
Fair and Fast k-Center Clustering for Data Summarization

Haris Angelidakis * 1 Adam Kurpisz * 2 Leon Sering * 2 Rico Zenklusen * 2

Abstract
We consider two key issues faced by many cluster-
ing methods when used for data summarization,
namely (a) an unfair representation of “demo-
graphic groups” and (b) distorted summarizations,
where data points in the summary represent sub-
sets of the original data of vastly different sizes.
Previous work made important steps towards han-
dling separately each of these two issues in the
context of the fundamental k-Center clustering
objective through the study of fast algorithms for
natural models that address them.

We show that it is possible to effectively address
both (a) and (b) simultaneously by presenting a
clustering procedure that works for a canonical
combined model and

(i) is fast, both in theory and practice,
(ii) exhibits a worst-case constant-factor guaran-

tee, and
(iii) gives promising computational results show-

ing that there can be significant benefits in
addressing both issues together instead of
sequentially.

1. Introduction
The size of the digital universe in 2020 was estimated to
be dozens of zettabytes of data, the vast majority of which
were generated within the last few years (see Statista and
Forbes estimates (Holst, 2021; Marr, 2018) for additional
information). Moreover, the International Data Corporation
(IDC) (2019) report predicts that by the end of 2025 nearly
80 zettabytes will be generated every year by IoT devices,
with an average of more than 4 devices per human being.

This massive amount of data generated goes hand in hand
with the need for algorithmic techniques to process and ana-
lyze them. One particularly useful application of machine

*Equal contribution 1CoW Protocol 2Department of Mathemat-
ics, ETH Zurich, Zurich, Switzerland. Correspondence to: Adam
Kurpisz <adam.kurpisz@ifor.math.ethz.ch>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

learning algorithms for analyzing massive data sets is data
summarization. Given a large data set, the goal of data
summarization is to extract a small subset of samples that
represents well the whole data set. Performing further anal-
ysis on a smaller data set is much easier and in that sense
data summarization algorithms act as an interface between
the digital universe and human users, e.g., in search engines.

A crucial challenge faced when representing a large data
set by a smaller subset is the proper handling of fairness
considerations. We focus on two central aspects of obtaining
a fair representation of the underlying data, namely

(a) that sensitive attributes are properly reflected in the
summary (think about a fair representation of races or
other demographics in the summary), and

(b) different data points in the summary should not rep-
resent subsets of the original data of vastly different
sizes, thus leading to a distorted summary.

There are numerous applications where both aspects are
relevant, including fair voting system design (Celis, Huang,
and Vishnoi, 2018) and single-cell RNA sequencing (Do,
Elbassioni, and Canzar, 2020).

Regarding (a), it has been repeatedly observed that even
though data summarization procedures are generally not
biased by design, the fact that many of them are oblivious to
sensitive attributes can quickly lead to a strong bias by coin-
cidence. Significant measures have been taken to counteract
the bias in society, e.g., the concept of disparate impact in-
troduced in 1971 in the U.S. Supreme Court: Griggs v. Duke
Power Co. (see for example (Feldman, Friedler, Moeller,
Scheidegger, and Venkatasubramanian, 2015)). Neverthe-
less, the rapidly developing field of learning algorithms still
faces many challenges in this regard. As an example, it
was observed that in 2019, 85% of supermarket cashier job
advertisements on Facebook were targeted to women, while
taxi driver positions were proposed to black men to an ex-
tent of 74% (Ali, Sapiezynski, Bogen, Korolova, Mislove,
and Rieke, 2019). More emphatic examples include bias in
the crime-related search results when keywords more likely
associated with black people are used (Sweeney, 2013). Var-
ious examples showing bias using gender, age, and race have
been studied (see, e.g., (Tambe, Cappelli, and Yakubovich,
2019)). Finally, news feed personalization often amplifies
existing beliefs of users due to a severe underrepresentation

Fair and Fast k-Center Clustering for Data Summarization

of opposing views. This phenomenon, which is linked to
the popularized notions of filter bubbles and echo cham-
bers, can lead to unintended confirmation bias that increases
political and social polarization on an unprecedented scale
(see (Barberá, Jost, Nagler, Tucker, and Bonneau, 2015;
Barberá, 2020; Kelly, 2021) and references therein).

One of the most effective and heavily studied classes of al-
gorithms for data summarization is clustering. Even though
clustering approaches have been developed to address the
issue of sensitive attributes, they are often prone to return
highly distorted summarizations. The goal of this work is to
address this gap for one of the most heavily studied cluster-
ing variants, namely the k-Center problem. Moreover, we
are interested in very fast algorithms that can scale to large
data sets and with provably good worst-case behavior.

Before formally stating our results, we provide relevant
details on the k-Center problem and on prior work on vari-
ants addressing the two above-mentioned fairness aspects
separately. This leads to a canonical model capturing both
aspects, which is the one we consider.

1.1. Towards Private and Representative k-Center

In the k-Center problem, we are given a finite metric space
(X, d) and we need to choose k points in X , called centers
or representatives, with the goal to minimize the maximum
dissimilarity (measured as a distance) between any data
point of X and its closest center. Efficient (and tight) 2-
approximation algorithms for the k-Center problem have
been developed during the last few decades (Gonzalez, 1985;
Hochbaum and Shmoys, 1986); however, applied to data
sets that include sensitive attributes, they tend to compute
biased solutions. Chierichetti, Kumar, Lattanzi, and Vas-
silvitskii (2017) aimed at addressing this issue by adding
a fairness constraint to k-Center, where every point in a
data set is assigned one of two colors and the goal is to
compute a k-Center clustering such that the ratio between
colors in every cluster matches the global ratio. The model
attracted significant attention stimulating further algorith-
mic advances; Backurs, Indyk, Onak, Schieber, Vakilian,
and Wagner (2019) gave a nearly linear time algorithm for
the problem and Bera, Chakrabarty, Flores, and Negahbani
(2019) generalized the setting to multiple colors. A notion
of fairness that better fits the nature of data summariza-
tion was studied by Kleindessner, Awasthi, and Morgen-
stern (2019). In this model, which we call Representative
k-Center (REP-KC), the input is a finite metric space with
colored points and the goal is to construct a k-Center cluster-
ing that contains a certain number of centers/representatives
from each color class. Kleindessner, Awasthi, and Mor-
genstern (2019) provide a (3 · 2γ−1 − 1)-approximation
algorithm, where γ is the number of colors, with a running
time that is linear in the number of data points n := |X|.

A slower algorithm with a tight 3-approximation guarantee
can be constructed by reducing the problem to the Matroid
Center problem, which admits a 3-approximation (Chen,
Li, Liang, and Wang, 2016). Finally Jones, Nguyen, and
Nguyen (2020) recently provided a 3-approximation algo-
rithm for this problem with running time O(nk).

A solution of Representative k-Center indeed succeeds in
providing a fair number of representatives from each sensi-
tive group, leading to a diverse set of centers. Unfortunately,
prior procedures for Representative k-Center are prone to
return summarizations where data points in the summary
represent subsets of the original data of vastly different sizes
(see also our discussion in Section 5), thus risking to create
a distorted picture of the original data set.

One natural approach towards neutralizing such distortions
in k-Center solutions was studied by Aggarwal, Panigrahy,
Feder, Thomas, Kenthapadi, Khuller, and Zhu (2010), and
more recently by Rösner and Schmidt (2018). In this model,
which we call the Private k-Center problem,1 every selected
center has to represent at least a given amount of data. The
private setting has gained significant attention due to its
broad spectrum of possible applications. In particular, the
terminology private or privacy-preserving stems from appli-
cations where one seeks to obtain a summary that does not
reveal information about specific points of the underlying
data. Rösner and Schmidt (2018) presented an elegant way
to incorporate privacy aspects in several k-Center variants.
Unfortunately, their approach does not seem to extend to the
representative setting. (And, moreover, the running times
obtained through their approach, though polynomial, are
significantly higher than the “gold standard” of a running
time dependence (nearly) linear in |X|.)

In this work, we address the aforementioned limitations
by presenting a fast algorithm with hard theoretical guar-
antees for the natural combination of the above-mentioned
models of Representative k-Center and Private k-Center,
which we call Private Representative k-Center (PRIV-REP-
KC). Hence, this is a generalization of the settings studied
by Kleindessner, Awasthi, and Morgenstern (2019), Jones,
Nguyen, and Nguyen (2020), and Rösner and Schmidt
(2018), addressing both the sensitive attribute issue and the
issue of summary distortion due to centers/representatives
corresponding to clusters of vastly different sizes by combin-
ing well-known canonical models that address these issues
separately. Formally, PRIV-REP-KC is defined as follows.

Definition 1.1 (PRIV-REP-KC). Given is a finite metric
space (X, d) with a partition {X1, . . . , Xγ} of X , two inte-
gers k, L ∈ Z≥0, and numbers ai, bi ∈ {0, . . . , |X|} with

1Different names have been used for the problem previously.
In particular, it was called (k, r)-Center in (Aggarwal, Panigrahy,
Feder, Thomas, Kenthapadi, Khuller, and Zhu, 2010) and Privacy-
Preserving k-Center in (Rösner and Schmidt, 2018).

Fair and Fast k-Center Clustering for Data Summarization

ai ≤ bi for i ∈ [γ]. A solution corresponds to a set of
centers C ⊆ X and an assignment ϕ : X → C such that

(1) |C| ≤ k,

(2) ai ≤ |C ∩Xi| ≤ bi for every i ∈ [γ], and

(3) |ϕ−1(c)| ≥ L for every c ∈ C.

The goal is to minimize its radius: maxx∈X d(x, ϕ(x)).

Note that a PRIV-REP-KC instance is feasible if there
are enough centers to fulfill the lower bounds in (2) (i.e.,∑γ
i=1 ai ≤ k and |Xi| ≥ ai for i ∈ [γ]), and enough points

to fulfill the privacy constraints (3) (L ·
∑γ
i=1 ai ≤ |X|). As

these conditions are easy to check, we always assume that
the PRIV-REP-KC instances we consider are feasible.

1.2. Our results

Our main result is an algorithm for PRIV-REP-KC with
three main features/insights:

(i) it is fast and scales well to large problem sets, as its
running time depends only linearly in |X|,

(ii) it has a constant-factor worst-case guarantee, and

(iii) computational results show that there can be signifi-
cant benefits in handling representativeness and privacy
together instead of addressing them sequentially.

The following theorem formalizes our theoretical contribu-
tions, which are complemented in Section 5 by computa-
tional results.

Theorem 1.2. There is a 15-approximation algorithm for
PRIV-REP-KC that runs in timeO(nk2+k5), where n is the
number of points and k is the upper bound on the number
of centers that are allowed to be opened.

In particular, this shows that constant-factor approximations
can be achieved even when requiring k-Center solutions to
be both representative and private. As already k-Center is
well-known to be APX-hard, constant-factor guarantees are
arguably the best one can hope for (unless P = NP). More-
over, the actual performance of our algorithm as observed
in our computational results is significantly stronger than
the theoretical worst-case guarantee stated in Theorem 1.2.

1.3. Basic terminology and notation

A k-Center instance is a triple (X, d, k) where (X, d) is a
finite metric space and k ∈ Z≥1. Adding a privacy bound
L ∈ Z≥1 leads to a Private k-Center instance (X, d, k, L).
A clustering (C, ϕ) of a k-Center instance consists of at
most k centers C ⊆ X and a map ϕ : X → C, also
called assignment. Its radius is maxx∈X d(x, ϕ(x)). We
call a clustering an r-clustering for r ∈ R≥0 if the radius of
the clustering is at most r. The clustering is L-private (or

simply private) if |ϕ−1(c)| ≥ L ∀c ∈ C. In a PRIV-REP-
KC instance, we call a set of centers C ⊆ X representative
if they fulfill condition (2) in Definition 1.1. Throughout the
text, n will always denote the size |X| of X .

2. Overview of our approach
In order to obtain a private clustering, we compute in a first
step a small family of backbones. A backbone describes how
many centers can be opened in certain areas of the metric
space while still being able to obtain a private clustering
with a good radius. In a second step, we compute for each
backbone the best (in a well-defined way) representative set
of centers that corresponds to that backbone; we say that
this is a realization of the backbone. One of these candidate
sets will lead to the clustering we return. Figure 1 provides
a sketch of this idea.

1
3 2

Figure 1. Example of a Private k-Center problem (for some k ≥ 6)
with L = 3. The backbone is a set of points Π (red diamonds)
with positive integers ηπ for π ∈ Π (in red). For each π ∈ Π, we
open up to ηπ centers (blue rectangles) close to π (highlighted by
blue arrows). We call this a realization. We construct backbones
that guarantee that any centers opened that way admit a private
clustering with small radius (highlighted by the dashed lines).

Going through backbones allows us to ignore privacy con-
straints in the second step, leading to a simpler subproblem
that we can solve optimally. The theoretical insight justify-
ing this approach is that we show how to quickly compute a
small family of backbones such that one will always lead to
a good (constant-factor) PRIV-REP-KC clustering.

