ Finally, for the third term we use Y.~ _, 320, = 3 (n+n0)§(>\ﬁ,m)2 © (n+22%$ﬁ?;71) <
AN e 1NN g2 AN
BT oo (o7 D) thatimplies 52571 5.0n < trmgy (v Fo—D) =

We now analyze the bias for 6,11 in Algorithm 6. Let us remark that the bias analysis for Vj—1 in the next lemma is critical
and it is the main reason that we get fresh estimates for Vj,_1 in this algorithm, in contrast to the stale estimation in the
single loop NAC variant.

2
Lemma 3.8. Let 3, = m where ng = 6;#. Then, for Algorithm 6 and its subroutine Algorithm 7

[SIIA]__ 1015]|4]
(1=7)°N?  (Mn)?

B[O |z:] — 0.l < O ( B[V |e] - Vk1||§o> : (34)

Remark G.1. Since the bias term in the algorithm’s analysis will be ( Lemma G.2) |E[0y|xt] — 0.+||, we will have to
take the square root of the result of this lemma. If V;_; is estimated before x;, then we will have in the main analysis

IE||V;€_1 — Vi—1]| which will have the rate \/iﬁ On the other hand, if we estimate Vj_; freshly as in Algorithm 6, then we

will be able to use the better bias bound ||E[Vj_1|z¢] — Vi_1|| = O(1/N) which seems to be enough for our bound.

Proof. We are going to take expectation of the recursion

911—0—1 = on - Bnﬁ(enafn)a

first w.r.t. sample &,,, where &, is as in the proof of Lemma 3.7

Egn 9n+1 = 977, - BnEan(env gn)
= 971 - /BnF(en) - 5n’7Past,yt (kal - Vk71)7

where we used (19) where P,, ,, was also defined.

We will now take expectation E[-|x;]. We note F" and P, ,, are linear

El0ns1le] = E[0n|2] — BuFu(E[0n]2e]) — BuYPoyy: (E[Vieilzd] — Vi)
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We denote 0,, = E[6,|z;] and § = 7Py, ,, (E[Vi_1|x¢] — Vi_1) in the above equality which makes the recursion 6, =
— BnF'(05) — Brnd. We then have

161 = Ou ]2 = 100 — Oul3 = 280 (F (On), 0n — Out) — 26000, O — Os) + 3 S IF @5+ 38500115, (35)
where we also used Young’s inequality to split the term 32| F'(6,,) + §||%.
By strong monotonicity and Lipschitzness of F' along with F'(6, ;) = 0,
280 (F (1), O — Ost) = 280 (F(0n) = F(01,0),0n — Oxt) > 260 Xpyin |01 — b3,
ﬁ2HF( W3 = BlIF(0n) = F(0r0)[13 < BrXinalfn — Outll3.

— — ]
By Cauchy-Schwarz and Young’s inequalities, it follows that 23,,(9, 6, — 6, ;) < %
these three inequalities in (35) gives

O — Outl13 + 57 1313. Using

[oss = 0uel < (1= 300+ 552N ) 1 = Bl -+ 2518 + 3521913
6)‘max — 1
We now use ng = ¢ NE and j3,, = (n 7oy Lo estimate
30n BBn 0 22 3Bn (1o 272
_ n A _ max > e A _ max n
2 ( min ﬁ mdx) min Afrlln (n + no) — 2 min Arenln ﬁ min*
Therefore, the recursion is
16nr1 = 0u 13 < (1= Buiuin) 1 — Oull3 + + 383119115
This recursion is similar to (33), in particular, by noting 3, < 57—, and bounding [|§|[3 similar to Lemma F.2:
1Py, BIVi—r]@e] = Vi I3 < ISIIAIIPay g, (BVi—r|@d] = Vie)IZ < ISIAINEVi-1]2:] = Vi1 ]%
_ = 56,15]||A ~
s = 0ol < (1= Budn) 10— 001+ 222N A i ) —vi 2.

We finally define ©,, as in the end of the proof of Lemma 3.7, in particular, ©,,(1 — B8, \min) = ©,—_1 gives ©,, =
@, lntnontno=l) ‘yhere @ = @1 = 1. We multiply both sides of the inequality with ©,, and sum to get the result. [

no(nnfl)

We now have to estimate the bias and variance of the estimation of Vk,l in Algorithm 6, very similar to (Lan, 2021).
Unlike (Lan, 2021) that derived O(1/N?) bound for the bias, we are going to derive a O(1/N?) bound which will be
sufficient. Let us also note that the previous two lemmas had additional bias not present in (Lan, 2021), however the next
result does not have this bias and therefore the arguments in (Lan, 2021) would be enough. We provide a brief proof to be
self-contained.

Let us recall that Vk71 = Vwk717yk71 and by Sampling Sn ~ p$k71,yk,1, an ~ ‘Tk;fl(-‘sn), bn ~ ykfl(-|8n)7 Sn+1 ~
P(lSn, Qn, bn), the oracle

Fw(wﬂd gn) = B(Sn) (wn(sn) - T(Sna Gn, bn) - ’ywn(sn+1)) )
satisfies E¢, F*(wy, £,) = F*(w,), where F* is defined as

Filq(w)(s) = p™emt¥ii(s) (W(S) = > @x-1(als)yk-1(bls)r(s, a,b)
a,b

— Z zr—1(als)yr—1(b|s)P(s|s, a, b)w(s’)), (36)

s’ a,b

where F}’_ | (Vi;—1) = 0 and also as before F}’_, is strongly monotone with A; . We will drop the subscript of F'* since k
is fixed in this loop.
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6 2

Lemma 3.9. Let Assumption 2.1, 3.3 hold and 8% = with ng = (/\))}% The variance and bias of Vk,l,

computed as in Algorithm 1 satisfies

S|A] 1
B 2 |
Elwy = Vealz <O <(1 — PN T NG —e )

min

2
A2, (n+ng)’

min(

[S11A
[Elwn 2] = Vi3 < O ((17)2]\72 '

Proof. For the variance, we have by taking expectation w.r.t. &,

Ee, [wn+1 = Vio1ll3 = llwn = Vie1l3 = 260 (Be, [F (wn, &) wn — Vir) + BiEe, [ F (wn, &) 13-

By E¢, Fv (W, &n) = F¥(wy), F¥(Vix—1) = 0, and strong monotonicity of F“, similar to our previous proofs for policy
evaluation,

Ellwn+1 = Vi-1l3 = (1= 260 Xiin) Ellwn — Vi1l + BRE[F (wn, £0) 13-
The end of the proof is the same as Lemma 3.7, except that we do not have here the additional bias term in Lemma 3.7.
Therefore, the result follows.

For the bias, we will argue as in Lemma 3.8. Taking expectation of the recursion w.r.t. £, gives
Ee, wnt1 = wy — Bn ™ (wp).
We now unroll the expectation until x; and use linearity of F**
Elwnt1]ze] = Elwn|zt] — 8o F* (Elwy|2:]).
Denoting &,, = E[wy|z:] gives the recursion @, 1 = @, — B, F*(@,), and therefore
[@nt1 = Vills = lon = Vie1ll3 = 28n(Fi1(@n), @n — Vi-1) + B2l F« (@n)]]3-

We will now use Lipschitzness and strong monotonicity of F* and that F(V};_1) = 0 and similar to Lemma 3.8, we obtain
the recursion

H‘DnJrl - kalug = (1 - 2Bn)‘min + 5727/\1211&)() ||(Dn - kalna
By the choice of ng and f3,,, similar to Lemma 3.8, it holds that 28, Amin — 822, > BrnAmin. By defining ©,, the same

n’ 'max
way as Lemma 3.8 and summing the inequality gives the result. O

Now we analyze the outer algorithm for solving the matrix game in stage 1. The algorithm is based on FORB from (Malitsky
& Tam, 2020). The choice of this algorithm is due to its simple update with one projection and one oracle computation. We
note that the existing analyses for stochastic versions of this algorithm are not suitable for us. In particular, in the stochastic
variant in (Malitsky & Tam, 2020), deterministic oracle is also computed at each iteration. On the other hand, the analysis
in (Bohm et al., 2020) uses unbiased oracles with bounded variance and a decreasing step size. In our case, we will have
biased samples and we will use inner loops to decrease bias and variance of this oracle. Therefore, we need to develop an
analysis with constant step size and that characterizes the bias and variance explicitly.

Similar to (Malitsky & Tam, 2020), let us define the “Lyapunov-like” function
. 1
t+1 = D(@(ls), 241 (18)) + n{Oser1(s,) = Oera(s, ) 2(ls) = 2e11 () + 5 D(@er1([5), 22 (:5))- 37)

We call this “Lyapunov-like” since it is not non-decreasing. Moreover, unlike (Malitsky & Tam, 2020), ®, is not necessarily
nonnegative. However, it is sufficient for our purposes as it is bounded. Note that we will also use the following error
functions

5) — E[0p1(-
) — E[Qfﬂ(-

N, z(-[s) — x¢(-]s))
)yl ye(-s) — y(-]s)).

V)

e1,e = {011 (| |
€2t = 77<93+1('\ |
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Lemma G.2. [See Lemma 3.5] Let Assumption 2.1, 3.3 hold. Denote x,,; = % 23:1 xy and Your = % ZZ;I Yy and let

_ 1=
n=—75

. X T
P35 — 3 1
EE~o |maxa},Q"y" — fstyout:| =0 (OnTT) +0 (T > E|E[f11 7] — 9*,t||>
’ t=1

T T
1 1
+ 0O (T E NE||6¢+1 — 9*,15”2 +EJ6; — 0*,1&1”2) + EEESNJ mZ?LX E [el,t + 62,t])~

t=1 t=1

Remark G.3. When D is KL divergence, by using that max,(.|syea D(x(:[s), zo(:|s)) < log|A| which holds when we
pick zq as the uniform distribution, we have the bound

2
n n
P5 — D5+ D5, — D5 < log |A| + log |B .
0 T 0,y T,y0(0g| ‘+Og| |+1_7+(1_7)2>

To see why this estimation is true, let us bound D(x*®, z§) as
D(x* x3) < D(2*,2°) — D(21,20) + 1(201 — 0o,z — 21)
n?
(1=7)*

where the first inequality is by the definition of x; (see for example (Tseng, 2008, Property 1)), the second is by using

< 2D(z%,2%) 4+ 1?(|201 — o2, < 2log|A| + (38)

n(201 — O, & — x1) = n(201 — 6o, x — m0) + (201 — Oo, x0 — 1) < n°)|201 — 6o |2, + D(2®, x5) + D(a3, xf),

which holds by Holder and Young’s inequalities as well as the definition of D. The upper bound of ||26 — 6|2, follows
by Lemma C.1 (since 0y is arbitrary, we pick 6y = 6; for convenience). The remaining terms in ®§ can be bounded
similarly, by using max,sca D(z°, z) < log|A|, Holder’s inequality, ||z° — z§||; < 2 and Lemma C.1. We finally note
that —®5, < |0, i41 — Orpillocl|z® — 2741 |11 < 20)|0x 441 — Oi41lc = O(n/(1 — 7)), again by Lemma C.1. The same
estimations can be used for f  — @7 to get the claimed bound.