We now formally define backbones and realizations thereof,
and briefly describe the building blocks of our approach.
Later sections expand on the details of these building blocks
and provide formal proofs of their guarantees.
Definition 2.1 (backbone). Let (X, d, k) be a k-Center in-
stance. A backbone of (X, d, k) is a tuple (Π, η) where
Π ⊆ X with |Π| ≤ k and η ∈ ZΠ

≥1. Moreover, (Π, η)
is a (ρ, L)-backbone for ρ ∈ R≥0, L ∈ Z≥1 if there is a
ρ-clustering with centers Π that, for each π ∈ Π, assigns at
least ηπ · L points to π.

One way to think about a (ρ, L)-backbone (Π, η) is that if
we open, for each π ∈ Π, up to ηπ many centers close to π,
then we have guarantees that there are enough points close

Fair and Fast k-Center Clustering for Data Summarization

to these centers to obtain a private clustering of small radius.
The notion of a ∆-realization defined below formalizes and
quantifies this view. (The parameter ∆ ∈ R≥0 measures
how far centers are opened from the backbone centers Π.)

Definition 2.2 (∆-realization of a backbone). Let (X, d, k)
be a k-Center instance, (Π, η) a backbone of it, and let
∆ ∈ R≥0. A set C ⊆ X is a ∆-realization of (Π, η) if
|C| ≤ k and there is a map ψ : C → Π such that

(i) d(c, ψ(c)) ≤ ∆ for each c ∈ C, and

(ii) |ψ−1(π)| ∈ {1, . . . , ηπ} for each π ∈ Π.

The definitions of backbones and realizations imply an upper
bound on the radius necessary to obtain a private clustering
with centers given by a realization.

Observation 2.3. Let (X, d, k, L) be a Private k-Center
instance and C ⊆ X a ∆-realization of a (ρ, L)-backbone
of (X, d) with |C| ≤ k. Then, (X, d, k, L) admits a private
(ρ+∆)-clustering with centers C.

Thus, realizations of backbones come with privacy guar-
antees. Still, to obtain good clusterings for PRIV-REP-KC
through a backbone-based approach, the following compu-
tational questions remain:

• How to obtain a (ρ, L)-backbone with small ρ for which
there is a representative ∆-realization with small ∆?

• Given such a backbone, how to compute a representative
∆-realization for ∆ as small as possible?

• Given representative centers, how to compute fast a pri-
vate r-clustering with these centers and smallest r?

A key challenge in this work is to obtain very fast algorithms
that resolve these questions. We answer the first question in
a strong form as described in the statement below.

Theorem 2.4. Let (X, d, k, L) be a Private k-Center in-
stance. One can construct in O(nk2) time at most k2 many
backbones such that, for any L-private r-clustering (C, ϕ),
there is a (7r, L)-backbone in the computed group for which
C is an 8r-realization.

Note that Theorem 2.4 applies to any L-private clustering
and not just representative ones. This generality allows for
applying our approach to Private k-Center problems with
additional constraints on the centers beyond PRIV-REP-KC.

The second question is about solving the following problem.

Definition 2.5 (MIN-REP-REALIZATION). Given a PRIV-
REP-KC instance and backbone (Π, η), the MIN-REP-
REALIZATION problem asks to find a ∆-realization that
is representative of smallest possible ∆.

MIN-REP-REALIZATION can be solved through flow tech-
niques analogous to (Jones, Nguyen, and Nguyen, 2020).
However, as we need to solve this problem for a family of

up to k2 backbones, we identify and exploit synergies be-
tween the subproblems to obtain a sufficiently fast procedure
leading to the overall running time of O(nk2 + k5).

Algorithm 1 summarizes (in a slightly simplified form) the
steps of our algorithm.

Algorithm 1 Simplified version of our PRIV-REP-KC algo-
rithm.

1. Create q ≤ k2 backbones (Π1, η1), . . . , (Πq, ηq) ful-
filling the conditions of Theorem 2.4.

2. for i = 1, . . . , q do:
• Solve MIN-REP-REALIZATION for backbone
(Πi, ηi) to get a ∆i-realization Ci.

• Compute private clustering with centers Ci of
smallest possible radius ri.

3. return the clustering with smallest ri.

To obtain the claimed running time, we will not perform
the second step in the for-loop for each Ci, but use prior
computed parameters of the backbones and realization to
identify a single Ci for which we perform the second step.
As we will see, this can be done in a way that maintains the
theoretical worst-case approximation guarantee of 15 that
we get for Algorithm 1, as shown below.
Theorem 2.6. Algorithm 1 is a 15-approximation for PRIV-
REP-KC.

Proof. Let OPT ⊆ X be the set of centers of an optimal
PRIV-REP-KC solution and r∗ its radius. By Theorem 2.4,
there is one backbone (Π, η) among the at most k2 many
backbones we compute such that (i) (Π, η) is a (7r∗, L)-
backbone, and (ii) OPT is an 8r∗-realization of (Π, η).
Hence, by solving MIN-REP-REALIZATION for (Π, η), we
obtain an 8r∗-realization C of (Π, η) (because OPT is an
8r∗-realization and we get a ∆-realization for the smallest
possible ∆). Observation 2.3 now implies that there is a
private 15r∗-clustering with centers C. Since we compute
the private clustering with centers C and the smallest radius,
we find a 15r∗-clustering, as desired.

As mentioned, the theoretical worst-case bound is very con-
servative in view of our computational results.

Organization of remaining sections. To compute back-
bones as claimed in Theorem 2.4, we first construct certain
L-private clusterings. This relies on a fast private clustering
procedure, discussed in Section 3, which we also reuse later.
Section 4 shows how to obtain backbones as claimed in
Theorem 2.4 from these clusterings. Our computational re-
sults are presented in Section 5. Missing proofs and further
details can be found in the appendix. Appendix A provides
an overview of the appendices and pointers where to find
the missing proofs.

Fair and Fast k-Center Clustering for Data Summarization

3. Obtaining private clusterings fast
A crucial component of our fast procedure that computes the
desired backbones is the ability to solve quickly problems
related to private clustering. An elementary problem we
need to solve, which highlights some hurdles faced in this
context and employed techniques, is the following.

Definition 3.1 (MIN-PRIV-RADIUS). Let (X, d, k, L) be a
Private k-Center instance and C ⊆ X with |C| ≤ k. The
task is to find a private r-clustering with centers C and
smallest r.

While it is not too difficult to find a polynomial-time algo-
rithm for MIN-PRIV-RADIUS, the challenge lies in obtain-
ing a running time linear in n. We obtain the following.

Lemma 3.2. An optimal solution to MIN-PRIV-RADIUS
can be computed in O(nk2) time.

To illustrate some of the ideas used, first consider the follow-
ing arguably easier problem: Decide, for a given radius r,
whether a set of centersC admits a private r-clustering. This
boils down to finding a way to assign each x ∈ X to a center
in C ∩B(x, r), where B(x, r) := {y ∈ X : d(y, x) ≤ r} is
the ball around x of radius r, such that at least L points are
assigned to each center. One way to solve this problem that
nicely extends to generalized versions used later, is through
the following two steps. We first define a maximum flow
problem that computes an assignment where each center
c ∈ C gets assigned exactly L points (if this is possible),
and then we complete the assignment by assigning the unas-
signed points to their closest center. The second step is
straightforward, and the first one is readily modeled as a
maximum cardinality assignment problem where up to L
points can be assigned to each center and x ∈ X can be
assigned to c ∈ C if and only if d(x, c) ≤ r. Given that
the second step respects the radius r, a private r-clustering
with centers C exists if and only if this assignment problem
admits an assignment of cardinality |C| ·L. This is a special
case of Maximum Cardinality b-Matching, which can be
cast as a maximum flow problem and solved through stan-
dard max-flow algorithms. However, as the corresponding
flow graph can have up to Θ(kn) edges and Θ(n) nodes,
obtaining the desired O(nk2) runtime is not immediate.
Nevertheless, an O(nk2) runtime can be achieved through
a carefully designed and implemented augmenting path pro-
cedure (see Appendix B), which even extends to a more
general problem that we need to solve, as discussed later.

The above discussion about computing private r-clusterings
with centers C naturally leads to the following approach for
MIN-PRIV-RADIUS. We can construct the above-described
flow problem, parameterized by r, stepwise from smaller
to larger r until the first r is obtained for which the max-
imum flow value is |C| · L. A key observation is that the
only change in the flow problem when r increases is that

more edges get introduced. This allows for reusing a flow
computed for a smaller r as a starting flow for a larger r.
However, there remains a hurdle towards obtaining a run-
ning time linear in n. Namely, a canonical realization of
this idea requires to sort the Θ(nk) (in the worst case) point-
center distances d(x, c) for x ∈ X and c ∈ C to be able to
introduce corresponding edges in the assignment problem
in the right order; even just this step would introduce an
additional log n factor. We show how this can be avoided
by not sorting all point-center distances, but doing a more
coarse bucket-wise sorting based on a repeated application
of a linear-time selection algorithm.

Remarks on running time. A natural approach for PRIV-
REP-KC is to first compute a representative clustering, for
example by using the current state-of-the-art algorithm of
Jones, Nguyen, and Nguyen (2020), to obtain a set of cen-
ters C and then solve MIN-PRIV-RADIUS with centers C
to obtain a private clustering. (In our computational results,
we will compare our algorithm against this natural bench-
mark.) Any such procedure already inherits a running time
dependency of nk2 from MIN-PRIV-RADIUS. For small
k, this scales like the running time of our O(nk2 + k5)
PRIV-REP-KC procedure. Hence, making solutions private
seems to be a natural bottleneck when designing algorithms
for PRIV-REP-KC. Also, solving MIN-PRIV-RADIUS for
centers coming from a representative clustering algorithm
like the one of Jones, Nguyen, and Nguyen (2020), voids
its performance guarantee and can lead to PRIV-REP-KC
clusterings with arbitrarily bad radii.

3.1. Private clusterings

This section focused so far on finding private clusterings as-
suming that the centers were given. To obtain a good set of
centers for our backbones we rely on a method of Gonzalez
(1985), which is the centerpiece of a classic 2-approximation
for k-Center. Given a k-Center instance (X, d, k), it com-
putes in O(nk) time a chain C1 ⊆ . . . ⊆ Ck ⊆ X of center
candidates as described in Algorithm 2. For k-Center, one

Algorithm 2 Gonzalez’ algorithm.
1. C0 = ∅.
2. for i = 1, . . . , k do:

• Determine ci ∈ argmaxx∈X{d(x,Ci−1)}.
• Ci := Ci−1 ∪ {ci}.

3. return (C1, . . . , Ck).

can show that the final set Ck is a set of centers leading
to a 2-approximation (Gonzalez, 1985). However, for our
purposes, we retain the full chain (C1, . . . , Ck). For brevity,
we call any set Ci a Gonzalez prefix, as it is a prefix of the
centers c1, . . . , ck.

Fair and Fast k-Center Clustering for Data Summarization

Interestingly, as later discussed in Section 4, the Gonzalez
prefixes can be used as backbone centers that, if equipped
with well-chosen η-vectors, lead to a family of backbones as
claimed in Theorem 2.4. Before moving to these backbones,
we show how Gonzalez prefixes can be used to obtain fast
private clusterings by presenting a very fast and tight 2-
approximation for Private k-Center, the most elementary
private variant of k-Center. This allows us to present an
instructive and simpler version of reasonings that are central
in obtaining guarantees on backbones introduced later.

Lemma 3.3. Algorithm 3 is a 2-approximation for Private
k-Center that can be implemented to run in O(nk2) time.

Algorithm 3 2-approximation for Private k-Center
1. Compute Gonzalez prefixes (C1, . . . , Ck).
2. Solve MIN-PRIV-RADIUS for each Ci to obtain a clus-

tering (Ci, ϕi).
3. return clustering (Cj , ϕj) of smallest radius.

A straightforward implementation of Algorithm 3 that
invokes Lemma 3.2 to solve MIN-PRIV-RADIUS inde-
pendently for each Ci would lead to a running time of
O(nk3). As we discuss in Appendix B, one can exploit that
C1, . . . , Ck form a chain, which allows for warm-starting
our maximum flow algorithm when dealing with the centers
Ci+1 by using the flow computed for Ci. For this to work,
we crucially exploit that the minimum radius ri needed to as-
sign at least L points to each center of Ci is non-decreasing
in the index i. This is needed for the warm-start because
it makes sure that the flow computed for Ci does not use
point-center distances exceeding ri+1.

We highlight that our O(nk2) running time for Private k-
Center is significantly faster than prior techniques. In par-
ticular, it is the first constant-factor approximation (and the
factor 2 is best possible unless P = NP) whose running time
dependence on n is linear. In comparison, the running time
dependence on n of a prior 2-approximation by Aggarwal,
Panigrahy, Feder, Thomas, Kenthapadi, Khuller, and Zhu
(2010) is at least quadratic. Similarly, a prior very gen-
eral approach of Rösner and Schmidt (2018) to add privacy
constraints to different variants of k-center problems has
a superlinear running time dependence on n (and, unfortu-
nately, also does not extend to PRIV-REP-KC).

Before continuing with the construction of the backbones,
we prove the approximation guarantee of Algorithm 3.

Proof. (Algorithm 3 is a 2-approximation for Private k-
Center.) Let OPT ⊆ X be an optimal set of centers for
the given Private k-Center instance with optimal radius r∗.
Consider the Gonzalez prefixes C1, . . . , Ck, and, for i ∈ [k],
let ri be the smallest radius such that d(x,Ci) ≤ ri for each

x ∈ X . In words, ri is the smallest radius for which a k-
Center clustering with centers Ci exists. We have rk ≤ 2r∗

because, as mentioned, the Gonzalez prefix Ck gives a 2-
approximation for the k-Center problem, and the optimal
radius for the k-Center problem is no larger than r∗. Let
ℓ ∈ [k] be the lowest index satisfying rℓ ≤ 2r∗. Because
Gonzalez’ algorithm picks farthest points as new centers,
we have d(c, c′) > 2r∗ for all distinct c, c′ ∈ Cℓ. We
complete the proof by showing that there is a private 2r∗-
clustering with centers Cℓ. For each c ∈ Cℓ there is a center
q ∈ OPT ∩ B(c, r∗) because each point is no more than
r∗ away from the closest point in OPT. Hence, all (at least
L many) points that the optimal clustering assigns to q are
within B(q, r∗) ⊆ B(c, 2r∗), and can thus be assigned to c
in a 2r∗-clustering with centers Cℓ. This shows that a radius
of 2r∗ allows for assigning at least L points to each center
of Cℓ. Assigning all remaining unassigned points to the
closest center in Cℓ leads to a private 2r∗-clustering.

4. Constructing good backbones
The previous section showed a fast procedure for Private k-
Center, which does not impose additional constraints on the
centers to be opened. Unfortunately, when the centers need
to fulfill further constraints, such a simple procedure fails.
We illustrate this on an instructive special case of PRIV-
REP-KC, where we consider a Private k-Center instance
(X, d, k, L) together with a lower bound a ∈ Z≥0 on the
number of centers that need to be opened. Hence, the family
of feasible sets of centers is {C ⊆ X : a ≤ |C| ≤ k}.
Consider the example instance shown in Figure 2.

c1 c2

c3c4

c5

c6

Figure 2. Private 6-Center example in the plane with L = 3. Ex-
actly 6 centers must be opened (a = 6). The first six centers found
by Gonzalez’ algorithm are c1, . . . , c6. The dashed lines show a
private clustering with centers C5 := { c1, . . . , c5 } of smallest
radius. Though this solution opens too few centers, we construct a
backbone from it that leads to a good clustering with 6 centers.

Note that opening all 6 centers leads to a large private radius
because only 8 points are on the right part of the instance
where the 3 centers c2, c3, and c6 got opened. Hence, to
obtain privacy, at least one point from the left part needs to
be assigned to a far-away center (c2, c3, or c6) on the right.

Fair and Fast k-Center Clustering for Data Summarization

By increasing the gap between left and right points, this can
lead to an arbitrarily large radius.

We overcome this by starting with a private clustering (C, ϕ)
of smallest radius with centers C := C5, as highlighted in
Figure 2 (this corresponds to solving MIN-PRIV-RADIUS
for the centers C as discussed in Section 3). This clustering
has a good radius but opens one fewer center than required.
If there was a center c ∈ C with at least 2L points assigned
to it (i.e., |ϕ−1(c)| ≥ 2L), then we could open an additional
center c′ ∈ ϕ−1(c) and reassign L points from center c to c′,
without increasing the radius by much. However, in general
this may not be the case, as in our example in Figure 2.

Instead of opening a further center right away, we first trans-
fer/reassign points from some centers to close-by centers
with the goal to obtain a center with at least 2L points as-
signed to it. We achieve this with an idea inspired by a
technique introduced in (An, Bhaskara, Chekuri, Gupta,
Madan, and Svensson, 2015) for Capacitated k-Center.
Concretely, for a private clustering (C, ϕ), we first set a
transfer threshold τ ∈ R≥0. We then consider a min-
imum spanning forest (C,F) in the graph (C,Eτ) with
Eτ := { { c, c′ } | d(c, c′) ≤ τ }, where the length of an
edge {c, c′} is d(c, c′). We call (C,F) the transfer for-
est. We fix an arbitrary root in each connected compo-
nent of the transfer forest. We then go through the centers
C in each component from leaves to root. (Formally, we
need that whenever we consider a vertex, all its descendants
have already been considered.) When considering a center
c ∈ C, say with nc many points assigned to it, we transfer
nc − L · ⌊nc/L⌋ many of these points to the neighbor c of c
in (C,F) that is closer to the root. We only transfer points
from c to c that have originally be assigned to c by ϕ, and
not points that got assigned to c through a prior transfer.
This is always possible because each center has at least L
points originally assigned to it, as (C, ϕ) is a private clus-
tering and the number of points to transfer is strictly below
L. (Even though this is not necessary for the theoretical
guarantees, we transfer the ones closest to c.) See Figure 3
for an example.

Let ϕ̃ : X → C be the new assignment. We now define a
backbone (Π, η) with centers Π = C and, for c ∈ C, we set
ηc = ⌊|ϕ̃−1(c)|/L⌋. Note that in the example in Figure 3, we
can now find, starting from this backbone, a ∆-realization
with the required 6 centers and small radius. We call a
backbone obtained from (C, ϕ) a τ -aggregation of (C, ϕ).

The following is the key structural result in obtaining Theo-
rem 2.4. It shows that τ -aggregations of Gonzalez prefixes
lead to good backbones.

Theorem 4.1. Let (X, d, k, L) be a Private k-Center in-
stance and (C, ϕ) a private r-clustering. Then there exists
a Gonzalez prefix C and transfer threshold τ ∈ R≥0 such
that the following holds. For any private clustering (C, ϕ)

c1
c2 (root)

c3 (root)c4 (root)

c5

τ

Figure 3. Example of how transfers are done for the instance in
Figure 2 with transfer threshold τ as indicated. The transfer
forest is shown in green. It has three connected components:
{c1, c4, c5}, {c2}, and {c3}. In the only non-trivial component,
i.e., {c1, c4, c5}, we chose c4 as (arbitrary) root. The dashed red
lines highlight points that got transferred. These transfers lead to
a backbone with centers C and all η-values being 1 except for c4,
which has an η-value of 2.

with centers C and smallest radius and any backbone (Π, η)
that is a τ -aggregation of (C, ϕ), we have

(i) (Π, η) is a (7r, L)-backbone, and

(ii) C is a 8r-realization of (Π, η).

We need to consider different Gonzalez prefixes to obtain
a backbone with a number of centers that is a good fit for
(C, ϕ). Too many backbone centers can make it expensive
to obtain privacy, as any realization of the backbone needs
to open at least one center per backbone center, whereas
too few backbone centers may require a very large radius to
cover all points.

To prove Theorem 4.1, we show that, for one Gonzalez
prefix C, there is a well-chosen (and not too large) transfer
threshold τ such that, for any center c ∈ C, all points in
B(c, r) get assigned (by the clustering (C, ϕ)) to centers in
the same connected component of the transfer forest. This
ensures that each connected component of the transfer forest
has enough total η-value to open one center for each center
c ∈ C from whose r-ball it got at least one point. Whereas
this shows that each connected component of the transfer
forest has globally enough points, we still have to show that
things also work out locally; in other words, that point (ii) of
Theorem 4.1 holds. This can be analyzed separately for each
connected components of the transfer forest and boils down
to showing that, for any subset of C-centers with points
assigned to the same connected component of the transfer
forest, there is enough total η-value close-by to achieve an
8r-realization of these centers with the considered backbone.
This reduces to proving the existence of a certain bipartite
matching, which we show by using Hall’s Theorem.

To ensure that only k2 backbones are needed to obtain the
guarantees of Theorem 2.4, we observe that for each Gon-

Fair and Fast k-Center Clustering for Data Summarization

zalez prefix C at most k values of τ need to be considered;
indeed, we only need to consider values of τ leading to
different transfer forests. This results in no more than k rel-
evant values for τ as transfer forests are forests encountered
in Kruskal’s algorithm when finding a minimum spanning
tree in the complete graph with vertices C and distances
given by d. Hence, instead of considering τ explicitly, we
consider all forests encountered in Kruskal’s algorithm and
use those as transfer forests; see Appendix C for more de-
tails.

5. Computational results
We now validate our algorithm empirically with a twofold
goal. First, we motivate the fairness considerations in this
paper by showing that the state-of-the-art algorithm for
the representative k-Center by Jones, Nguyen, and Nguyen
(2020) is prone to return solutions of vastly different sizes
of clusters. Second, we show that these solutions cannot
always easily be modified to strong private clusterings by
simply solving MIN-PRIV-RADIUS on their centers to ob-
tain a private clustering. Solutions obtained this way, which
sequentially resolve the two fairness issues, are compared
with solutions computed with our algorithm, which treats
both fairness aspects simultaneously.

Data sets. We use the following real data sets:

• The Adult data set (Kohavi and Becker (1996)) contains
records about individuals extracted from the 1994 US
census (Kohavi, 1996). The dataset has 32561 records.
Following the experiments in (Jones et al., 2020) we chose
the numeric attributes age, fnlwgt, education-num, and
hours-per-week to represent points in R4 (distances in all
datasets are Euclidean). Race, which takes 5 different
values, is chosen as sensitive attribute (hence, we have 5
colors). In the clustering context, the dataset was also used
in (Chierichetti et al., 2017; Bera et al., 2019; Backurs
et al., 2019; Harb & Lam, 2020; Esmaeili et al., 2020;
Halabi et al., 2020).

• The Diabetes data set (Strack, DeShazo, Gennings, Olmo,
Ventura, Cios, and Clore (1996)) includes information
from 130 US hospitals over 10 years about patients suf-
fering from diabetes. It has 101763 records. We chose
numeric attributes age and time-in-hospital to represent
points in R2 and gender [male/female] as the sensitive
attribute. This dataset has been used previously in cluster-
ing context in (Chierichetti et al., 2017; Chen et al., 2019;
Backurs et al., 2019).

• The Query data set (Anagnostopoulos (2019)) includes
synthetic range and radius query workloads derived from
Gaussian distributions over the real data set that reports

crimes in Chicago.2 We chose the count version that
consists of 10000 points. To represent points in the space,
we chose attributes X-coordinate and Y-coordinate. Count
is the sensitive attribute, which takes 7 different values.

• The Electric data set (Hebrail and Berard (2012)) in-
cludes 2049280 noncorrupted measurements gathered in
a house located in Sceaux (7km of Paris, France) be-
tween December 2006 and November 2010. To represent
points, we selected attributes Global active power and
Global reactive power. The sensitive attribute is was cho-
sen to be Sub metering 3, which takes 32 different values.

Algorithms. We run four different algorithms:

• JNN algorithm (Jones, Nguyen, and Nguyen, 2020). It
is the state-of-the-art procedure both in running time and
performance guarantee for Representative k-Center. We
use the Alg 2-Seq variant of the algorithm.

• KAM algorithm (Kleindessner, Awasthi, and Morgen-
stern, 2019) for Representative k-Center, used in (Jones,
Nguyen, and Nguyen, 2020) as a baseline.

• JNN+PRIV. First representative centers C are computed
via JNN. Then MIN-PRIV-RADIUS is solved with centers
C to obtain the final clustering.

• Our algorithm that solves PRIV-REP-KC by treating both
fairness aspects simultaneously.

Results. Because JNN does not allow for setting a lower
bound on the number of centers for each color, and in fact
always opens the upper bound of centers for each color, we
set ai = bi for all i ∈ [γ]. The required number of centers
per group is set proportional to the size of the group.

We first run JNN and KAM on the datasets Diabetes and
Electric for k = 12 and k = 32, respectively. The sizes of
the computed clusters are highlighted in Figure 4.

2 4 6 8 10 12
Clusters 1,...,k sorted by size

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Cl
us

te
r s

ize

1e4
KAM
JNN

(a) Diabetes: k = 12

0 5 10 15 20 25 30
Clusters 1,...,k sorted by size

0.0
0.2
0.4
0.6
0.8
1.0

Cl
us

te
r s

ize

1e6
KAM
JNN

(b) Electric: k = 32

Figure 4. Cluster sizes computed with JNN and KAM for datasets
Diabetes and Electric for sample values of k and L.