Corollary G.4. We use Lemmas 3.7, 3.8 and G.6,

) ! VISTTAT  /1STHA], e
© (T(lv)) O ((1 —N T [E[Vi—1]a:] — V,HOO>

min

vofISha_ 1 S|l
PN T NOLPA=77 " ()

)

E 1 S[1A] [ |S]/A] 1
o ((1 2N T NOGL R =2 ()7 [(1 —ENE NI = )20 >D '

min

BV vk_lnio) .

We add the bound from Lemma 3.9

(1 VISTAL | /ISTA]
O(T(lw)*@((lww \?

min

VISIIA]|
(1-=7N

We now refine the bound by only including the dominant terms

) +© (igut-apw) + (WPl * g Pas.a= 7w

Remark G.5. By Lemma 3.7 and Lemma 3.8, the second and third term will bring O (% + E|E[Vie1 2] — Via H) as it

can be noticed in Corollgry G.4. We will see in the next lemma how to handle error terms e1, e; and will use the bound
derived earlier for E||E[Vi_1|z¢] — Vi—1]-
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Proof of Lemma G.2. By the update rule, it follows for all s and z(-|s) € A,

(VD (z41(:[5), 2e(|5)) + n(20041(s,-) — O4(s,-)), 2(:|s) — z41(:[s)) = 0.
By three point identity,
D(x(-]s), 2e11(|s)) < D(x(:|s), 2:(-]5)) = D(wega(-]s), e (-[s))
+10((20141(s,-) = Ou(s, ), 2(-[s) — @es1(t[s)).  (39)
We now manipulate the inner product by adding and subtracting 6, ¢11
n((20¢41(s,) — 01(s, 7)), 2(-8) — we41(:[8)) = M(Or+1 — Oup1(8, ), 2(|8) — T441(+]5))
+0(0i41(5,7) = 0u(s, ) + Ou g1 (s, ), 2(c[s) — 241 (-[s))

|
= 1{0r+1(8, ) — Ou1 (s, ), 2(:|8) — eg1(-]8)) + n(Oer1(s,-) — Oi(s, ), x(s,-) — w¢(-]))
+1(0+1(5,7) = 0u(8,°), e (+|8) — 2441 (+[8)) + N{Oxt41(8, ), 2(-[8) — Te11(:[5)).  (40)

The first two inner products in the final inequality will telescope if we can replace ;41 with 6, ; in the second one. For this
we have to be careful with bias and variance. Let us take the second inner product

n(Ors1(s,-) = Oi(s,-), x(-]s) — z¢(:|s)) = n(0sxi(5,) = Ou(s,-), 2(|s) — 4 (:]5))
+77<9t+1(87 ) - 6*,t(87 ),.’E(|8) - xt(|s)>

Now in this estimation, we will add and subtract terms involving E[f;1 (s, -)|x¢] to obtain

M{O41(s, ) = Ou(s, ), 2([s) — 2i(|s)) = n{Ox,1 (s, ) = Oi(s, ), 2(|s) — x4 (-]s))
+ (B2 (s, )|2e] = Our, 2(|s) — 24(-[5)) +0(Or1(s, ) = Elfrya (s, )ae 2(-[s) — 2 (]s))
< (0s,i(s,°) = Oc(s, ), 2(-[s) — 24 (-[s)) + 20l[E[0r41]2e] — Oullo + €10, (41)

where the inequality is due to Cauchy-Schwarz and we use the definition of e; ; for the last term. Next, we use Cauchy-
Schwarz and Young’s inequalities for the third inner product in RHS of (40) to derive

Mot (5,7) = 0 (19),2013) = 21 (1)) < 260 (s.7) = BuCIs)IZ + FllanCls) = zia (o)l
< 412 18051 5,) = a5, I+ 10005.) = Bua (5, Y + 100105, ) = Bul, I
+ {lleeCls) e (). @2)
As 0, 4(s,a) = Byy, (1) Q(s, a, b), we have

16x,6(5,°) = Oui—1(5, ) |00 < max[Q(s, a,0)[[ye(-]s) = ye—1(-Is)|lx

2
< 7 lwCls) =ma Lol 43)

where the second inequality is by Lemma C.1 and the first by Jensen. We join (41), (42), and (43) in (40)
M{(20141(s,+) — 0u(s,°)), 2(|s) — 241 (-[8)) < MOrs1(s,+) — Ouis1(s, ), 2(|s) — @eg1(-]5))

1(0,(5,) = Oi(s, ), 2(|s) — i (:|s)) + 20[[E[Ory1]we] — Ouillo + €1t

167>
+ 40 [[|041 — Ot |20 + 110,01 — O:lI2.] + WH%('M — vy (ls)?

+ %II%('\S) = ey ([8) |17+ 0{0ns1(5, ), 2(]s) — zera(]s)).  (44)

We note that by Equation (8), §|z¢(-|s) — z441(:|s)[I3 < 2D(2441(-|s), z¢(-|s)) and similarly for the term involving
difference of y; and y;_1.
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We insert (44) into (39) by using the definition of &,

N(Oxt41(8, ) o1 (-[s) — z(-[5)) + @iiq < PF + er s + 20[|E[Or11]we] — Ox tlloo
+ 477 [[16r41 — Ot ll20 + 10x—1 — 64112,]
32n? 1
+ ﬁD(ytHS)ayt*lHS)) - §D($t('|5)a$t71('\8))-

We sum this inequality and use the definition of 6, ;; to obtain

~
|

S
L

n o5 — D5 1
T (Epmy, (1) Q857 0), Teg1 (o[ s) — z(-]s)) < % 7 Z €1
t=0 t=0
= an? L
t3 ; 2|[El0e+1]ae] = Outlloo + =5 ; [10c11 = Oxtll2 + [16x,6-1 — 0[5 ]
T
1 32> 1
+ 2 (1 D) s () = 5Dl ) sl

We have to estimate the error terms in the last line. The terms in the second line will be the bias and variance arising from
using 0,1 instead of the true oracle. First, by the symmetric estimation on the y player, we can obtain the similar inequality.
For making the comparison, we will denote the corresponding oracle as Y (# in the previous estimations correspond to 67).
In particular 7 ; ; (5,0) = Equg,,,(|5)@(S, a, ), and the corresponding Lyapunov-like function as @7

T

|
—

Ui oy —Pyr 1 -«
7 2 (B (19Q5,0,),y (1) = g (fs) € =22 4 Y ey

t=0 t=0

1 =t an2 I
+ 7 D 2B o) = 0% lloe + 7 Y (160 — 02 ol + 167,y — 67 1%]
t=0 t=1
T
1 32n? 1
7 2 [ D) wea (1) = 3D pea ()

After summing up the two inequalities and recalling that we bound the RHS of (25), we pick n < I_TV to cancel the
last terms in the last lines of the estimations. Since we estimate 6; and 9%’ in the same way, their bounds as we derived
in Lemma 3.8, Lemma 3.7 will be the same, therefore in the bound we do not include both and simply put them under
big-Oh. Next, we take maximum over z, y, take expectation w.r.t. state distribution o and total expectation w.r.t. randomness
in the algorithm and use the definitions of x4y and ¥y, to conclude the result. O

For the error terms e1 ¢, e2 ¢, we will use the technique to change the order of maximum and expectation from the literature
of stochastic primal-dual methods (Nemirovski et al., 2009, Lemma 3.1, Lemma 6.1). Let us recall their definitions:

ere = N{0e+1(|s) — E[fer1(:|s)[me], (-]s) — 2e(-[s))
e2t = {0711 ([s) — E[07 1 ([9)yel we(-ls) — y(:ls))
We will derive the bound or e;; and the bound for €3 ; is symmetrical.

Lemma G.6. We have

1 d log|4] 1 d
ZEEco mfx;elyt <=tz ;4U2E\\9t+1 — 0,42

Proof. First note that (0;11(-|s) — E[f:41(-|s)|x¢], z¢(+]s)) does not depend on = and by the tower property of conditional
expectation,

T
> ERaon(Ors1(:-|s) = Elrs1 (1) 2], 24 (]8)) = ERgoon(B[0rs1(:|5)|e] — B[0rsa(-|s)]ae], z4(-|s)) = 0.

t=1
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Therefore, we have to estimate

T
EEsno mfxz N(Oc+1(:|s) = E[Or1(|5)]xe], 2(:]5)).

t=1

Let ni(s, ) = —n(0141(:|s) — E[0s41(-|s)|x+]). First, we note that E[n.(s, -)|z:] = 0. Next, we define the auxiliary “ghost”
process

Zr1(-]s) = argmin(ny(s, ), 2(-[s)) + D(x(-[s), Z¢(-[3))-

Note that z; and z; depend on the same randomness by definition of 4, therefore conditioned on z;, Z; is deterministic.
Standard mirror descent analysis gives for any x

(ne(s, ), 2([s)) < D(a([s), ¢ ([5)) = D(x(-|s), Zer1(]5)) + (ne(s, ), Te(-|s)) + e (:[5)]2-
We sum the inequality take maximum and then expectation

T

Mmaxz —ny(s,),2(-|9)) < Bono D(@(-]5), 81 (-|8)) + Y EEgno(—nuls, ), #1(-]s))

t=1

T
+ 3 EE.lne (1)1
t=1

By the tower property and that Z,; is deterministic conditioned on xz;, we have ZtT:l E(n:(s,),Z:(-|s)) =
St E(Elne(s, ) |e). 24(]s)) = 0.
Recall the definition of n; and use Young’s inequality with Jensen’s inequality to get
Elne(s, )|* = En*[|0+1(-[5) — Efer1 (-]5)|ze] 1%
< 2B (041 (-15) — Ot % + 207 (10,0 — E[Brr1 (-]5)]2] |12
<AED?|[0541(-]5) — Ot %

G.2. Proofs for stage 2 of Reflected NAC with a game etiquette

Similar to single loop NAC variant, this part mirror closely the analyses for single agent setting, as the best response step is
like a single agent problem where the other agent (fixed) can be seen as part of the environment. Therefore, the development
in this part will be similar to (Lan, 2021). Let us restate that the main concern in this part was to make sure that 3j; updates
do not require seeing the policy xj, or the actions of z-player. As we showed that it is the case (in Appendix F.2.1), we will
only provide the proofs here, with mostly using the arguments of (Lan, 2021). Therefore, the proofs in this part are included
for being self-contained and for easy navigation. Therefore, they will be brief.