Observe that cluster sizes computed by JNN and KAM are
similar and can vary strongly in their sizes. For the Diabetes

2https://data.cityofchicago.org/Public-
Safety/Crimes-2001-to-Present/ijzp-q8t2

https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2

Fair and Fast k-Center Clustering for Data Summarization

data set (Figure 4a), around 40% of points are assigned to
a single center. The situation is even more extreme for the
Electric data set (Figure 4b). Here, one center represents
more than 53% of points, and the 16 smallest clusters cover
together less than 0.7% of the data.

Computing non-distorted solutions, where clusters have sim-
ilar sizes is a key challenges in data summarization. We thus
compare in our second experiment the JNN+PRIV algo-
rithm, which is based on the state-of-the-art JNN algorithm
for REP-KC problem, to our algorithm on all four datasets.
The results are shown in Figure 5; the x-axis represents the
used privacy bound L, which spans the full range from 1 up
to ⌊n/k⌋ in regular increments.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Privacy bound 1e3

0.30
0.32
0.34
0.36
0.38
0.40
0.42
0.44
0.46

Ra
di

us

JNN+Priv
Our
JNN

(a) Query: k = 7

0 2 4 6 8
Privacy bound 1e3

0.3

0.4

0.5

0.6

0.7

Ra
di

us

JNN+Priv
Our
JNN

(b) Diabetes: k = 12

0 1 2 3 4 5 6
Privacy bound 1e1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ra
di

us

JNN+Priv
Our
JNN

(c) Adult: k = 500

0 1 2 3 4 5 6
Privacy bound 1e4

0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ra
di

us

JNN+Priv
Our
JNN

(d) Electric: k = 32

Figure 5. Comparison of JNN+PRIV and our algorithm. The value
obtained by JNN (which returns non-private clusterings) is shown
for reference.

We observe gains in terms of the radius of up to 30% be-
tween our algorithm and JNN+PRIV. Moreover, our al-
gorithm outperforms JNN+PRIV on the whole range of
privacy bounds for the datasets Diabetes and Adult. In the
other cases, it returns solutions of quality comparable to
JNN+PRIV.

We note that our algorithm has comparable worst-case and
practical running time compared to JNN+PRIV as the bottle-
neck of both procedures is satisfying the privacy constraints
(see Section 3 for more details).

To prove the scalability of our algorithm, some experiments
were run on large datasets of more than 106 records. On reg-
ular notebook hardware equipped with Intel(R) Core(TM)
i7-10510U CPU @ 1.80GHz (8 cores) and 16 GB of RAM,
our algorithm for the Diabetes instance with more than 105

records for k = 12 runs below 1 second and for the Elec-
tric dataset with more than 2 · 106 records and k = 32 the
algorithm terminates within 2 minutes.

Acknowledgments
The first author would like to thank Stefan Canzar for sug-
gesting to investigate the Representative k-Center problem,
which served as the starting point for this work.

This project received funding from Swiss National Science
Foundation grants 200021 184622, PZ00P2 174117 and
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme
(grant agreement No 817750).

References
Aggarwal, G., Panigrahy, R., Feder, T., Thomas, D., Kentha-

padi, K., Khuller, S., and Zhu, A. Achieving anonymity
via clustering. ACM Trans. Algorithms, 6(3):49:1–49:19,
2010.

Ali, M., Sapiezynski, P., Bogen, M., Korolova, A., Mislove,
A., and Rieke, A. Discrimination through Optimization:
How Facebook’s Ad Delivery Can Lead to Biased Out-
comes. Proceedings of the ACM on Human Computer
Interaction (HCI), 3(CSCW), 2019.

An, H.-C., Bhaskara, A., Chekuri, C., Gupta, S., Madan, V.,
and Svensson, O. Centrality of trees for capacitated k-
center. Mathematical Programming, Series B, 154:29–53,
2015.

Anagnostopoulos, C. Query analytics workloads dataset
data set. UCI Machine Learning Repository, 2019.
https://archive.ics.uci.edu/ml/datasets/

Query+Analytics+Workloads+Dataset.

Backurs, A., Indyk, P., Onak, K., Schieber, B., Vakilian, A.,
and Wagner, T. Scalable Fair Clustering. In Proceed-
ings of the 36th International Conference on Machine
Learning (ICML), pp. 405–413, 2019.

Barberá, P. Social Media and Democracy, chapter Social
Media, Echo Chambers, and Political Polarization, pp.
34–55. Cambridge University Press, 2020.

Barberá, P., Jost, J. T., Nagler, J., Tucker, J. A., and Bonneau,
R. Tweeting From Left to Right: Is Online Political Com-
munication More Than an Echo Chamber? Psychological
Science, 26(10):1531–1542, 2015.

Bera, S. K., Chakrabarty, D., Flores, N., and Negahbani,
M. Fair Algorithms for Clustering. In Proceedings of the
33rd Annual Conference on Neural Information Process-
ing Systems (NeurIPS), pp. 4955–4966, 2019.

https://archive.ics.uci.edu/ml/datasets/Query+Analytics+Workloads+Dataset
https://archive.ics.uci.edu/ml/datasets/Query+Analytics+Workloads+Dataset

Fair and Fast k-Center Clustering for Data Summarization

Celis, L. E., Huang, L., and Vishnoi, N. K. Multiwinner Vot-
ing with Fairness Constraints. In Proceedings of the 27th
International Joint Conference on Artificial Intelligence
(IJCAI), pp. 144–151, 2018.

Chen, D. Z., Li, J., Liang, H., and Wang, H. Matroid and
Knapsack Center Problems. Algorithmica, 75(1):27–52,
2016.

Chen, X., Fain, B., Lyu, L., and Munagala, K. Proportion-
ally Fair Clustering. In Proceedings of the 36th Inter-
national Conference on Machine Learning (ICML), pp.
1032–1041, 2019.

Chierichetti, F., Kumar, R., Lattanzi, S., and Vassilvitskii,
S. Fair Clustering Through Fairlets. In Proceedings
of the 31st Annual Conference on Neural Information
Processing Systems (NIPS), pp. 5029–5037, 2017.

Do, V. H., Elbassioni, K., and Canzar, S. Sphetcher: Spheri-
cal Thresholding Improves Sketching of Single-Cell Tran-
scriptomic Heterogeneity. iScience, 23(6):101126, 2020.
ISSN 2589-0042.

Esmaeili, S. A., Brubach, B., Tsepenekas, L., and Dickerson,
J. Probabilistic Fair Clustering. In Proceedings of the 34th
Annual Conference on Neural Information Processing
Systems (NeurIPS), 2020.

Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C.,
and Venkatasubramanian, S. Certifying and Remov-
ing Disparate Impact. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 259–268, 2015.

Gonzalez, T. F. Clustering to Minimize the Maximum In-
tercluster Distance. Theoretical Computer Science, 38:
293–306, 1985.

Halabi, M. E., Mitrovic, S., Norouzi-Fard, A., Tardos, J.,
and Tarnawski, J. Fairness in Streaming Submodular
Maximization: Algorithms and Hardness. In Proceedings
of the 34th Annual Conference on Neural Information
Processing Systems (NeurIPS), 2020.

Harb, E. and Lam, H. S. KFC: A Scalable Approximation
Algorithm for k-Center Fair Clustering. In Proceedings
of the 34th Annual Conference on Neural Information
Processing Systems (NeurIPS), 2020.

Hebrail, G. and Berard, A. Individual household
electric power consumption data set. UCI Machine
Learning Repository, 2012. https://archive.ics.

uci.edu/ml/datasets/individual+household+

electric+power+consumption.

Hochbaum, D. S. and Shmoys, D. B. A unified approach to
approximation algorithms for bottleneck problems. Jour-
nal of the ACM, 33(3):533–550, 1986.

Holst, A. Volume of data/information created, captured,
copied, and consumed worldwide from 2010 to 2025,
2021. Statista report.

International Data Corporation (IDC). The Growth in
Connected IoT Devices Is Expected to Generate 79.4zb
of Data in 2025, According to a New IDC Fore-
cast, 2019. https://www.idc.com/getdoc.jsp?

containerId=prUS45213219.

Jones, M., Nguyen, H., and Nguyen, T. Fair k-Centers
via Maximum Matching. In Proceedings of the 37th
International Conference on Machine Learning (ICML),
pp. 4940–4949, 2020.

Kelly, M. Political polarization and its echo chambers:
Surprising new, cross-disciplinary perspectives from
princeton. Princeton News, dec 2021. https://www.

princeton.edu/news/2021/12/09/political-

polarization-and-its-echo-chambers-

surprising-new-cross-disciplinary.

Kleinberg, J. and Tardos, E. Algorithm Design. Addison
Wesley, 2006.

Kleindessner, M., Awasthi, P., and Morgenstern, J. Fair
k-Center Clustering for Data Summarization. In Proceed-
ings of the 36th International Conference on Machine
Learning (ICML), pp. 3448–3457, 2019.

Kohavi, R. Scaling up the Accuracy of Naive-Bayes Classi-
fiers: A Decision-Tree Hybrid. 1996.

Kohavi, R. and Becker, B. Adult data set. UCI Machine
Learning Repository, 1996. https://archive.ics.

uci.edu/ml/datasets/adult.

Marr, B. How Much Data Do We Create Every Day?
The Mind-Blowing Stats Everyone Should Read, 2018.
https://www.forbes.com/sites/bernardmarr/

2018/05/21/how-much-data-do-we-create-

every-day-the-mind-blowing-stats-

everyone-should-read/?sh=45f0654460ba.

Peters, O. R. L. Pattern-defeating Quicksort. CoRR,
abs/2106.05123, 2021. URL https://arxiv.org/

abs/2106.05123.

Rösner, C. and Schmidt, M. Privacy Preserving Clustering
with Constraints. In Proceedings of the 45th International
Colloquium on Automata, Languages, and Programming
(ICALP), pp. 96:1–96:14, 2018.

Strack, B., DeShazo, J. P., Gennings, C., Olmo, J. L.,
Ventura, S., Cios, K. J., and Clore, J. N. Diabetes 130-us
hospitals for years 1999-2008 data set. UCI Machine
Learning Repository, 1996. https://archive.

ics.uci.edu/ml/datasets/diabetes+130-

us+hospitals+for+years+1999-2008.

https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://www.idc.com/getdoc.jsp?containerId=prUS45213219
https://www.idc.com/getdoc.jsp?containerId=prUS45213219
https://www.princeton.edu/news/2021/12/09/political-polarization-and-its-echo-chambers-surprising-new-cross-disciplinary
https://www.princeton.edu/news/2021/12/09/political-polarization-and-its-echo-chambers-surprising-new-cross-disciplinary
https://www.princeton.edu/news/2021/12/09/political-polarization-and-its-echo-chambers-surprising-new-cross-disciplinary
https://www.princeton.edu/news/2021/12/09/political-polarization-and-its-echo-chambers-surprising-new-cross-disciplinary
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/?sh=45f0654460ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/?sh=45f0654460ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/?sh=45f0654460ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/?sh=45f0654460ba
https://arxiv.org/abs/2106.05123
https://arxiv.org/abs/2106.05123
https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+years+1999-2008
https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+years+1999-2008
https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+years+1999-2008

Fair and Fast k-Center Clustering for Data Summarization

Sweeney, L. Discrimination in Online Ad Delivery. Com-
munications of the ACM, 56(5):44–54, 2013.

Tambe, P., Cappelli, P., and Yakubovich, V. Artificial Intel-
ligence in Human Resources Management: Challenges
and a Path Forward. California Management Review, 61
(4):15–42, 2019.

Fair and Fast k-Center Clustering for Data Summarization

A. Overview of appendix
In this section, we give an overview of how the rest of the appendix is structured.

In Appendix B we expand on the material of Section 3, and present an algorithm that computes for a given ordered set of
centers C the optimal private assignments for all prefixes of C in time O(nk2). In particular, this proves Lemma 3.2 (the
formal proof is given at the end of Appendix B).

Appendix C corresponds to the material of Section 4; more precisely, we present a procedure that generates
(
k
2

)
many

backbones.

Then, in Appendix D we present an algorithm that optimally solves the MIN-REP-REALIZATION problem (see Definition 2.5)
in time O(nk + k4). Even better we can solve the MIN-REP-REALIZATION problem for a whole batch of backbones
in that time, as long as they share the same set of centers. This enables us to compute the best realization (fulfilling the
representative condition) of the

(
k
2

)
-many backbones in a total running time of O(nk2 + k5), as they can be grouped into k

such batches.

We continue with Appendix E, where we select among the
(
k
2

)
-many realizations one that satisfies the performance guarantee

and has also in practice a private assignment with small radius.

Finally, in Appendix F we put everything together and present the full algorithm for solving PRIV-REP-KC and prove the
total running time of O(nk2 + k5).

Afterwards, in Appendix G, we give a formal proof of the performance guarantee of our algorithm, including the formal
proof of Theorem 2.4 and Theorem 4.1. Together with the proven running times this provides the proof for the main theorem
(Theorem 1.2).

Throughout the rest of these appendices, we use the following notation. (X, d) denotes a finite metric space, k denotes
the upper bound on the number of centers we are allowed to open, and L denotes the privacy lower bound. For simplicity,
we also write private instead of L-private. For the sake of convenience, we assume that k ≤ n/L, since there exists no
L-private assignments if k is larger than n/L; thus, if we are given a k such that k > n/L, then we simply redefine its value
and set k := ⌊n/L⌋. Similarly, we assume that k ≤

∑
ℓ∈γ bℓ, as this is a natural upper bound on the number of centers that

can be opened. We also use the notion of a partial assignment ϕ : X → C, i.e., an assignment of points to centers for which
the mapping ϕ might not be defined for all points x ∈ X yet; in such a context, we say that a center c ∈ C is private if there
are already at least L points assigned to it, i.e.,

∣∣ϕ−1(c)
∣∣ ≥ L.

B. Full analysis of results of Section 3: Obtaining private clusterings fast
In this section, we elaborate on the material of Section 3, and in particular, we give a formal proof of the running time stated
in Lemma 3.3. We remind the reader here that a proof of the approximation factor of 2 was already given in Section 3. It is
straightforward to adapt the ideas presented here in order to obtain an algorithm for MIN-PRIV-RADIUS that runs in time
O(nk2), and thus prove Lemma 3.2, and so we do not explicitly do so.

We will mainly focus on step (2) of Algorithm 3 and give a fast implementation of it. As a reminder, we are given a finite
metric space (X, d), a number L ∈ N≥0 (privacy bound) and a set of centers Ck := { c1, c2, . . . , ck } ⊆ X , for some
k ∈ N≥1, and the goal is to solve MIN-PRIV-RADIUS for each Ci, i ∈ [k], where Ci = {c1, . . . , ci}. Throughout, we often
use the notation C := Ck.

Our goal is to develop an algorithm that implements the above in total time O(nk2). More precisely, for each i ∈ [k], we
compute an assignment ϕi : X → Ci that satisfies

∣∣ϕ−1
i (c)

∣∣ ≥ L for every c ∈ Ci, and its radius maxx∈X d(x, ϕi(x)) is
minimum over all possible private assignments. As noted, simply achieving polynomial running time is a much easier task,
but our goal here is to respect the O(nk2) running time bound.

Overview of algorithm. At a high level, we process the sets Ci, i ∈ [k], in increasing index order, and for each Ci, we
create a flow network in such a way so that a maximum flow computation gives a (partial) private assignment. In order to
find the minimum radius for which such an assignment exists, we iteratively add edges (that directly correspond to distances
between centers and points) to the flow network, in increasing order of length, and check whether there is an augmenting
path in the network. In case there is, we increase the flow. Once the maximum flow reaches a certain value, then we move to
the next set Ci+1 while maintaining the current state of the flow network, so as to avoid recomputations. In other words, we

Fair and Fast k-Center Clustering for Data Summarization

build on the network constructed for Ci in order to compute a private assignment for the set Ci+1. The reason we can do
this is that the optimal radius for a set Ci is always smaller or equal than the optimal radius for Ci+1, since Ci ⊂ Ci+1.

In order to ensure that we achieve the desired running time, we need to be careful not to explicitly sort the edges with respect
to their length. We avoid this by observing that we can partition the edges into buckets such that an edge in a bucket with a
smaller index corresponds to a distance that is smaller than an edge in a bucket with a larger index, and we can then process
these buckets, one by one, to increase the maximum flow (i.e., instead of adding edges in increasing length order, one by
one, we add the edges of a bucket all together). Once we find a bucket that allows the maximum flow to reach the desired
value, we then focus only on this bucket, which contains a smaller number of edges, and identify the edge corresponding to
the optimal distance.

We start by describing all the steps of the algorithm in Appendices B.1 to B.4, we then present the whole algorithm in
Appendix B.5 and finally we prove that the running time is O(nk2) in Appendix B.6.

B.1. The flow network

The key idea of the algorithm is to sequentially solve maximum flow problems in a iteratively growing graph. In other
words, we consider each set Ci, in increasing index order, and construct a flow network corresponding to computing a
private assignment based on the flow network constructed for the set Ci−1. Moreover, we avoid recomputing the maximum
flow from scratch, as we can use the already computed maximum flow for the previous networks in order to speed up the
computations.

Every flow network that we consider, denoted as NCi
(r), is parameterized by the set Ci, i ∈ [k], and a candidate radius

r ≥ 0. In particular, we have a node for every center in Ci, and we also have a separate copy of the whole point set X; note
that this implies that there are two nodes corresponding to a center c ∈ Ci, one as part of the copy of Ci and one as part of
the copy of X . Moreover, there is a source node s that is connected to each center in c ∈ Ci with an arc (s, c) of capacity L.
Each center c ∈ Ci is connected to every point x ∈ X with an arc (c, x) of capacity 1, if and only if d(c, x) ≤ r. Finally,
every point x ∈ X is connected to the sink t with an arc (x, t) of capacity 1. LetR := {(c, x) : c ∈ Ck, x ∈ X}; we have
|R| = nk. Note that each network NCi

(r) contains a subsets of the arcs inR. It will be convenient to associate each edge
e = (c, x) ∈ R with the distance d(c, x), and so from now on we call d(e) the distance label of e ∈ R.

For a set Ci, the high level idea is to start with NCi
(0) and gradually insert each arc (c, x) ∈ R with c ∈ Ci, one by one,

in increasing order of the distance labels. Since s and t are disconnected the maximum s-t flow value in NCi
(0) is 0. We

now insert the relevant edges inR one by one in increasing order of the distance label d(e), while maintaining a maximum
s-t flow. As soon as the maximum flow value reaches i · L, we stop. The maximum flow fi can now be transformed to an
optimal (i.e., of minimum radius) private partial assignment ϕi : X ′ → C by setting X ′ := {x ∈ X : fi(x, t) = 1 } and
ϕi(x) := c for every x ∈ X ′, where c ∈ Ci is the unique center such that fi(c, x) = 1. By construction, and since the flow
value is i ·L, it is easy to see that the privacy condition is satisfied, and in particular, we have |ϕ−1

i (c)| = L for every c ∈ Ci.
Moreover, the radius of this partial assignment is minimum, as we processed the edges in R in increasing order of their
distance label, and prior to the addition of the last edge that gave a flow of value i · L, the flow value was strictly smaller,
and so there could not have been any private partial assignment with smaller radius. In order to obtain an optimal private full
assignment one can then assign all unassigned points to their nearest center in Ci; it is not hard to see that the radius of the
resulting assignment is the optimal radius for the MIN-PRIV-RADIUS problem with input Ci.

The above already describes an algorithm that finds the optimal private assignment for Ci; however, its running time contains
at least a factor Ω(n log n) due to the sorting of the edges in R. On top of that, implemented naively, such a procedure
would need to be executed k times, one for each set Ci, and so the running time would not respect the O(nk2) bound.

To circumvent these barriers, we will avoid sorting all the distances, and moreover, we will deal with all the different sets
Ci “simultaneously”. For that, we process the sets C1, . . . , Ck in increasing index order. We start with C1 and the network
NC1

(0), and consider the relevant edges in R, one by one, in increasing order of distance labels. Each time we add an
edge, we check whether there is an augmenting path that can lead to an increase of the maximum flow value, and if so, we
increase the flow. We stop this process as soon as the maximum flow value equals L, which corresponds to an optimal
partial assignment for C1, as explained above. We then turn to the set C2. A key observation is that if ri is the smallest
radius for which NCi(ri) has a maximum flow of value i · L, then ri−1 ≤ ri for every i = 2, . . . , k. In particular r2 ≥ r1,
which means that all the edges that were added in NC1

(r1) will be part of the flow network NC2
(r2). Thus, once we move

to C2, we can continue adding edges and there will never be the need to remove any edges that were added when processing

Fair and Fast k-Center Clustering for Data Summarization

a set with smaller index. So, we continue in a similar fashion and stop as soon as the maximum flow value equals 2L,
then continue with C3, and so on. Finally, to obtain a worst-case running time that is linear in n, we observe that we can
implement the algorithm in a way so that a total sorting of the edges inR is not needed. Instead, we only need to partially
sort them and place them in buckets. In the following sections, we discuss the implementation details and prove how they
lead to the desired O(nk2) running time.

B.2. Putting edges into buckets

As noted above, given a set Ci, we would ideally like to process the relevant edges of R in increasing order of distance
labels. However, sorting them would violate our desired running time guarantee. For that reason, we instead partition all
the edges ofR into buckets R1, R2, . . . , Rm, for some m ≤ k3 such that the following is satisfied: within each bucket the
edges are not sorted but the distance-labels of all edges in bucket Ri are smaller than the distance-labels of all edges in
bucket Rj for every i < j. This can be done in a worst-case running-time that is linear in n. Note that there might be edges
with identical distance label. For those we define a total ordering by using a tie-break according to the center-index and
some (arbitrary but fixed) ordering of X .

Lemma B.1. There is an algorithm that partitionsR into m ≤ k3 buckets R1, . . . , Rm, each containing at most ⌈2n/k2⌉
edges, such that d(e1) ≤ d(e2) for every e1 ∈ Ri, e2 ∈ Rj with 1 ≤ i < j ≤ m. Moreover, its running time is O(nk log k).

Proof. We utilize a Selection algorithm with O(n) running time. We use the Selection algorithm to first compute the median
edge inR w.r.t. the distance label (with tie-breaking), and using the median, we obtain a partition ofR into two sets, one
containing all the edges smaller than the median and the median itself, and the other containing all the edges that are larger
than the median; note that each resulting set has a size of at most ⌈nk/2⌉.. This can be done in time at most cnk, where c > 0
is a universal constant determined by the Selection algorithm. Next, we compute the median edge in each of the two subsets
to obtain a more refined partition ofR into four sets; this again takes total time at most cnk. Continuing this for i levels, we
end up with 2i buckets, each containing at most ⌈nk/2i⌉ edges, and the total running time is at most i · cnk. Thus, by setting
i = ⌊log k3⌋, we end up with 2i ≤ 2log k

3

= k3 buckets, each of size at most ⌈nk/2i⌉ ≤ ⌈nk/2log k3−1⌉ ≤ ⌈2n/k2⌉ and a
total running time of O(nk log k).

Note that this algorithm benefits a lot from parallel computation, which makes it very fast even for very large number of
edges. In the actual implementation we use the function select nth unstable (version 1.49.0) of the standard library
of Rust, which is based on the quickselect portion of the pattern-defeating quicksort by Peters (2021).

B.3. Computing maximum flows

In order to maintain a maximum flow in the iteratively growing flow network, we need two subroutines: addEdge and
removeEdge. The first one is responsible for adding one new edge in the flow network and checking for the existence of
an augmenting path. The latter is needed when we have identified the bucket that contains the desired edge length; more
details will be given in Appendix B.4. As both of these subroutines perform a flow augmentation, we have a third (internal)
procedure called augmentFlow. Furthermore, to efficiently find an augmenting path within the residual network we need
some data structures and additional procedures to maintain them, which we now present.

B.3.1. DATA STRUCTURES

In order to achieve a running time of O(nk2) we use the following data structures:

• edge present[·][·]: a 2-dimensional Boolean array of size k × n. Each entry edge present[c][x], for c ∈ C and
x ∈ X , indicates whether the edge (c, x) is currently present in the flow network or not.

• max flow: an integer denoting the maximum flow value in the current network.

• center of[·]: a 1-dimensional array of n points. Each entry center of[x], for x ∈ X is the center which x is
currently assigned to. For example, if center of[x] = c, this means that the point x is currently assigned to center c.
If a point x is currently unassigned, then we will denote this with center of[x] = None.

• number of covered points[·]: a 1-dimensional array of k integers. Each entry number of covered points[c],
for c ∈ C, contains the number of points that are currently assigned to center c.

Fair and Fast k-Center Clustering for Data Summarization

• unassigned[·]: 1-dimensional array of size k. Each entry unassigned[c], for c ∈ C, is a queue of points, which
contains all points that are currently unassigned and could be assigned to center c.

• reassign[·][·]: 2-dimensional array of k × k queues of points. Each queue reassign[c][c′], for c ̸= c′ ∈ C, contains
a list of the points that are currently assigned to the center c but could also be assigned to the center c′.

• next to non private[·]: a 1-dimensional array of k centers. Each entry next to non private[c], c ∈ C, indicates
whether there is a path in the residual network from c to a center c′ that is not private yet, i.e., that has not yet been
assigned L points. If this is the case, then next to non private[c] is the center that leads closer to such a non-private
center, if no such path exists the value is None. For the case that c itself is non-private it points to itself.

Clearly, center of and number of covered points encode an s-t-flow if they are consistent. More precisely, if
center of[x] = z ∈ C, then f(z,x) = 1 and f(x,t) = 1. If center of[x] = None, we have f(c,x) = 0 for
any c ∈ C and also f(x,t) = 0. The flow value of each edge (s, c), where s is the source and c ∈ C is given by
number of covered points[c].