First, we will prove the bias and variance of the estimate v/, similar to Lemma 3.9. Let us recall the Bellman operator for the
oracle v, ; = Eqry, (.s)@7* Y (-, a, -) that the update is using:
Vi t(8,b) ka als)r(s,a,b) + v Z P(s'|s,a,b)zk(als)g: (V' |s" vy (s, )
s’,a,b’
We use the sampling matrix (as (Lan, 2021, Sec. 5.2)) diag(p™*¥*) @ diag(y;) and define the operator
FY () (5,6) = ™ T (8]3) [ 145, ) Z wlals)r(s.a,) =7 Y wilals)P(s']s, 0. b)) (s, 0)], - @5)
s’ a,b’

such that FY (v, ;) = 0. Strong monotonicity of F; follows from Assumption 2.1, 3.3 and that the operator Tv(s,b) =
Yazk(als)r(s,a,b) + 3 . . p zr(als)P(s']s, a,b)g:(V']s")v(b, ") being «y contraction in £, norm (Bauschke et al.,
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2011, Example 22.6 and 20.7). We define the stochastic operator after sampling s; ~ p™*¥t, a; ~ x(-|s¢), by ~ G (-|s¢),
Si41 ~ P(-|s¢,a,b¢), ber ~ Ge(-Se41)

Fty(l/t,ft) = 6(3t, bt) (Vt(St, bt) - T(St’ Qt, bt) - ’YVt(St+1, bt+1)) )
and as we assume we can sample s; ~ p™¥t, Eg, [Ft”(ut, &)] = FY(v¢). In particular, as long as sy, a, by, s¢11 are
estimated in the prescribed way, there is no need for 7; update to see the actions or policy of x, for F} (14, &) to be unbiased
estimate of F}' (vy).

We note that unlike the NAC case, we are having an inner loop to estimate v, ;. At the point of view of this loop (runs from
n=20,---,N —1), v, is fixed.

Lemma G.7. Let Assumption 2.1, 3.3 hold and 3,, = m stage 2 in Algorithm 6 satisfies
S||B| 1
E - Yx 3 <0 | )
I =il < 0 (2050 + =

2 B
MWWMWM@SO('“")

(1 —)°N\?
Proof. For the variance, we have by taking expectation w.r.t. &, = (S, an, bn, Snt1, bnt1)

B, [[vns1 = Vel = 1vn = i3 — 280 (Be, [F} (vn, )], vn — vat) + BBe, I1EY (v, &) 3.

By E¢, FY (v, &n) = FY (vy), FY (Vi) = 0, and strong monotonicity of Fy,

Ellvnt1 = vield = (1 = 280 200) Ellvn — vicell3 + BREIEY (v, €0) 13-

The end of the proof is the same as Lemma 3.7, except that we do not have here the additional bias term in Lemma 3.7.
Therefore, the result follows.

For the bias, we will argue as in Lemma 3.8. Taking expectation of the recursion w.r.t. &, gives
Be,vni1 = v — BuFY (vn)-
‘We now unroll the expectation until y; and use linearity of F}
E[VnJrl‘gt] = E[Vn@t] - /BnFty(E[angt])'
Denoting 7,, = E[v,,|7:] gives
(41 = vatlls = 170 = vicills = 280 (FY (Fn), n = vie) + Bl FY (70) 13-

We will now use Lipschitzness and strong monotonicity of £} and that F} (v, ;) = 0 and similar to Lemma 3.8, we obtain
the recursion

||D’ﬂ+1 — Vst I% = (1 - 2671)‘11;1111 + BTZL)‘?nax) ||ﬂ7l - V*7t||§-

By the choice of ng and /3,,, similar to Lemma 3.8, it holds that 28, \”. — 32 A2 > BnAL i, By defining ©,, the same

min n‘max =

way as Lemma 3.8 and summing the inequality gives the result. O

We will now give a proof similar to (Lan, 2021, Theorem 2), (Agarwal et al., 2020) regarding the NPG algorithm for finding
the best response.

Theorem G.8. Let Assumption 2.1, 3.3 hold and n > 0. For the stage 2 of Algorithm 6.

%%M%H$MHW—V%“®+V“M“®}

s~dgg

T
1 * _ n
_ V Tk Yk (SO — YTkt 50 S E[E
T thl ) (s0) < T=7

T
n 1
+t 53 ;]EHV*,t — vl + T

: 2 L S BBy ] — ]
201 —~)2T — 2 t+11Yt *,t || oo

jfz
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Corollary G.9. We further upper bound Theorem G.8. Let n = (1 — ~) We use the bound from Lemma G.7, standard
bounds on the value functions such as Lemma C.I and setting vy to be the uniform distribution and using (38) to get

(1 |S|1B| 1 VISIIBL
o (ztay) o (oo * su—mor) +© <<1 WN) | (46)

Proof of Theorem G.8. By the update rule of 4,1, it follows for any s, ¥ (Tseng, 2008, Property 1)
D(y(-ls), gr1(:ls)) < D(@(-[s), 5:(-[5)) = D(Geg1(]s), 5e(-[5)) = (mega(s, ), 5(ls) — Gega(s))- (47)

We manipulate the inner product

—nves1(s, ), 9CIs) = Ger1(-[5)) = =g (s, )

GCls) = 0eCls)) = (v (s, ), Ge(-[s) = Gera (-]s))
= =nWai(s,-),4([s) = 7 (s |

)) — Ve (8, ), Ge(-[s) — Yeg1(:]s))
= n{v1(8, ) — v (s,), y(s) — Ge(-[s)).  (48)

By the performance difference lemma and using the definition of v, ; = Eq.z, @“%Y (-, a, ).

. ; 1
Vbt (g0) — VYt (5) = 1—~ fYESNd:(};)gt+l (Eamay (s ka,yt (5,a,-), Ger1(-|s) — e (|5))
1
1 VESNd'ﬁ(’;’”“ Vit (55), Ges1 (c[s) — Ge(]9))
. i
= T Baazy e | W2 (5:), Bewa () = 1))
+ (Vat(8,7) = veg1(s,0), ey (-] s) — 7e(+]s))
1 r ) . " ,
2 7B gzwren | Pe1(8,), Gera (Cls) = Ge(ls)) = Sllvee(s, ) = veaa(s, )l
Y £0 L 2
g1 (ls) — mCI)I (49)
2nyt+1 S) = YeCIS)HL s

where the last step uses Cauchy-Schwarz and Young’s inequalities.
Plugging in 4§ = ¥; in (47) and using Equation (8) gives
—n0(es1(8,), Gt (-8) = Ger1(-8) = D(Ge(:[9), Ger1(:[8)) + D(Ge1(]8), Ge (-] 5))
> [[ge+1(-1s) = Ge(-I9)II3,
which implies that (ve11(s, ), Fer1(-]s) = Ge(-[5)) — g5 |Fes1(-|s) — e (-]s) = 0.

Recall that dZ+ ¥ (s) = (1 — 5) 3,20 v Proe ¥+t (s, = s|so), therefore 1 — v < dZ+ ¥ (s9) < 1. Using the two
previous inequalities in (49) gives (in particular, using the upper bound on dfg"g”l (so) when it is multiplied by positive
terms and the lower bound otherwise.)

= = T,y T,y 1 = = n
(Veg1(8,2), Jea1 (|8) = Ge(]s)) S VoRI1(s) =V ’“yt(s)‘*'%||yt+1('\8)—yt('|s)”?+m””m‘”tﬂ”io- (50)

We use the final inequality, (48), and (8) in (47) to get

N(vae(s, ), 5C1s) = (1) + D(H(s), yera (ls)) — nV==¥ =1 (s) < D(G(]s), ye(:s))

! )HV*,t_Vt+1||go+n<y*,t(sv')_Vt+1(87')7g('|3)_gt('|3)>' (S1)

_ Vﬂﬂk@t __
n (s)+ 30—

In view of the definition v, ; = Equy,(s)@* ¥ (-, a,), performance difference lemma gives (1 — ~)(V =¥k (sq) —
Veel(sg)) =E e (Vet(5,°), v (-|s) — ye(+|s)). Plugging in § = y; in (51) and taking E i of both sides give
s~dgsg s~vdgg
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N1 = )V (50) = VT (50)) + B [DWi (1), G (15)) = Vo001 ()|
S0
7]2

< ESNd:(’)“’yZ [D(y;;(|3), i (-]s)) — nvzk,.@t (s) + m||u*7t — Vt+1||§o
+n(vae(s, ) = viga(s, ) Gi(ls) = Be(ls) |- (52)

Now we take expectation w.r.t. the randomness in the algorithm, use tower property, the fact that conditioned on ¥,
Tk Yk
S

yi(-|s) — gu(-|s) is deterministic, Cauchy-Schwarz inequality, §(-|s) € A for any 7, s. After those steps, we note that ds,
does not depend on ¢ and sum the inequality over ¢ to get the result. [
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Algorithm 8 Single loop NAC with a game etiquette and (-greedy exploration