The data structures unassigned, reassign and next to non private are important to perform a fast flow augmentation,
which is equivalent to finding an s-t-path in the residual network. Here, we are looking for such a path in reverse order from
t to s. Whenever unassigned[c] is non-empty there is an unassigned point x ∈ X that could be assigned to c, i.e., the path
(c, x, t) is present in the residual network. In the case that c is not private yet (i.e., number of covered points[c] < L)
we have found an augmenting path, namely (s, c, x, t). But in the case that c is already private, (s, c) is not in the residual
network, but there might an augmenting path from some other non-private center c∗ to c. For this, first note that there is
an augmenting path of length 2 from center c′ to center c if and only if reassign[c][c′] is non-empty. Namely, the path
(c′, x, c) with x ∈ reassign[c][c′]. In other words, reassign defines a graph H on the set of centers C and in order to
find an augmenting path from non-private c∗ to c, we must find a path in H from c to c∗. This can be done by performing a
breadth first search (BFS) in H , starting at c. This would not only decide whether we can reach a non-private center from
c but it also determines a path (if there is any) by pointing to a neighbored center in the right direction. As H often only
changes slightly during the execution of our algorithm, we do not recompute a BFS in each step (which would take O(k2)),
but instead maintain and adjust these path-pointers, which is exactly the information stored in next to non private.

B.3.2. PROCEDURES

The procedure rebuildReachability rebuilts next to non private by starting with the non-private centers and doing
a BFS in H . It is presented in Algorithm 4 and has a worst case running-time of O(i2) ⊆ O(k2) as proven in Lemma B.2.

Algorithm 4 rebuildReachability

Input: index i of current center prefix Ci
1 next to non private[c]← None for all c ∈ Ci // reset
2 // do backwards BFS in H starting at private centers:
3 Q← newQueue()
4 for c ∈ Ci do
5 if number of covered points[c] < L then
6 Q.push(c)
7 next to non private[c]← c // center c is private
8 end
9 end

10 while Q ̸= ∅ do
11 c← Q.pop()
12 for c′ ∈ Ci do
13 if reassign[c][c′] ̸= ∅ and next to non private[c′] = None then
14 Q.push(c′)
15 next to non private[c′] = c

16 end
17 end
18 end

Fair and Fast k-Center Clustering for Data Summarization

Lemma B.2. The procedure rebuildReachability has a worst-case running time of O(A · i), where A ≤ i is the number
of centers c ∈ Ci that are pushed to the queue Q at some point in time, and which is equal to the number of centers c ∈ Ci
for which next to non private[c] changes from None to some center.

Proof. Clearly, each center can only be pushed once onto the queue, as this happens only to centers for which
next to non private[c] = None but it is set to a center right after. This means A ≤ i, and hence, the running
time of O(i) for the setup and O(A · i) for the breadth first search (line 10 to 18) implies a total running time of O(A · i).

The procedure that searches for an augmenting path and increases the maximum flow by 1 whenever possible is described
in Algorithm 5. The main idea behind it is to check whether s and t are connected in the residual network by searching
for a center cj which has an unassigned point x that could be assigned to it (hence, path (cj , x, t) is present in the residual
network) and that has a path to a non-private center in H (which is equivalent to the existence of an s-cj-path in the residual
network).

Algorithm 5 augmentFlow

Input: index i of current center prefix Ci
1 j ← 1
2 while j ≤ i do
3 if unassigned[cj] ̸= ∅ and next to non private[cj] ̸= None then
4 break
5 else
6 j ← j + 1
7 end
8 end
9 if j = i+ 1 then

10 return // there is no augmenting path
11 end
12 // augmenting path exists
13 c← cj
14 x← unassigned[c].pop()
15 center of[x] = c
16 number of covered points[c] = number of covered points[c] + 1
17 max flow← max flow+ 1
18 while number of covered points[c] ≥ L do
19 c′ ← next to non private[c] // c′ is closer to a non-private center
20 x← reassign[c][c′].pop()
21 center of[x] = c′

22 number of covered points[c] = number of covered points[c]− 1
23 number of covered points[c′] = number of covered points[c′] + 1
24 reassign[c′][c].push(x)
25 c← c′

26 end
27 rebuildReachability(i)

Lemma B.3. The procedure augmentFlow runs in time of O(i) if max flow is not increased and in time O(i2) if max flow

is increased by 1.

Proof. Clearly, if there is no augmenting path the algorithm stops after iterating once over [i]. If there is an augmenting path
the invocation of rebuildReachability is the bottle-neck with a running-time of O(i2); see Lemma B.2.

The pseudo-code in Algorithm 6 describes how an edge (c, x) ∈ R is added to the flow network and how the data structures
are updated in order to describe a maximum flow in the iteratively increased network. Note that if x was assigned before
only a single edges has been added to the graph H , namely (c′, c). Hence, if c′ could previously not reach a private-center

Fair and Fast k-Center Clustering for Data Summarization

but c could (and still can), now also c′ can reach a private-center. Hence, next to non private needs to be updated by
setting next to non private[c′] = c. As other centers might reach c′ in H even more centers might reach a non-private
center now. For that reason the algorithm performs a BFS (as described in line 10 to 18 of Algorithm 4) to identify those
centers and update next to non private accordingly. For the running-time analysis it is important to note that only None

values are set to some centers, but never the other way round.

Algorithm 6 addEdge

Input: edge e = (c, x), index i of current center prefix Ci
1 edge present[c][x] = True

2 if center of[x] = None then
3 unassigned[c].push(x)
4 else
5 c′ ← center of[x] // point x is currently assigned to center d
6 reassign[c′][c].push(x)
7 if next to non private[c′] = None and next to non private[c] ̸= None then
8 continue BFS of rebuildReachability by setting Q = { c′ } and executing line 10 to 18 of Algorithm 4.
9 // takes O(k) for each center c that is set from None to something.

10 end
11 end
12 augmentFlow(i)

Lemma B.4. The procedure addEdge in Algorithm 6 whose input is e ∈ R has a worst-case running time of O(i2) if
the flow value is increased by 1 during the augmentFlow invocation. Otherwise the running time is given by O(Ae · i),
where Ae ≤ i is the number of centers, for which next to non private is set from None to something during the BFS of
rebuildReachability.

Proof. This follows immediately from Lemma B.3 and the argument in the proof of Lemma B.2.

In Algorithm 7 we present the procedure for removing an edge (c, x) ∈ R from the network. If this edge was not flow
carrying then the maximum flow does not change. In the case that f(c,x) = 1 we first remove the flow along the path
(s, c, x, t) but it might be the case that afterwards there is an augmenting path not using this edge (this is determined
in augmentFlow). Either way, as c might change from private to non-private the data structure next to non private

must be rebuilt. Note that the removal of x from unassigned and reassign can be done in constant time, as we only
implicitly remove them by setting edge present[c][x] = False. (Still we kept the remove-commands in the pseudo-code
to emphasize that x should be considered as not present in the queues anymore.)

Algorithm 7 removeEdge

Input: edge e = (c, x), index i of current center prefix Ci
1 edge present[c][x] = False

2 if center of[x] = None then
3 unassigned[c].remove(x)
4 else if center of[x] ̸= c then
5 reassign[center of[x], c].remove(x)
6 rebuildReachability(i)

7 else
8 // in this case e was flow carrying
9 max flow← max flow− 1

10 center of[x] = None

11 rebuildReachability(i)
12 augmentFlow(i)

13 end

Lemma B.5. The procedure removeEdge in Algorithm 7 has a worst-case running time of O(i2).

Fair and Fast k-Center Clustering for Data Summarization

Proof. This follows immediately from Lemmas B.2 and B.3.

B.4. Settle a prefix

Consider a fixed center prefix Ci. As the goal is to find the minimum radius of a partial private assignment for Ci, it is
important that we identify the correct edge e ∈ R for which the maximum flow value is equal to i · L in the network
NCi

(d(e)) containing E := { e′ ∈ R | d(e′) ≤ d(e) }, while it is strictly smaller than i · L in the network NCi
(d(e)) \ {e}.

Since we cannot afford to sort all edges inR we might have added edges e′ with d(e′) > d(e) to the network before we add
e itself. To solve this problem we only check after adding all edges of a bucket R to the network, whether the maximum
flow value has reached i · L. If not, we continue with the next bucket, otherwise we know that the correct edge can be found
within R. In order to find it, we perform a binary search on the edges of R. We say that prefix Ci gets settled in the bucket
R. More precisely, we first split the bucket into two sub-buckets R− and R+, such that all edges in R− are smaller than all
edges in R+. This can be achieved in time O(|R|) by using a linear-time Selection algorithm. Next, we remove all edges
from R+ and check again if the maximum flow value is equal to i ·L. If yes, we do this procedure recursively on R−, as the
correct edge must be contained in there. If not, the edges must be in R+, hence, we do a recursion on these edges (note that
in that recursion, instead of removing the bigger half, we have to add the smaller half). The exact procedure is given in
Algorithm 8 and Algorithm 9.

Algorithm 8 settlePrefix

Input: index i of prefix Ci to be settled, current bucket R
Output: partial assignment ϕi (with centers Ci) and radius ri

1 e← searchForEdge(i, R, True)
2 ri ← d(e)
3 ϕi ← center of.copy()
4 // assignment and radius have been found; now remove current bucket from network:
5 for e = (c, x) ∈ R do
6 if edge present[c][x] = True then
7 removeEdge(e′)
8 end
9 end

Lemma B.6. The worst-case running time of the procedure settlePrefix is given by O(|R| · i2 + n).

Proof. The invocation of searchForEdge takes O(|R| · i2) time as half of the edges are added or removed (each takes
O(i2) time by Lemmas B.4 and B.5) and the bucket size gets halved in each recursion step. This leads to a running time
of O(i2 · (|R| /2 + |R| /4 + · · ·+ 1)) = O(i2 · |R|). The same running time is needed for removing all present edges of
the bucket after the radius has been found. Finally the copying of center of takes O(n) time, as this is the size of this
array.

B.5. Making all prefixes private

Now we are ready to present the complete algorithm for computing a private assignment for all prefixes of a given set of
centers. For this, one additional data structure is needed, namely an array of queues pending[· · ·], where pending[i] stores
the edges that were already considered for adding them to the network for the prefix Ci, i ∈ [k], but were withheld as this
prefix Ci was not considered yet. The main procedure can be described as follows. After creating all edges and putting
them into buckets, the algorithm iterates over all buckets with counter j and over all center prefixes with counter i. This two
iterations are done in parallel. It adds the edges bucket-wise (meaning that the flow value is only checked after each edges of
the bucket is added) to the network and checks whether the maximum flow value has reached i · L. If so, the correct bucket
has been found and the current center prefix needs to be settled in there. If not, the next bucket is added to the network.
After a prefix has been settled all edges of the current bucket are removed and the next prefix is considered i← i+ 1. First
all pending arcs in pending[i] are added to the network and then the process is continued by adding the current bucket.

B.6. Running time and correctness

Lemma B.7. The procedure makePrefixesPrivate in Algorithm 10 has a worst-case running time of O(nk2).

Fair and Fast k-Center Clustering for Data Summarization

Algorithm 9 searchForEdge

Input: index i of current center prefix Ci, current bucket R, boolean bucket present indicating if edges of R are present
in the flow network

Output: edge e
1 if |R| = 1 then
2 e← R.pop()
3 if bucket present then
4 addEdge(e)
5 end
6 return e // this is the edge we are looking for as max flow = i · L
7 end
8 R−, R+ ← splitAtMedian(R) // takes O(|R|)-time
9 if bucket present then

10 for e′ ∈ R+ do
11 RemoveEdge(e′)
12 end
13 else
14 for e′ ∈ R− do
15 addEdge(e)
16 end
17 end
18 if max flow ≥ i · L then
19 e← searchForEdge(i, R−, True)
20 else
21 e← searchForEdge(i, R+, False)
22 end
23 R← (R−, R+) // update bucket to be "more sorted" for later use
24 return e

Proof. Creating the edges takes O(nk) time, and by B.1, putting them into buckets can be done in O(nk log k). To analyze
the main loop we divide the buckets into two categories, the buckets BS in which a prefix is settled in (more precisely, BS
contains every R for which settlePrefix[i, R] is invoked at least once), and the rest of the buckets BN := B \ BS .

Since settlePrefix is invoked at most k times, BS contains at most k buckets, which in total contain at most O(n/k)
edges. Each of these edges might be added to the network in line 11 or line 17 multiple times, as they might be removed
during the settlePrefix procedure. Nonetheless, for each settlePrefix invocation at most O(n/k2) such edges
are removed (since this is the bucket size), which means that the number of addEdge invocations by edges in buckets
contained in BS is still bounded by O(n/k) (note that we consider the binary search within settlePrefix separately).
By Lemma B.4 addEdge has a worst case running time of O(k2), which gives a combined bound on the running time for
adding these edges of O(n/k · k2) = O(nk). Furthermore, settlePrefix is invoked k times, each with a running time
O(n/k2 · k2 + n) = O(n) (using B.6 with |R| = O(n/k2) and i = k). This gives a combined running time of O(nk).