Require: Vj such that ||V — V@002 < ¢
fork=1,2,... do
Stage 1: Set 2:9(-|s), yo(-|s) as the uniform distribution
fort=0,1,...,7 — 1do
Sample (s¢, a, by, s¢+1), with policy pair Z;, §; observe s, by, 7(s¢, at, by), St+1
O, =07 — Bre(st, at)(gf(st, ag) — (8¢, ae,by) — ’Yvk—l(sﬂ-l)))
égﬂ = éf — Bre(se, bt)(éf(st, by) — (8¢, ar,by) — ’Y‘A/kfl(stJrl)))
(w1 (1), gos1 (1)) = P@eCls), 0851 (5, ), Plail1s), —nbly(5,)]
end for
Output z, = % Zthl Ty
Stage 2: Set go(+|s) as the uniform distribution
fort=0,1,...,T —1do
Sample (s, at, by, S¢41, bi1) with policy pair &y, ¢, observe s¢, by, 7(s¢, at, by), S¢41, bes1
Vi1 = Uy — By e(se, be) (De(se, b)) — (s, ar, by) — y0(St+1, be41))
Wiy1 =@y — Be(sy) (@e(se) — (e, ar, b) — Y@i(s141))
Yer1(tls) = P(@e(:]s), —=nies1(s, )
end for )
Output y = §;, Vi = &5 1, where £ € [T7] is selected uniformly at random and V}, = V' =k,
end for

H. Greedy exploration to remove Assumption 3.3
H.1. Single loop NAC with a game etiquette and (-greedy exploration

Remark H.1. In this section, we see how to avoid Assumption 3.3 as mentioned in the main text. Essentially the idea is
similar to (Khodadadian et al., 2021b) and (Lan, 2021, Remark 1) in the single agent case. We are going to use ¢ greedy to
avoid Assumption 3.3. This possibility mentioned in (Lan, 2021, Remark 1) but not proven.

Let us define the modified policies with greedy exploration

Ti(als) = (1= Q)ai(als) + e(bls) = (1 = Q)ye(bls) +

< <
A’ Bl
Now we are going to sample with the &4, y; and the algorithm will read as Algorithm 8.

H.1.1. STAGE 1 OF SINGLE LOOP NAC WITH A GAME ETIQUETTE AND (-GREEDY EXPLORATION (SEE ALGORITHM &)

Let us recall the notation and introduce more notations. At iteration k, we solve

Q°(a,b) = Q(s,a,b) = r(s,a,b) + WZ P(s'|s,a,b)VFr—1¥k=1(g").

The problem is to find z,y¢, You: Such that
E max 25, Q" — 2°Q"Your-

Now we define

Q*(a,0) = Q(s,a,b) = r(s,a,b) +7 Y P(s'|s,a,b)V 191 (o),

as we sample with greedy policies, at the stage 2 we will learn V#+~1:9k-1_ So we will have the oracle Vie—1 such that

[Vimy — VEr=1:05-1|| is small.
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In this step, with the abovementioned oracle, we expect to learn
éf,t (Sv a) = EbN@f Qs(av b)v éij,t(s» b) = ]EaNif QS (aa b)'

Let us continue with x-player and drop the superscript,

é*,t(saa‘) Eb~yt Q ( )
= Zyt $)Q*(a,b)
= Zyt (b|s)r(s,a,b) —|—WZgjt(b|s)P(s’\s,a,b)Vi’“l’y"“*l(s’).
b

b,s’

Therefore the operator is

Fb1)(s.0) = o4 (5)au(al9) (Bes.0) = X in0ls)r(s.0.0) - — Sl P a V(). 6
b

As Z4(¢]s) > ﬁ and g (+|s) > | by definition, we have that F} is strongly monotone with pl 7 Where p is the lower
bound given in Assumption 2.1, which holds when the induced Markov chain is aperiodic and irreducible. Let us call this
)\Ienln PTAT-

PTA]

We state the main result which follows by the results we will prove afterwards.

Theorem H.2. Let Assumption 2.1 hold. By combining Lemma H.11, Lemma H.4 and their corresponding corollaries, we
can show O(e~7) sample complexity for Algorithm 8.

Proof. Insert Corollary H.6 and Lemma H.11 into (15) to get the result. O

Remark H.3. In single agent setting, (Khodadadian et al., 2021b) obtains @(6*6) with greedy exploration, to avoid As-
sumption 3.3. Our estimate is an e factor away from this rate.

Below, we analyze the actor in the stage 1 of Algorithm 8.

Lemma H.4. Let Assumption 2.1 hold and ny = n = W (= ﬁ Then, for the stage 1 of Algorithm 8
T-1 T-1
1 log |A| 8¢ 327¢ D=0 i
E = Epys 5 b),xy — 2— E||6; 00 =0 .
HE}X T tz:%< b y,,Q(Sv ) )7xt Z > + Z || t+1 * tH (1 _ 7) + (1 _ ,Y)g + 2T(1 _ 7)2

Corollary H.5. By using n:, ¢, we get the bound
of JAIVIBL 1 1
(1— 7)2T/7 T e T Z 10141 — Ostlloo | -
t=1

Corollary H.6. We can plug in the bound of E||011 — é*,t ||? (see Corollary H.8 ) and use the same bound for the other
player to get

E max xothSys - ISstout S @ (
x%,y°

Alv|B S||A S||A 1
AlvIBl |, VISTAT, S|4 >+

(1 —)2T/7 T1.5/7 T2/7(1—~)2 " TUT(1—~)

OW|S[AITY E||Viey — VE=10e=1|| . (54)

Plugging in the bound for the final term from Lemma H.10

Alv|B S||A S||A 1
AVIBL L VISTAT | _ISlAl_ >+

2TYT T TIS/T T T/ — )2 T TYT(1 = )

E max xothsys - stsyout S @ (
x9S (1
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0<<1 1S]V/T4A] ) 55)

— )BT/
which gives the O(e~") complexity for stage 1.

Proof of Lemma H.4. Let us denote x; = x(+|s) and similarly for variables y, &y, g, 0. Let us recall (25) with our new
notations

1 & e
Lo Q7Y — 2° Q%Yo = Z arva; @ Z (Epny; Q(s, -, ), 2°%)
t:l t:l
1 T
T Z aNm, S a, ) Z/ — Y > <Eb~yt Q(sa " b)vxs - 1’?>:| . (56)
t=1

‘We have to convert this to the game when the matrix is Q
T
T QY — T QYo = Z [(Bama; Q% (0,0, " = 1) = (B Q°(, 1), 2° — )]

T
+5 Z anat[Q%(a,) = Q%(a, )] y* = ) — (Bony [Q°(, )~ Q% (a, )], 2° — ).

For the error terms note

(Bamas [Q°(a,) — Q°(a, )],y — ) < 2lEana:[Q%(a,7) — Q%(a, )]l
<2|Q° - Q°lls
<2’ymaX\ZP "5, a,b)(VTr-1¥k-1(g") — VEk—10k— 1(s")]

g 2,Y||Vwk—1;yk—1 _ Vwk—l:yk—l Hoo

< 10
(1=2)
where the last step is due to the Lipschitzness of the value function due to performance difference lemma and that the

policies Zx_1, Jx—1 and x;_1, yx—1 differ at most by (. We also use here that we can use Lemma C.3 symmetrically for
both variables.

(57)

With the similar estimation for the other error term, we have

s s,.8 $)S,,S 1 s s s s s 32<
5, Q%Y — Q%Y = Z[ ama; @°(a; ), ¥° — 7)) — (Bony; @°(,0), @ —m} + a

—_—. 58
2 — 2 (58)

Let us denote .
05+ = Epy: Q°(+, b). (59

Note that this notation is not consistent with previous sections. Here by 0, ; we mean the quantity we need to upper
bound (58).

By the update rule of x;, for any z°
D(a% 23 ) < D(2°,27) — D(xi4q,27) + nt<éf+1a % —xiyq). (60)
Let us estimate the inner product

77t<éis+1a z® — $§+1> = 77t<éis+1a r® — i) + nt<éf+17xf - $f+1>
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= 77t<9* o0 —x)) + 77t<9ts+1 - oi,ta r® — ) + 77t<‘9t8+1793f - xf+1>

As we will be actually learning 6 ,, we will further manipulate the inner product

*,t
(051, 2° = @f1) = 00502 — @7) + 000 — 050" — a}) + (05, — 02 0° — )
+ 0011, TF — 254q). (61)
Let us estimate the third inner product on RHS
0030 — 02 0® — ) < 200103, — 63,
=2 maX\Z ye(bls) — G:(b]5))Q* (a,b)]

4
< Z\yt (Bls) — 1 (b]s)]
4
= - ”t72\<(1/|B| —y:(bls)) |
b
< 87)tC, (62)
1=~

where the last step used >y i | 157 — %:(015)| < Xpep 17 + Lven vi(bls) =2

We use this estimation and Cauchy-Schwarz and Young’s inequalities on the second and last term of RHS of Equation (61)
to derive

8n:C
1—

2
~ ~ ~ N A 1
00071, 2% = afy1) S mul0F 4, 2% — 2F) + 201071 — 07 4lloo + + oy 10 ll% + S lla7 — @il

We use this estimate in (60) with (8) to get

s s s .8 s .8 ns ns 877tC 772
m{07 1 xf — 2°) + D(2®, 2714) < D(@®, @f) + 2mel|07,1 — 65 4lloo + 1—~ + 21 _t,y)g'

We divide both sides by 7, to get

1 1 ; A 8¢ Nt
07 xf —x®y+ —D(x%,xi, ) < —D(x®,x7) + 2||0,.; — 07 ,]|cc + + .
0007 = %) & Dl i) € D) + 200 = Bl + T + 5

We sum this inequality, use n, = n = ﬁ, (59), and setting x§ as the uniform distribution

T

I
-

log \AI 8¢ Yo T

2— 6; s .
+ Z || t+1 * t” (1 _ '7) + 2T(1 _ 7)2

<]Eb~yf QS(’v b)a .I‘f - x8> s

H‘H
~
Il
[e=]

We next analyze the critic in stage 1 of Algorithm 8.

Lemma H.7. Let Assumption 2.1 hold and n, = 1) = griyorr: ¢ = e Bi = W Then, for the critic of stage 1
of Algorithm 8
LS gl bz <0 (BIAY o (ISEAP Y !
O AN T =)t T4 (N (1 = 7)?
8|5\|A| B |2
+ V _ Y Ek-1:0k-1 . (63)
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Corollary H.8. Choosing ¢ = T1/7 and recalling that bV

min

T
1 542 14| [SI?AP? 1
T;E||et—e*,t1|2<0(T3/7 +0 T +0 T )

+ 8IS|[A[T?7||Vipy — V11|12 (64)

Proof of Lemma H.7. As we are sampling with &, §; and learning é*,t(s, a) = Epgs Qs(a, b), we have that (see (53))

Ft(é*,t) =

We also denote )
F(atvgt) = G(Sm at)(et(staat) - T(St»at»bt) - ’ykal)a
where s¢, at, by, s¢41 are sampled according to Z¢, g.

Let us derive . . . . A L
16211 — Buell3 = 1: — Outll3 — 28:(F 0y, &), 6r — Os) + BEIE (B, &) 13-

Now, by i.i.d. sampling s; ~ p“ 9t we have IE&Ft(Gt,ft) Ft(ét) + VPQ;,t,@t(Vk_l — V#k-10k-1) ag in (19). We have
by strong monotonicity and Ft(H ) =0,

28,Ee, (F(0,, ), 00 — 0,1) = 28, (E(0), 0, — 0,.0) +1(Ps, 5, (Ver — VE—1I-1) 6, ), )
= 26,(F(0) — Fu(Bu0). 01— bu0) +1(Pay g, (Vimy — VI 101) 6, 0, 1)
> 28\l — 0,113 + ’Y<Pit7gt(‘>]€*1 — VI 0, 4).
The recursion becomes
Ee.100s1 — Ontlld < (1= 2870 16, — 0.3
— 27B4( xf,yt(vk | = VELE1) 9,0+ B, | F (0, &) |3

By Cauchy-Schwarz and Young’s inequalities for the inner product

—~2yB(Pa, 5, (Veor — VE201), By — 0, 1) < 296 Pr, 5, (Ve — VE1950) [5]10y — 6, o]l

O
The recursion then becomes
Be,100s1 = 0ntl3 < (1 - 38:7050/2) 10 — .13 + Mﬁmnﬁk_l — VI 2 4 B2 || F (0, ) 3
By Young’s inequality,
A e A L B T
+ wm_l e N AT

Now we have to bound ||6, ; — 0, ,_1]2:

10, = Osi-1ll2 < V/ISTIANOxr — Out—1 1o
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|S1|A] max [Epgs @ (a,b) — Epge Q% (a,b)]

,VISTA]
Y

ST

N

max |97 — 35

IA

|S]|A]
Qﬁ InSaX lyt — vi—1ll1s

where we used §; = (1 — {)y; + ¢/|B|. To show that max; ||y; — y;_1]||1 is small, we use Lemma C.5 and Lemma C.1 and
have the final bound for this quantity

i i 12 < 4 JSPIAPR 5
056 — Ox i1z < 4Wnt'
By also bounding || F(d;, &)||3 by Lemma C.1 and taking total expectation, the main recursion becomes
j 24|S|*|APPni 267
E||6 1— BN\ E|6 13+
041 — Outll3 < ( ¢ JE[|6x,t — b e—1ll3 BN (1—y)t | (1—7)?
A o
86t|SH |EHV_ Vﬂik—l,yk—ngo.
This inequality gives
1~ 1 X
= ZEI\9t bl < 7> 5 (100 = Orimal3 = 18001 — 0..013)
B
t=1 min
T
24|S12|A|? 8]S||A s g
t=1 (Afmn)Q( T Arenm(l - 2 (Afmn)
Recall that 1, = 1 = W and 3; = W For the summations, we have 31 n2/82 = O(T3/7(\2,,.)2)),
Zthl B = O(T3/ /N0, ). By using ;11 < B, and denoting for simplicity a; = [|6; — 6, _1]|3 50 0 < a; < (|1”9Hj3‘
simple estimation gives
T 1 R R T 1
; E (Het - &,t—l”% — 1041 — &,t”%) = ; E (ar — ary1)
—i la——la +(1 1>a ]
— | Be " B Byr  B)
T
1 1 ISIIA] | 1 1 )
< —ap — ar41 + ——= - =
; Bt B T (A= |Bi B
T
1 1 |S]|A] ( 1 1>
= —ai; — a + - =
Bitbr T (1—9)2 Z By B
1 A A[TYTXO
< Ly ISIAL o (1SUATYA,
o} (1 =7)2Br41 (1—=9)?

Plugging these estimations into (65)

T
Lo o o (1S]14] [S2[AJ? 1
T;E||et—e*,”|2<o(w +0 () +0 g =y

815|114
(Ain)?

min

+ [Viy — Va1 2 (66)

O
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H.1.2. STAGE 2 OF SINGLE LOOP NAC WITH A GAME ETIQUETTE AND (-GREEDY EXPLORATION (SEE ALGORITHM &)

We are now going to estimate ||Vj_; — V#-1:91||2 _ First, we need the following lemma for numerical sequences
from (Mokhtari et al., 2020).

Lemma H.9. (Lemma 19 in (Mokhtari et al., 2020)) Let b > 0, ¢ > 1. Let ¢; be a sequence of real numbers satisfying

c b
P < <1(t+to)“> ¢t—1+m’

for some o € [0,1] and tg > 0. Then ¢ converges to zero with the rate

max(do(to +1)*,b/(c — 1))
(t+to+ 1) '

(67)

P <

For the stage 2, let 7, = W and 3, = W and let us analyze the critic for Vj,_1.

Lemma H.10. Let Assumption 2.1 hold. Let n, = n = W and By = W and recall w;,, = Vi and

Wyt = V&9t and that we take as output yi, = y; in Algorithm 8

T

; Zho bk 1 - . S|

EVi =V = 7 ) Bl — | <O (W) o
t=1 =

Proof. Let us develop similar recursion to previous lemma
@41 = Geell3 = 00 — @ tll3 — 28 (F (@1, &), @ — @) + BEIFF (G, €013

By taking expectation, using that s; ~ p™*¥¢, we have E¢, F (&, &) = F*(&;) and Fy(w;) is strongly monotone with p

as it only requires Assumption 2.1. We also have F’{" (Ws,¢) = 0. The main recursion becomes

3+ »3t2E§t ||Ff(@t»§t)||§

Ee, |0r11 — @xellz < (1= 28ip) |00 — @t
By Young’s inequality for o > 0
(1 =2Bip)[|@r — @xell3 < (1= 28ep) (1 + @)l — Duenll3 + (1 = 28ep) (1 + 1/@)[[@x,0-1 — @3-

Btp

Let us set o such that (1—28;p)(1+a) = (1— B¢p), which gives the choice o = ;—5—, with the requirement 1—2;p > 0.
Recall that since 5; = W, we have 2(3;p < 1 and ¢t > 0. Note also that (1 — QﬂZB)(l +1/a) < ﬁ with our choice

of a.

The recursion now becomes

. . . R 2 . . S a
Ell@ir1 — @l < (1= Bip) Elldy — @ei—1ll3 + ﬁTpEHwntfl — Qutll3 + BPEIE (&, &) 13

Let us estimate the second term on RHS

5,61 = @ tll2? < [S|@np-1 = Drlloo
— |S|Hvik7?jt _ Vikvzjt—lHOOQ
48] .
< WH{?X 155 — 554113,
where the last inequality is by Lemma C.3. To further upper bound this quantity, use the update rule of 3j;, Lemma C.5

and Lemma C.1 to get for all s |77 — 7i_, 1 < 7. We also use that yi(b) = (1= Q)i (b) +¢/|B|

2 |S|77t
< v
<0

||w*,t—1 - wnt
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Therefore, in the main inequality we have (after also bounding the last term by Lemma C.1)

4)S|n? 237

E — Qs 1-— E e t—1]13 : 69
901 = Gl < (1= Brp) Blld = el + Brp(l—7)% (1 —1)? )
Note that by the definitions of 3y, 7;, we have
3 i 2p 2 9
@822 g7 g = s Pi= 8/7°
(t+7)Y7 B~ 3(t+T7)8/ 4p%(t 4 7)%/
Therefore, we have
3 8|S 18
E||& — 0|} < (1= ———= | E||r — @y t—1] .
||wt+1 w ,tH2 = ( 2(t+7)4/7) ||wt Wit 1”2 + 3(1 7) (t+7)8/7 + (1 —’}/)2(t+7)8/7
Now, we use Lemma H.9 with
¢t = El@rr1 — Ouill3
85| 18
b= >0
- (3(1 =) (- w?) -
3
==->1
5 >
to="17
a=4/7,
gives
S|
Bl — a2 <O |
||wt+1 w ,t||2 — <(1 _ 7)6B2(t+ 7)4/7)
Sum the inequality to get
T T
1 . - 5]
?;Enwt-;-l*w*,tnzﬁle ( 2(t—|—7)4/7
1 T3/7
< Lo(JSE )
T
ISI
2T4/7
O

The accuracy for the estimate of the state action value function in stage 2 will follow a similar proof to single agent settings.
In particular, we would like to bound

VTR YR _ yekbe,
by sampling & (a) = (1 — ¢)}.(a) + ¢/|A] and g7 (b) = (1 — ()y; (b) + ¢/|BI.
Let us define the oracles and the operators

Dut(5,b) = Eqnay Q7% (5, a,b).