For edges in buckets contained in BN , we make a further distinction:

R+ :=

{
e ∈

⋃
R∈BN

R

∣∣∣∣∣ addEdge[e] increases max flow by 1

}
,

R= :=

{
e ∈

⋃
R∈BN

R

∣∣∣∣∣ addEdge[e] does not increase max flow

}
.

Since max flow is bounded by k·L and none of these edges are ever removed from the network, it holds that |R+| ≤ k·L ≤ n.
Hence with Lemma B.4, the total running time for adding these edges to the network is bounded by O(nk2).

There could be O(nk) edges inR= but none of them increases the maximum flow value. We will show that the amortized

Fair and Fast k-Center Clustering for Data Summarization

Algorithm 10 makePrefixesPrivate

Input: metric space (X, d), privacy bound L, ordered centers C = (c1, . . . , ck)
Output: for i ∈ [k]: assignments ϕi : X → { c1, . . . , ci } with radius ri satisfying the privacy-condition.

1 R ← { edge e = (c, x) for all c ∈ C and x ∈ X } // an edge in the flow network.
2 R1, . . . , Rm ← putIntoBuckets(R, d) // at most k3 buckets of size at most 2⌈n/k2⌉
3 i← 1 // index of the center prefix Ci
4 j ← 1 // index of the current bucket
5 pending[c]← newQueue() for all c ∈ C, b ∈ [m] // withheld edges
6 while i ≤ k do
7 // this is the main while-loop that deals with each prefix Ci
8 // first, we process edges from previous buckets that were withheld
9 while pending[i] ̸= ∅ do

10 e := pending[i].pop()
11 addEdge(e)

12 end
13 // then we add edges bucket-wise until max flow = i · L
14 while max flow < i · L do
15 for e = (c, x) ∈ Rj do
16 if c ∈ Ci then
17 addEdge(e) // e is added to flow network, a new max flow is computed
18 else
19 pending[c].push(e) // e is postponed as c is a center not considered yet
20 end
21 end
22 j ← j + 1

23 end
24 j ← j − 1 // at this point, we have identified that Rj settles prefix Ci
25 ϕi, ri ← settlePrefix(i, Rj)
26 // current bucket is completely removed from network; restart current bucket
27 i← i+ 1

28 end
29 // assign all unassigned points to their nearest centers:
30 for i = 1, . . . , k do
31 for x ∈ X do
32 if ϕi(x) = None then
33 ϕi(x)← argminc∈Ci

d(c, x)
34 ri ← max { ri, d(ϕi(x), x) }
35 end
36 end
37 end
38 return (ϕ1, r1), . . . , (ϕk, rk)

running time for adding these edges is also bounded by O(nk2). By Lemma B.4 the running time of adding an edge to the
network is bounded by O(Ae · k), where Ae ≤ k is the number of centers for which next to non private is set from
None to something. But the values of next to non private are only ever reset to None when rebuildReachability is
invoked, which only happens when edges are removed in removeEdge or when the max flow value is increased by one
in augmentFlow. When considering the sequence of edges in R= this happens at most O(n + k)-times, namely when
max flow is incremented or when a prefix is settled in a bucket. In other words,

∑
e∈R=

Ae ≤ n · k, which gives a total
running time for adding edges inR= of O(k ·

∑
e∈R=

Ae) = O(nk2).

Finally, assigning the remaining points to their nearest center takes O(nk2) time. In total makePrefixesPrivate has a
worst-case running time of O(nk2).

Fair and Fast k-Center Clustering for Data Summarization

Lemma B.8. The procedure makePrefixesPrivate in Algorithm 10 computes, for a given set of ordered centers C, the
optimal private assignments for all prefixes of C.

Proof. Suppose that is not true. Then there is a prefix Ci for which there is another private assignment ϕ′ with smaller
radius r′. Let c ∈ Ci and x ∈ X be the center-point pair with ϕi(x) = c and d(c, x) = r (if there are multiple, we choose
the one where c has the highest index or in case of a tie, we choose an x that is maximal with respect to the fixed ordering
on X). If x was assigned to c during the filling up in line 33 that would mean that c is the closest center to x, which would
lead to a contradiction as d(ϕ′(x), x) ≥ d(c, x) = r > r′. Hence, x has to be assigned to c during the maximum flow
computation. At the moment the prefix Ci was settled, edge e = (c, x) had to be the last edge that was added to the network.
More precisely, all other edges e′ from Ci to X with d(e′) ≤ r were also present in the flow network. In particular, all
edges of the form e′ = (ϕ′(x), x) as d(e′) ≤ r′ < r. But modeling ϕ′ as a flow (by taking only the L closest points for each
center in Ci) this would lead to an s-t-flow of value i · L but without using the edge (c, x). But this is a contradiction, as the
edge e was necessary for achieving a maximum flow value of i · L in the settlePrefix procedure.

The proof of Lemma 3.2 now follows immediately:

Proof of Lemma 3.2. The algorithm Algorithm 10 solves MIN-PRIV-RADIUS by Lemma B.8 (just pick any ordering of the
centers) and has a running time of O(nk2) as proven in Lemma B.7.

B.7. Making a single set of centers private

The final algorithm is going to choose a final set of centers that satisfy the representative condition. In order to provide the
best possible private assignment with it, we use the procedure as described above but we only care for the private assignment
of the full set. For convenience reasons, we include the makePrivate algorithm (see Algorithm 11). It is clear that the
running time of makePrivate equals the running time of makePrefixesPrivate, namely O(nk2); see Lemma B.7.

Algorithm 11 makePrivate

Input: metric space (X, d), privacy bound L, a set of centers C
Output: private assignment ϕi : X → C with minimal radius r.

1 i← |C|
2 c1, . . . , ci ← any order of centers in C
3 (ϕ1, r1), . . . , (ϕi, ri)← makePrefixesPrivate((X, d), L, (c1, . . . , ci))
4 return (ϕi, ri)

C. Full analysis of results of Section 4: Constructing good backbones
Suppose we are given a set of centers Π with |Π| ≤ k together with a private assignment ϕ : X → Π, such that Π does
not satisfy the representative condition; as a reminder, the representative condition asks that ai ≤ |Π ∩Xi| ≤ bi for every
i ∈ [γ]. In order to be able to find a representative set of centers C, which admits a private assignment of small radius, we
first need to find backbones with good ∆-realization for the MIN-REP-REALIZATION problem (we call these representative
∆-realizations).

Throughout this section we only consider a single set of centers Π and all backbones will have the form (Π, η) for some
η ∈ ZΠ

≥0. For our final algorithm the procedure presented in the following will be applied to all Gonzalez’ prefixes
C1, . . . , Ck providing a total of at most k(k + 1)/2-many backbones.

We consider special backbones that are created from the private assignment ϕ (or later of assignments that are close to ϕ),
which we call fixed-aggregations (or τ -aggregations, respectively). They are defined as follows.
Definition C.1 (fixed-aggregation). For a given set of centers Π with assignment ϕ : X → Π we call the vector η ∈ ZΠ

≥0

with

ηπ =

⌊∣∣ϕ−1(π)
∣∣

L

⌋
for all π ∈ Π

the fixed-aggregation of ϕ of total value
∑
π∈Π ηπ .

Fair and Fast k-Center Clustering for Data Summarization

Note that such an aggregation might not be sufficient for a representative ∆-realization. To see this, suppose that the value of
the fixed-aggregation is smaller than

∑
ℓ∈[γ] aℓ. In such a case we cannot open enough centers to satisfy the representative

condition. But even if there exists a representative ∆-realization for the backbone, the ∆ might be unnecessarily large.

To obtain better backbones we allow points of some cluster ϕ−1(π) to be transferred to a nearby cluster ϕ−1(π′). To specify
what nearby mean, we define a neighborhood relation between clusters.

Definition C.2 (transfer threshold and neighborhood-graph). For a given transfer threshold (or just threshold) τ ∈ R≥0,
we call two centers π and π′ τ -neighbored if d(π, π′) ≤ τ . This defines an undirected τ -neighborhood-graph Gτ :=
(Π, { {π, π′ } | d(π, π′) ≤ τ }).

For a given threshold τ the algorithm allows points of some cluster, to be transferred to centers of some of the neighbored
clusters. This gives us additional flexibility for the backbones, as for large τ all clusters would be neighbored to each
other. Still, the smaller this threshold is, the better the final bound on the radius will be. We extend the definition of a
fixed-aggregation to a τ -aggregation by allowing points to be transferred to some neighbored cluster.

Definition C.3 (τ -aggregation). For a given set of centers Π with assignment ϕ : X → Π we call the vector η ∈ ZΠ
≥0 a

τ -aggregation if there exists an assignment ϕ′ : X → Π such that ϕ(x) and ϕ′(x) are τ -neighbored for all x ∈ X and η is a
fixed-aggregation of Π with ϕ′

We also call a backbone (Π, η) a τ -aggregation if there exists a assignment ϕ such that η is a τ -aggregation for Π and ϕ.

We are interested in τ -aggregations with large entries, as this leads to more flexibility for the representative ∆-realization.

For a given threshold τ , let Π1,Π2, . . . ,Πj be partition of Π given by the connected components of the neighborhood graph
Gτ . Since no point can be transferred to a center of a different connected component, the value any τ -aggregation is upper
bounded by

Uτ :=

j∑
ℓ=1

⌊∣∣ϕ−1(Πℓ)
∣∣

L

⌋
, where ϕ−1(Πℓ) :=

⋃
π∈Πℓ

ϕ−1(π).

Fortunately, we can always achieve this maximal value.

Lemma C.4. For every transfer threshold τ , there exists a τ -aggregation ητ of value Uτ .

Proof. We consider each connected component Πℓ for ℓ ∈ [j] individually. For each ℓ ∈ [j], let Xℓ :=
{x ∈ X | ϕ(x) ∈ Πℓ } be the set of all points with centers in this connected component. We show that there is an
assignment ϕℓ : Xℓ → Πℓ such that ϕ(x) and ϕℓ(x) are τ -neighbored for all x ∈ Xℓ and the fixed-aggregation of ϕℓ has a
total value of

⌊∣∣ϕ−1(Πℓ)
∣∣ /L⌋.

To see this, we pick any spanning tree T of the connected component of Cℓ and declare any center π∗ ∈ Πℓ as the root
(which we now picture as being on top). Starting at the leaves (at the bottom) of T , we transfer points up, always closer
to the root. More precisely, at a center π we consider the number of points nπ that are currently assigned to π (note that
this might be larger than the original size of

∣∣ϕ−1(π)
∣∣ as some points might have already been transferred into this cluster).

We keep L · ⌊nπ/L⌋ points in the cluster and transfer the remaining nπ − L · ⌊nπ/L⌋ points to the cluster corresponding
to the parent node in T . Note that we never move more than L − 1 points away from each cluster. Since each original
cluster had at least L points (ϕ is a private assignment) we never transfer a point more than once. After this procedure
each center except for π∗ has exactly a multiple of L many points assigned to it. Since no point was “lost on the way”, the
fixed-aggregation η of this new assignment ϕℓ has a total value of

⌊∣∣ϕ−1(Πℓ)
∣∣ /L⌋.

Doing this individually for each connected component of Gτ leads to a τ -aggregation of total value Uτ .

Overall, we would like to keep the threshold τ as small as possible, such that points are not farther than needed. If we
consider all pair-wise distances between centers in Π, i.e., D := { d(π, π′) | π, π′ ∈ Π }, the neighborhood graph Gτ would
be the same for each τ ∈ [δ1, δ2], for each pair of consecutive distances δ1, δ2 ∈ D. Naively, we could try all values in D as
threshold, which would lead to O(|Π|2) many values. But by the definition of Uτ it becomes clear that for two thresholds τ1
and τ2 the values Uτ1 and Uτ2 only differ if the connected component of Gτ1 and Gτ2 differ. As these connected components
merge monotonically for increasing thresholds (for τ = 0 all clusters are isolated, for big τ everything is connected) there
are only |Π|-many thresholds for different connected components. When considering Kruskal’s algorithm for computing a
minimum spanning tree, it becomes apparent that these relevant threshold values are precisely the distances that appear in a

Fair and Fast k-Center Clustering for Data Summarization

minimum spanning tree (MST) of the complete graph G = (Π,
(
Π
2

)
) with edges weights given by d(π, π′). (In addition we

consider also τ = 0 as a threshold.)

Computational-wise, such MST provides an additional benefit. Instead of recomputing for every τ some spanning tree
in each connected component of Gτ for determining the τ -aggregation, it is also possible to compute the MST T once at
the beginning and add the edges of the MST one by one (in increasing order according to d) to the initially empty graph
G = (Π, ∅).