Ft(ﬁta ft)(sv b) = pik’y:t (S):ljt(b|5)6(87 b) (ﬁt(sa b) - ’I"(S, a, b) - ryﬁt(sla b/)) ’
where s ~ p™ ¥t a ~ @5, b~ 5, 8 ~ P(|s,a,b), ¥ ~ 35, and
Ey(04)(s,b) = p™ 9 (s) iy (b]s) (I/t 5,b) — Zxk als)r(s,a,b) — Z (8|8, a,b)2x(als)iy: (b']s") D (s’,b’)),
s’,a,b’

and therefore F(, ;) = 0 and F} is strongly monotone with p¢/|B| = A

min*
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Lemma H.11. Let Assumption 2.1 hold. Let us setn, = n = W, and ¢ = ﬁ Then for the actor of the stage 2
in Algorithm 8,

= , -
— Thos Yy Tk A L 11 R .
ET;V *(s0) =V (50) SO<(1_7)T1/7> +O<1—7T;EHW+1 y*7t||oo>

O ((f% ) O (T/(llv)>

Corollary H.12. By using Lemma H.13, we get the overall rate O(1/T"/7).

Proof. By the update rule of the algorithm,
D(ysv gts+1) S D(ys’ gts) - D(gts—i-lv gts) - nt<ﬁts+1’ ys - yf+1>
=D(y*,y;) — D(iljts+17§f) - 77t<ﬁf,tvys - gf+1> - 77t<ﬁ£9+1 - ﬁf,tvys - ngs+1>- (70)

We now estimate the inner products by Cauchy-Schwarz, Young’s inequalities and Lemma C.1

7]t< *tvy _gzts+1> 77t< *t? S - > nt< *tayt gf+1>

_ n7 - 1, o
< = (05 15" = G5) + o 102415 +§Hyf—yt+1||f
g 77t2 2 1 2
= (D *t7ys = Yg) — NV *tvyt yi) + ?”V*,t”oo + 5”?35 _§t+1||1
2
a Ul ; 1, s
< =0l y° _yf>+1_ g — gl + (1_7)24'5”%5_%4—1”%

Since g (b) = (1 — Q) gi (b) + ¢/|B], ||y; — w1 < O(|B|¢). We join these estimates in the main inequality in (70) to get

07

; Nt
ety Y — D D 2 75 4l oo B —_—.
0t (Vats ¥ — 95) + D(y°, Yir1) < D", 97) + 20l 0f 1y — 074l 1_ ’70(‘ 1O) + 2(1 — )2

We recall the definition of 7 ;(s,b) = Eqas QU (s, a,b). By the performance difference lemma

- A 1 . o
V kY (50) — VTR (50) = mESNdfé‘”y’: <Vf7t, y’:,s B yf5>’
where g}, is the best response to xj,. Note that by Lemma C.3, VERYi (s0) — VE3RVk (50) < (?‘_B,Yl)gz .
Therefore, we have after using initialization of g as the uniform distribution that
1 1 1=
Sy Z VTt (s0) = VI (50) £ O ((1 — ’Y)T77> o (1 —yT 2 Ellots, - ﬁi’t“oo>
t=0

*O(JB%)+O(wa—wJ
|[AlV|B])

Finally due to Lemma C.3, V&9t (s0) — VZRTt (50) < O (W)’ therefore the final inequality is

T
1 T, Yy Tk,Yt 2 1 S
Eft:ZIV RUR(50) — VU (50) < O <(1 —7)T1/7) + O < IE||1/H_1 — V*7t|oo>

*O(JB%J+O(wa—wJ

O
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We finally analyze the critic for stage 2,

Lemma H.13. Let Assumption 2.1 hold. For the critic in stage 2 in Algorithm 8, let B; = W and recall
mln - p</|B|
|S]1B| 1
Z]EHthV*t 13<0 (T3/7)+0((1—V)3T4/7 +0 A=~ 2127 (71
Proof. By the same steps in Lemma H.10, we can get a similar inequality to (69)
X X A o A|B||S|n 2037
E —*2<(1— )\”.>E b2+ — i i 72
12041 = Duall3 < BiAsin ) Elloe — 2v a3 + By (-~ | (1—7)? (72)
Equivalently,
Ly~ 4[B|Sn? 28,
— E|o, — o < ) + = + = . (73)
Z || ' o 1”2 (T3/7> Z Bt( rnln) (1 _7)3 A?mn( _’7)2

We can estimate other terms

T
! oo 2| 15]|B] 1
T;Enl/t *V*,t—1||2 < @ (T3/7) + O ((1_7)37"4/7 + 0 W (74)
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H.2. Reflected NAC with a game etiquette and (-greedy exploration

In this section, we give a version of reflected NAC without Assumption 3.3, in a similar way described in (Lan, 2021,
Remark 1). This algorithm will be Algorithm 1 with nonzero (. Since this result is not derived in (Lan, 2021) for single
agent MDP, we first derive it with single agent MDP.

H.2.1. SINGLE AGENT RESULT WITH (-GREEDY EXPLORATION

The algorithm will be Algorithm 9.

Algorithm 9 Single player case

Require: V) such that |V — V0% |2 < ¢
fort=0,1,...,7 —1do
Set g4(bls) = (1 — Q)ye(b]s) + (/| B]
D411 = Policy-Eval(g, N)
Yer1(:s) = P(ye(-ls), =41 (s, )
end for

Theorem H.14. Let Assumption 2.1 hold. For n > 0, the iterates of Algorithm 9 satisfies

1 1

T Sty [P0 00

el

T
> [V*(s0) = E[V¥(s0)]] <

T
1 n 1

——EE__,+ [V¥T+1(s) — V¥ =N ElDe: — D12
+ T(l _'7) SngO [ (S) (5)] + (1 — ’)’)2 T tz:; HV*,t Vt-‘rl”oo

T

2 1 . X 16n¢2 8
+ SOEIED 1] — peslloe + o+ (75
t=1

1-9T & (1-7° " (1-9)

Proof. Recall the definitions

Vi = QY Dy = QY.

Recall that the update rule of v, implies D(y°,y;7,1) < D(y*,y7) — D(yi11,9:) — (P71, y° — yiy1) and by plugging
iny =y, we get

Dy, yiv1) + D(Wiv1,vi) < =m0 1Y — Yiv1)-

By (8),
. 1 . 1
0< — (D1, U8 — Yiv1) — EHytS-H - yf”% < =05 Y — Vi) — %Hyts-u - ytSH% (76)
By performance difference lemma and Young’s inequality
1
V¥ti(sg) — V¥ (s0) = EESNdfg’“ QY% yiv1 — i)
1
= ﬁEswd}géH (V2o Yipr — Y1)
1 N N
= mEswdi‘éH {(Vf+1»yf+1 - yf> + <Vf,t - Vts+1ayt8+1 - y1‘5>:|
1 . i . 1
> 1o [P i i) = g0 = 9l = 5ot — i)

Yt+1
s

Therefore, we get by using (76) and 1 — v < d3{** (s) < 1 for any s

n

~5 s s 1 1 s s
(i1, ¥i — i) S VYL (s) = VY (s) + %Hytﬂ -yl + 201 —

o Vit = Dega |12 a7
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We use again the definition of y;;

D(y*,yi11) < D% vi) — D(yisa,ve) — 001, ¥° — Yiga)
=D, y;) — D(Wir1,¥7) — 001, ¥° — y8) — 001, Ui — Vi) (78)
Let us use (77) and

S

=0y =) = i syt = uE) — (P — vl sy — g

on (78) to get (along with (8))

(i ny® —yi) + D yi) < Dy yp) +n (VY (s) — VVi(s))
2

Ui

+ m”’&,t — i lZe = (00 — vy’

- ;) (719)
Since by performance difference lemma, V*(s9) — V¥ (sq) = ﬁ]ESNdy* (Vi 141, — y7), we plug in y = y* and take
S0 ’

expectation in (79) w.r.t. dg;,

B =) (V*(s0) = V¥(50) < B, [DG*,97) = D™ win)] + 7, _gpe (V92 (5) = V()

772

+ m””*,t — % — ESng; (P — Vi y™® —vil) (80)

Next, we take expectation w.r.t. randomness in the algorithm and use tower property to get

(1 —v)(V*(so) — E[V¥(s0)]) < EESngg D(y**,ys) — D(y*’s,yfﬂ)}

,'72

1T E — D 2
2(1 — ’Y) ||V*7t I/H‘l”oo

—EE__ v B[ ye] — v v —yi]). 8D
S0

EE, e V754 (5) = VY (5)] +

We also note that by Cauchy-Schwarz inequality —n(E[27 1 |y:] — v 1, ¥° — yi]) < 20l|E[0¢41|ye] — Vs tlloo-

By triangle inequality and Young’s inequality

2 2
n IS 2 IN Ui A N 2
— v — 2||E - < -
21— ) Vit = PegllSe + 200 E[Drr1|ye] — vielloe < 1— ([ 20 [
2
+ 1717 15,6 = Vet o + 20 EDs1lye] = D tlloo + 20l1vae = Pailloo
2 4772
< D — 2 i ~s S| )\2
= 17,)/””*775 I/t+1||oo+ (1 77)5 (m3X||yt ytHl)

X N 4n N
+ 20| E[Dr11|ye] — Patlloc + A= 2 e 197 — v/l

where the last step used Lemma C.4 and definitions v, ; = QY*, U, = QY. We use the estimation as in (62), to get
|9: — ye|l1 < 2¢. With these estimations, (81) becomes

1

n(l—-~)
. . 2 N N

EE, g VI (s) = V¥ (s)] + %Ellm = D% + ——ElE[Dr1lye] — Putlloo

(1-7) 1—vy
16n¢* 8¢
- tamayp ®

‘We sum over t to conclude. O

V*(s0) — E[V¥(s0)] < BE, e [P, 50) = D™ vis)]

L

Jrl—fy




A Natural Actor-Critic Framework for Zero-Sum Markov Games

Note that we will learn 7, ; by sampling with ¢;. As in Appendix H.1.1, the strong monotonicity constant of the operator
FP(v)(s,b) = p" (5)ge(bl) (V(s, b) = r(s,b) =7 ) _ P(s|s. )3 (Vs (s, b’))

is AV = (1— 7)p¢/(|B]) (see also (Lan, 2021)). Moreover, F¥ (2, ;) = 0.

Lemma H.15. Let Assumption 2.1 hold and 3, = ﬁ stage 2 in Algorithm 9 satisfies
min \TPT 70

o 511B| !
Ellon —Diillz <O ((1 —v)2N? N N(1—~)2 (/\U )? ) 7

min

2 B
me%wm%SO( ””').

(1—7)2N?

Proof. We can use Lemma G.7 with v = 0, XY = A and F(v,€) = v(s,b) — r(s,b) — yv(s',b') where s ~ p¥t,

min min

b~ §i(+]s), 8 ~ P(-|s,b), b ~ §:(-]s") to get the result. O

Corollary H.16. Let Assumption 2.1 hold. Let ¢ = (1 — ~)3¢/8. The sample complexity of Algorithm 9 for obtaining

globally optimal policy in single agent MDP is O(|B[*|S|Y/2(1 — v)~13p=2e7%).

Proof. We start from Theorem H.14

T
1 1
_ E V* 50 yf(SO) S E y* |:D y*,s,ys):|
T I =y sy [P0
+ #EE ~ [VYTHL(s) — VY (s)] + _n 1 g E||xs — D412
T—a) (=P
T
2 1 ) . 167¢* 8¢
7§ E|E — Dy oo 83
T T = Bl = Pl + Tt iy @

By using Lemma H.15 in this inequality with A\, = (1 — v)pC/|B| gives

1, - 1 1672 8
P ) =Bl £ (o )+ 2+

U |S11BI |B” VS| Bl
+O<(1 (( + 2C2)+( ) (84)

=72 \(L=7)2N? N1 -)*p 1—7)2N

Since n = (1 —~) and ¢ = (1 — 7)3¢/8, we pick T = O ((1_ E ) and N =0 (M> to have all the terms in the

(1—y)*tp2e
bound to be less than €. Thus, we get the complexity O(| B[?[S|V/2(1 — )13 p=2¢74). O

H.2.2. REFLECTED NAC WITH A GAME ETIQUETTE AND (-GREEDY EXPLORATION IN ALGORITHM 10

We first state the main result in the next corollary. As most of the results depend on previous sections, we will make heavy
use of those estimations and provide a brief proof by highlighting the differences and extracting the error due to greedy
exploration. Algorithm 1 is repeated here for convenience.

Theorem 3.2. Extended form Let Assumption 2.1 hold. Use the parameter choices from Corollaries H.19 and H.20. Then,
the complexity for Algorithm 10 is O(|S|*(|A| V |B[)3(1 — 7) "2~ 4p~*).
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Algorithm 10 Reflected NAC with a game etiquette and (-greedy exploration

Require: PX" defined in (1) in Section 1. Exploration parameter ¢ > 0 (equal to 0 if Assumption 3.3 holds). Subroutine
Policy-Eval (see Algorithm 2, Algorithm 3, Algorithm 4). Initial policies zq, Yo, Yo
for k=0,1,... do
Stage 1
fort=0,1,..., 7T —1do
Define &x—1(als) = (1—C)zk—1(als) + IA\ y Gk—1(b8) = (1=Q)yr—1(b|s)+ |B‘ and correspondingly for &y, ¢, Gk ¢

[Vk”_l, kafl] = [Policy-Eval(&k—1,0k-1, N, BY), Policy-Eval(&x_1,0k—1, N, 5Y)]
[9f+1, 9?4_1] = [Policy—Eval(i"hh :Ijk,)h ZV7 ka—17 62), Policy—Eval(ikﬂg, Qkﬂh ]\/v7 ka717 BZ)]

234410 = PR (22,00, (2081 (s,) = 85 (5.)))
Ui () = PR (2,00, —n (200 (5,) = 02(s,)))

end for

Output zp = % Zthl T g

Stage 2

fort=0,1,..., T —1do
& (a) = (1= Qi (a) + a7 i (0) = (1= O (0) + iy
Dyp1 = Policy-Eval(@, 4, N, B = BY)
yz,t+l(') = PKL@Z,t(')v —nley1(8, 7))

end for

Output yy, = 9 ;» where ¢ € [T7] is selected uniformly at random.

end for '

Proof. We use Remark D.1 and use the estimates in these corollaries with (15). Then the suboptimality gap is bounded as
follows:

Cuok ~f 1
EE,, . VY (50) — V¥(s)] < =270
V7 ) = Vo0 < (250}

S|(JA| v |B|)? BJ? S||B Chov*
LlsigAlviBpt B ¢|}+O( mv>

(1—=7)7p*eN ~ N(1—7)tp2e  (1-7)°N (1=7)

We also use the worst case value for C, , which is |S|. Then, we pick N = ) (W#) and N = O (W) O

Stage 1 of Reflected NAC with a game etiquette and (-greedy exploration in Algorithm 10 We first recall the
discussion in Appendix H.1.1 and include it here for easy reference. Let us recall the notation and introduce more notations.
At iteration k, we solve

Q*(a,b) = Q(s,a,b) = r(s,a,b) + vy P(s'|s,a,b)V"- 11 (o),

s/

The problem is to find z,y¢, You: Such that
E max Lot Q7Y — T°Q Yo
Now we define

Q*(a,b) = Q(s,a,b) = r(s,a,b) +7 > P(s'|s,a,b) V1081 (s),

as we sample with policies with greedy exploration, at stage 2 we will learn V#+-1:9x~1_So we will have the oracle Vie_1

such that || Vi1 — V#1951 is small.
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In this step, with the abovementioned oracle, we expect to learn
éf)t(s, a) = EbNgtsQS(a, b), éit(s, b) = Eanss Qs(a, b).
Let us continue with x-player and drop the superscript,

9*,2&(57 a) Ebwy, Q ( )

= S0

- th(b|s)r(s, a,b)+ > §e(bls)P(s|s,a, b)V -1 Tk=1 (),
b b,s’

Therefore the operator is
E(é»pﬁ“@f<s>azt<a|s><ét<s,a>Z Ol (s8) =2 S t) |s,a,b>vfk-“@k‘l<s>). (85)
b

As &(-]s) > ‘47‘ and g (+|s) > ﬁ we have that F} is strongly monotone with % where p is the lower bound of the

stationary state distribution. Let us call this )\min = BW'

As in Lemma G.2, we introduce notation similar to (Malitsky & Tam, 2020), let us define ®, which is slightly different this
time.

s s .8 s s s s 1 s s
o7 = D(x afct+1) + 77<9*,t+1 - 9t+13x - :Ct+1> + §D(xt+1vﬂft)' (86)
We also use the following error functions and recall the definitions

Elfer1(-[s)lze, 2(|s) = z:(-]s))
E[07, 1 (1)lyel, v (1) — y(:19)),

€1t = 77<9t+1( S

|s) —

€2t = n{0 t+1( |s) —
é*7t(s,a) Epy, Q Q*(a,-)
Oct(s,a) = Epey, Q%(a, -).

S

Lemma H.17. Letr Assumption 2.1 hold. Let n = I_T'y. Denote x,,; = % Zthl Ty and Your = % Zthl Y. For stage 1
in Algorithm 10

T
(DS _ @S 1 ~ ~
EE,., {glayx o QM stsywl} _0 (OnyT) Lo (T S B[y 1] — e*,t||>
’ t=1

1 1 d 16¢ 8¢
O =Y Elfi1 — 0ui|?> +E|6 — 0,4 1| | + =—EEqus .
+ (T ; [ Al FE[0; — 0x 1] ) + w0 max ;Zl[eu +eaq]) + T 1 =

Remark H.18. The idea of this lemma is to extract the error due to greedy exploration and make the errors due to policy
evaluation depending on the policies with greedy exploration. In particular, 6, learns 0, ;, by sampling &, ;. Therefore,
we can utilize the results we derived earlier for policy evaluation steps.

Proof. We start from the quantity we would like to bound. Recall from (25)

T T
. X 1 1
xgthsyé - xSQéygu[ = Z a~:rt a Z Ebw/t '7 7$s>
t:l t:l
1 T
T a~x, ')7218 _y§> - <Eb~nyS('7b)7x8 —$§>] .

t=1
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T
1
= 2 [y = u) = (020" —an)] . D)

t=1

We will drop the subscript of 8 to denote 6 for lighter notation and derive the part of z-player. The y-player case will be
symmetrical.

By the definition of x4 1,

D@, w34,) < D(a,a5) = D(@iyn, @) + (205, — 05,2° — a3, (88)
We manipulate the inner products as Lemma G.2
<2éf+1 - étsa ¥ —xf) = <éf+1 =0 17 —x) + <éts+1 - éf’xs —Zipq) + (07 11 7° — i)
= <éf+1 =05 11,7 —xiq) + <éf+1 — 07,2 — ;) + <Ats+1 - éf:iff —T{q)
+ (05 41,7 — )
= <éf+1 =00 417" — @) + (07, — éfvxs — i)+ <éf+1 — 05" — )
+ <éf+1 — 0,25 — Tiiq) + (00 141, — Ti4q). (39)

Note that the first two terms will be used while forming ®7 and @}, ,, final term will be what we bound for (87). The third
and fourth terms are the error terms. We first analyze the third term in (89)

<0ts+1 - Qi,taxs —z3) = <E[9?+1|17t} - oi,ta x® — 1)) + <9t5+1 - E[éts+1|xt]axs — i)
= (B[, |ze] — 05 4, 2° — @) + 1y < 2||Efp1]7e] — Outlloc + €100

For the fourth term in (89) by Cauchy-Schwarz and Young’s inequalities
A A A A 1
(01 = 07,27 — 2 y1) < nllfea — 012 + @Hx? — 2

A A A A A A 1
<2001 — Ouell3e + 40100 — Oso—1l5 + 400|001 — 013 + @wa — g
16n
(1—9)?

where the last inequality is similar to (43) when 0, y; are replaced by 6, j; and we also used |5 — 451 |1 < |lvf — 51111
along with (8). We collect all the estimations in (88)

. A 1
lye = yerll + 4nll0u—1 — Ocl1%, + - D(x 14, 77).

< 20041 — O |3 + 2

1
n<9i,t+1,xs —xipq) + D(@®,2i,) + 77<9i,t+1 =0/, 2° — i) < D%, zf) — iD(xf—&-lvwf)

s NS .8 s H 16172 s s
+ (05, — 07, 2% — xf) + ere + 2[[E[fiya]2e] — Oiilloc + (1—77)2”% — I}

+ 20201 — OuelZ0 + 40%(10; — i1 ]I
We use (8) and definition of ®; to get

77<9i,t+1a$3 —xip1) + i < PF 4 2(|Efr41 ] — Ostlloo

32n2

) ) N 1
+ 20710041 = OxtllZe + 40?[100 = Ox il — 5D (f, 2i0) + WD@?’ Yio1) +eg.

We finally estimate the bias term

IE[Brr1]ze] — Ouilloo < IE[Brs1lze] = Outlloo + [0 — Ouelloo
= |E[fe4117e] — Oustlloc + IEpmys Q5 — Bongs Qf llo
= [|E[0r11]2¢] — Outlloc + 1 Bomy; QF — Epmy; Qf lloo + Ebng; @F — Eony; Qi lloo
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8¢ A¢
Tamr ey

< B[O s1]a] — 6.,

where the last step is by (57) and (62).

Inserting this estimate leads to

s s s 1 s s A ) 7 )
<0*,t+1a$ - 171:+1> < ; ((I) (pt-i-l) + 2(|[E[0r41 4] — 9*,t||oo +2n||0¢ 41 — 0 ;

1 32n 16¢ 8¢
7D S S 7D S s .
b (zf,27_1) + — (i yi-1) + (1—7)2 + 1—~ e

+4Tl||9t O t— 1||2

As in Lemma G.2, we can derive the symmetrical inequality for the y-player and picking n = =22 will make the terms

ﬁ(D(yt s Yi—1) + D(xf,x{_)) disappear.

8

We sum the inequality along with its y-player counterpart and insert into RHS of (87) to conclude. O

Corollary H.19. Set ¢ = U= 'Y) € and step sizes as from Lemmas 3.7 to 3.9 with A0, = p¢/(
the complexity for stage 1 ofAlgorlthm 10is O(|S|(JA| v |B])3(1 — )7 etp?).

)AL= = p. Then,

Proof. First, we notice that for both variance and bias terms in Lemma H.17, now we learn é*,t, éf’t by sampling &y, ;.
Therefore, from the point of view of policy evaluation, we can directly apply the results we derived earlier with strong
monotonicity constants \? . = pC/ (Al V |B]), A&y, = p- The bound in Lemma H.17 becomes

min

T
@S _ (PS 1 ~ ~
EEswo {2135( TouQ"Y” — mSstout:| =0 (077TT> +0 (T Z]E”E[@tﬂ\xt] - 9*,t||>
” t=1

T
-+O< E:Ewwl—&AP+Ewy—&t1F>+,E&NﬂmWE:Qt+®ﬂ)

t=1 —
16¢ 8¢

+ + .

(1=7)?2 1-7v
By using Lemma 3.7, we can derive the variance of 0 by sampling with &, §;

54 S|4 1 ISIA] ¢ o112
E 9N -0 2 < O —+ E Vk— — YV ¥e-1:Uk—1 -
|| *7t||2 ((1 _ ,7)2N2 (Arenm) (1 _ ’7)2 (Arenln) || 1 ||

For the final term in this bound, we use Lemma 3.9 to estimate VZx-1:9k-1 by sampling with Z;_; and g1 .

2 . N A 1
E”Vk—l _ ka—l»yk—ng <0 ( |S|| | + ) > 7

(1=7)2N? " N(1—9)2(\;

min

As a result, by recalling that in the algorithm, we set étﬂ to be 6y, which is the output of the innermost loop:

A A S||A 1 SI2|Al? S||A
MQH&M§O<1”2RQF - -+ 92”| — = H‘|w )
( _7) (/\mm) (1 _FY) (Amln) ( 7) N ()‘mm) ( ) (Amm)
. 2,201
By LISng )‘mln = pC/(|A| \ ‘BD mln =P C = (116 ) consequently, (/\mm)2 = W’ we get
|S]14] (141 v |Bl)?

P 5 S|2(1A] v IB)* 1S|(|A] v |B|)?
Bl 0. <0 PALBYS | ISALVE)

|
7)2N2 NB2(1 _ ")/)662 BQ(]‘ _ ) €2 N2 (1 _ )6€2N

[S|(1A] v |B])?
voo (G o

(90)

Hence taking
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should make all terms for this bound less than e.

For the bias of étJrl, we use Lemma 3.8

S||A 10]5]|A 2 -
(1 _,|y)2|]\f2 (;\|0 |)2| ||E[Vk—1|xt] — Vtrnbe=t ||§o> . (92)

|E[Brr1]ae] — 0.]> <O <

On this bound, we use Lemma 3.9

: < o (1S4
[ElVisle] - v < 0 (ALY

which gives

E[0r41]ze] — 0.l < O (

2
VISIIAT | 4151(141 v|B) > ©3)

(L=7)N  p(l—7)%N
where all terms are smaller than e with the choice of IV as in (91).

Finally for the error terms e; ; 4 e2 ¢, we use Lemma G.6

T
1
TEES'\/O’ m;xx tz_; €1,t <

log | A|
T

T
1 2 A A2
+ T;M Ef|0¢ 1 — Oxtll5

for which we can reuse the bound in (90).

~ “ 2 R 2.2(1_~)4
Inserting these estimates and using A%, = p¢/(|A| V| B|), A, = p, ¢ = U207 consequently, (A%, )2 = %,
and Remark G.3 to use the bound ®f — 5. + &F , — @5, <O (log |A| 4+ log |B| + ﬁ), with T = O((1 — ) le )
gives the final result. O

Stage 2 of Reflected NAC with a game etiquette and (-greedy exploration in Algorithm 10 Recall that in Appendix G.2,
we extended the result of (Lan, 2021) on single agent setting to the stage 2 of our algorithm. Since in the stage 2, xj, is
fixed, it is part of the environment and therefore single agent analysis extends in a straightforward fashion. In this section,
similarly we use our results in Appendix H.2.1 for stage 2 of the algorithm. Note that our results in Appendix H.2.1 are
similar to single agent results of (Lan, 2021), with the difference that we use (-greedy to avoid Assumption 3.3. Also recall
that the single agent analysis in (Lan, 2021) requires Assumption 3.3 (see (Lan, 2021, Remark 1)).

For brevity, we do not repeat the arguments in Appendix G.2 to extend Appendix H.2.1 for stage 2 in this case. We
summarize the result in the next corollary.

Corollary H.20. Let Assumption 2.1 hold. Let { = A= jng step size from Lemma G.7 with \V., = (1 —)p¢/|B| (see

8 N min
also Corollary H.16). The overall sample complexity for stage 2 of Algorithm 10 is O((|A|V |B])?|S|*/2(1 —~) 13 p=2e~4).

Proof. 1t is straightforward to use the arguments in Appendix G.2 to extend Appendix H.2.1 for this result.

I. Additional Experiments
I.1. Environments description

Bandit environment. We first consider a two player bandits problem with 100 arms. All the arms give zero reward except
a* that has r(a*) = —1 and b* with r(b*) = 1. The reward of the two player game is 7(a,b) = r(a) + r(b). In this
environment there exists a pure Nash Equilibrium given by © = 1{a = a*}, y = 1{b = b*}.

Alesia environment. We also test our algorithms on Alesia(L, C) (Perolat et al., 2015). Alesia is a simultaneous move
game where the two opponents try to move the wrestler to their extremity of the board of length L. At each turn, the
“wrestler” moves one step in the direction of the player that bets the higher amount of coins from their budget of size C. The
game ends when either one of the wrestler reaches extremity of the board or both players finish their budget.
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1.2. Hyperparameters selection.

In the following we report the hyperparameters chosen for the experiments to ensure reproducibility. In addition, we include
an additional experiment on Alesia(L,C) with L = 3 and C' = 7 in Figure 2. Since the eigenvalues A\, , \“. A”. are
unknown, we cannot compute the values of learning rates 3%, 3% used in the theoretical results. Therefore, we simply set
the learning rate as % suggested by the lemmas and fine tune the hyperparameter C' by grid search. Similarly for OGDA, we
use grid search to replace the optimal learning rate given by (Wei et al., 2021, Theorem 2). Appendix I reports the chosen

parameters. Table 2, Table 3, Table 4 and Table 5 summarize the best hyperparameters found for Reflected NAC and
OGDA in the two environments: bandit and Alesia.

REINFORCE (Daskalakis et al., 2020) only needs two hyperparameters. We chose the exploration parameter ¢ = 0.1 and

the step size 7 = 0.0001. We observe that it was critical to choose small step size to tackle the high variance coming from
the REINFORCE estimator.

Hyperparameter | Value

By 0.01/n
Bo" 0.8/n
B 0.1/n

n 0.023
By 0.01/n
K 100
N 10

T 10

¢ 0

Table 2. Hyperparametets for Reflected NAC in the two players bandit environment

Hyperparameter | Value
i 0.005
o 0.01/t
T 1100
L 50
€ 0.4

Table 3. Hyperparametets for OGDA in the two players bandit environment. The notation used for the hyperparameters matches the
original OGDA formulation in (Wei et al., 2021)

Hyperparameter Value
B 0.01/n
B9 0.1/n
7 0.05
Br 0.01/n
K 500
N 70
T 10
¢ 0 for y and 0.2 for x

Table 4. Hyperparametets for Reflected NAC in Alesia(L, C) with L = 3 and C' = 6, 7.
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Hyperparameter | Value
n 0.005
e 0.01/t
T 1000
L 3500
€ 0.4

Table 5. Hyperparametets for OGDA in Alesia. The notation used for the hyperparameters matches the original OGDA formulation in
(Wei et al., 2021)

ReflectedNAC 0.121 ReflectedNAC
—— OGDA —— OGDA
—— REINFORCE —— REINFORCE

Suboptimality gap
o o o o o o
8 2 8 8 B &
Suboptimality gap

o

o
=3
S]
=]
o
S

0 100 200 300 400 500 0 100 200 300 400 500
Environment steps (x 7000) Environment steps (x 7000)

Figure 2. left: x player, right: y player. Experiments in a Alesia with length L = 3 and coin budget C' = 7. The suboptimality gap on
the y-axis is max, V*¥(sg) — V*(so) for z and as | ming V¥ (s0) — V*(s0)| for y where so is the initial state that is deterministic in
Alesia. Results are averaged over 5 seeds.