This leads to the following procedure createBackbones given in Algorithm 12, which computes for a given set of center
Π, |Π|-many backbones. It iterates through all thresholds τ given by a MST T in the complete centers graph (C,

(
C
2

)
) and

computes in the procedure computeTauAggregation (see Algorithm 13) a τ -aggregation ητ of value Uτ .

Algorithm 12 createBackbones

Input: metric space (X, d), privacy-bound L, set of centers Π, private assignment ϕ : X → Π
Output: |Π|-many backbones (Π, ηj) together with transfer thresholds τ j for j = 0, 1, . . . , |Π| − 1

1 i← |Π|
2 nπ ←

∣∣ϕ−1(π)
∣∣ for all π ∈ Π // cluster sizes

3 T ← computeMinimumSpanningTree(G = (Π,
(
Π
2

)
), d) // e.g. Prim’s algorithm.

4 e1, e2, . . . , ei−1 ← sort edges in T according to increasing d-value
5 τ0 ← 0
6 F0 ← ∅
7 for j = 1, 2, . . . , i− 1 do
8 τj ← d(ej)
9 Fj ← { e1, . . . , ej }

10 end

11 for j = 0, 1, . . . , i− 1 do
12 ηj ← computeTauAggregation((X, d), L,Π, (nπ)π∈Π, τ

j , Fj)
13 end
14 return ((Π, ηj), τ j , F j)i−1

j=0

The subroutine computeTauAggregation described in Algorithm 13 simply executes the algorithm that is described in the
proof of Lemma C.4 to compute a τ -aggregation of the best possible value Uτ . As the transfer forest (i.e., the spanning tree
for each connected component) and the cluster sizes are provided as input, this can be done in O(|C|) time as proven in
Lemma C.5.

Algorithm 13 computeTauAggregation

Input: metric space (X, d), privacy-bound L, set of centers Π, cluster sizes (nπ)π∈Π, transfer threshold τ , transfer forest F
Output: τ -aggregation η ∈ ZΠ

≥0

1 i← |Π|
2 π1, . . . , πi ← topological sort Π w.r.t. forest F // can be computed by a BFS in O(|Π|) time
3 for j = 1, . . . , i do
4 ηπj

←
⌊
nπj

/L
⌋

5 if πj has parent in F then
6 π′ ← parent of πj in F
7 nπ′ ← nπ′ + (nπj

− L ·
⌊
nπj

/L
⌋
) // remaining points could be transferred to parent

8 end
9 end

10 return (ηπ)π∈Π

Lemma C.5. computeTauAggregation has a running time of O(|Π|).

Proof. The algorithm first determines a topological ordering of the centers according to the transfer forest F , which can be
done by a breadth-first-search (BFS) in linear time. Then we compute the ηπ values in this order and always transfer the

Fair and Fast k-Center Clustering for Data Summarization

remainder of nπ/L to the parent node. As each of these actions can be done in constant time, this leads to an overall linear
running time.

With this we can prove the total running time for creating the backbones.

Lemma C.6. createBackbones has a running time of O(|Π|2).

Proof. Prim’s algorithm runs in O(|Π|2) and sorting takes O(|Π| log |Π|) time. By Lemma C.5 computeTauAggregation

has a running time of O(|C|) and is invoked |Π|-times, leading to a running time of O(|Π|2).

D. Solving MIN-REP-REALIZATION optimally
In this section we will show how to obtain for a given backbone (Π, η) the optimal ∆-realization C that satisfies the
representative condition

aj ≤ |C ∩Xj | ≤ bj for all j ∈ [γ].

Such a realization is called representative-∆-realization and the mapping ψ : C → Π is called origin mapping.

In order to achieve the claimed running time, we do not consider every of the k(k + 1)/2-many backbones individually, but
use some synergy between backbones that share the same set of centers. Therefore, the input for our procedure in the final
algorithm will be a set of i backbones (Π, ηj)i−1

j=0 (with i = |Π|) as they were created by createBackbones (Algorithm 12).
But in general the algorithm works for any set of backbones as long as they all share the same set of centers. We call such
set a batch of backbones.

The overall idea is to use a flow computation in a network with demands and capacities on the edges (lower and upper
bounds), to determine a representative-∆-realization with minimal ∆. The flow problem itself is solved individually for
each of the backbones, but the main part of the underlying network only needs to be created once (see Algorithm 14), which
saves a lot of time.

For a fixed backbone (Π, η) the acyclic flow network Gη with demands and capacities is structured in three node-layers (in
addition to a source and sink); see Figure 6a. The first layer consists of one node for each center in Π. There is an edge from
the source to each of these nodes with bound interval [1, ηj] (i.e., these edges have a demand of 1 and a capacity of ηj). The
capacities of these edges are the only thing that differs for the individual backbones.

The second layer consists of all points X , and similar to the makePrefixesPrivate procedure there is an edge (πℓ, x)
from each πℓ ∈ Π to each point x ∈ X with a bound interval [0, 1] and a distance label d(e) := d(πℓ, x). We denote the set
of all these edgesR.

The third layer consists of a node for each color class Xj , j ∈ [γ]. Each point x is only connected to the color class it is
contained in and the bound interval is again [0, 1]. Finally, each color class Xj is connected to the sink by an edge with
bound interval [aj , bj].

For a fixed backbone (Π, η) the algorithm itself now works as follows. It starts with the network, where none of the labeled
edges R between the first and the second layer are present. Clearly, there is no feasible s-t-flow that satisfies the lower
capacities. Now, the algorithm adds the edges one by one in increasing order according to the distance-labels. In each
step it checks whether there is a feasible s-t-flow of value at most k or not. The task of finding a feasible s-t-flow can
be transformed into a maximum flow computation in an auxiliary network Hη via a super-source-super-sink-construction
as depicted in Figure 6. Hence a feasible s-t-flow of value at most k in the original network Gη exists if and only if the
maximum flow in the auxiliary network Hη has value

∑
ℓ∈[γ] aℓ + i. More details on this equivalence can be found in

Section 7.7 in the textbook of Kleinberg and Tardos (2006). The algorithm stops as soon as a feasible flow in Gη is found
(i.e., as soon as the maximum flow in Hη reaches value

∑
ℓ∈[γ] aℓ + i).

The new centers C of the representative-∆-realization are exactly the points x ∈ X , which have a flow-throughput in the
second layer. The origin mapping ψ : C → Π, which stores the old cluster center of the new centers, are given by ψ(c) := π,
where π is the uniquely determined center with f(π,c) = 1. These new centers C are as close as possible to the original
centers, as we added the edges inR in increasing order. Furthermore, by the demands and capacities of edges between the

Fair and Fast k-Center Clustering for Data Summarization

s

π1

π2

π3

πi

X1

X2

Xγ

t

[1, η1]

[1, ηi]

x1

x2

x3

x4

x5

xn

[0, 1]

[0, 1]

[0, 1]

d(π1, x1)

d(πi, xn)

[0, 1]

[0, 1]

[0, 1]

[a1, b1]

[a2, b2]

[aγ, bγ]
... ...

...

1 2 3

R

[0, 1]

d(π3, x5)

(a) The flow network Gη with demand and capacities. All
edges are orientated from left to right. The edges between
layer 1 and 2 are added one by once in increasing d-label
ordering. The goal is to find a feasible s-t-flow of value at
most k.

s∗

t∗

... ...

...

k
i

aγ
a2

a1

1

1
1

1

∑
`∈[γ] a`

ηi − 1 1

1

1

1

η1 − 1

1

1

1

1

b1 − a1

bγ − aγ

(b) The auxiliary network Hη that turns the task of finding a feasible
flow into a maximum flow problem. The labels indicate the capacity
and all edges (except for the edge (t, s)) are orientated from left
to right. There is a maximum flow of value i +

∑
ℓ∈[γ] aℓ if and

only if there is a feasible s-t-flow of value at most k in the original
network Gη .

Figure 6. The flow networks to find a representative-∆-realization for a backbone (Π, η) with minimal ∆.

third layer and the sink, C satisfy the representative constraints. The distance of the edge added last to the network denotes
the value of ∆. Formally, this is shown in the proof of Lemma D.3.

Finally, in order to achieve a worst case running time of O(nk + k4), we apply additional tweaks to the algorithm.

First of all, the second layer does not need to contain all possible points X , as we can open at most k centers. More precisely,
for each original cluster center π we only need to consider the k closest points Yc ⊆ X that would satisfy the representative
condition, namely, Yπ ∩Xj ∈ [aj , bj] for all j ∈ [γ] and |Yπ| ≤ k. We call Yπ the candidates of π and only consider the
edges (π, y) for y ∈ Yπ . As these are at most k, the full network has at mostO(k · |Π|)-many nodes and also that many edges.
Note that, even though some points of Yπ might be later assigned to another π′ ∈ Π as there might be overlap between the
candidate sets Yπ and Yπ′ , still no point in X \ Yπ would even be used as new center of π, as the representativeness must be
satisfied by all new centers combined (independently of their origin). The is shown in detail in the proof of Lemma D.3.

Secondly, as mentioned above, these candidate sets (and therefore the edges setR) are always the same for all backbones
with the same set of centers Π. Hence, they need to be computed only once, which will be happen in the procedure
prepareEdges; see Algorithm 14.

Lemma D.1. The running time of prepareEdges is O(|X| · |Π|).

Proof. For each center in Π we go through all color-classes (which form a partition of X) and execute the select algorithm
twice to get the aj (bj , respectively) closest points to the center. Using a partition-based selection-algorithm, for example
the quick-select algorithm in combination with the median-of-medians-algorithm for pivoting, this can be done in linear
time, i.e., in O(|Xj |). Hence, all color-classes combined give a running time of O(|X|), which results in the total running
time of O(|X| · |Π|).

The flow computation for a fixed backbone takes place in computeRepresentativeDeltaRealization, which is de-
scribed in Algorithm 15.

Lemma D.2. If |Π| ≤ k the running time of computeRepresentativeDeltaRealization is O(k3).

Proof. The network and flow initialization takes O(k2) time as this is an upper bound on the number of nodes and edges.
As |R| ∈ O(k2) the first for-loop iterates at most that many times. Finding an augmenting path can take up to O(k2) time

Fair and Fast k-Center Clustering for Data Summarization

Algorithm 14 prepareEdges

Input: metric space (X, d), color classes X1∪̇X2∪̇ . . . ∪̇Xγ = X , lower and upper bounds (aj , bj) for j ∈ [γ], total upper
bound k, set of centers Π

Output: edgesR
1 for π ∈ Π do
2 Yπ ← ∅ // candidate set
3 for j = 1, . . . , γ do
4 Aj ← aj points fromXj that are closest to π // use selection-algorithm to do this in O(|Xj |)
5 Bj ← bj points from Xj that are closest to π
6 Yπ ← Yπ ∪Aj
7 end
8 // fill up candidates with closest remaining points (never more than bj of Xj)
9 Z ← k −

∑
j∈[γ] aj points from

⋃
j∈[γ](Bj \Aj) that are closest to π

10 Yπ ← Yπ ∪ Z
11 Rπ ← { (π, y) | y ∈ Yπ }
12 end
13 return

⋃
π∈ΠRπ

Algorithm 15 computeRepresentativeDeltaRealization

Input: color classes X1∪̇X2∪̇ . . . ∪̇Xγ = X , lower and upper bounds (aj , bj) for j ∈ [γ], total upper bound k, sorted
edgesR with d-labels, backbone (Π, η)

Output: distance ∆, representative-∆-realization C with origin mapping ψ : C → Π
1 i← |Π|
2 prepare auxiliary network Hη without any edges between the first and second layer; see Figure 6b.
3 initialize maximum flow f in Hη: it has value |f | = min { i,

∑
ℓ∈[γ] aℓ }; all flow goes along (s∗, t, s, t∗)

4 for e ∈ R in increasing d-value order do
5 add e to Hη

6 ∆← d(e)
7 if there exists an augmenting s∗-t∗-path P in the residual network then
8 augment P in f (flow value |f | is incremented by 1)
9 end

10 if |f | = i+
∑
ℓ∈[γ] aℓ then

11 break
12 end
13 end
14 C ← ∅
15 for e = (π, y) ∈ R do
16 if fe = 1 then
17 C ← C ∪ { y }
18 ψ(y) := π

19 end
20 end
21 return ∆, C, ψ

Fair and Fast k-Center Clustering for Data Summarization

as this can be done by executing a BFS, which has a running time of O(|V |+ |E|) = O(k2). Similar to the argument in the
proof of Lemma B.7 it is possible to continue the BFS of the previous iteration as long as no augmenting path has been
found. To do this we store which nodes are reachable from s∗ in the residual network. Whenever an additional edge (π, x)
is added to the network, we can continue the BFS from x if π was reachable from s∗ but x was not. Overall the number of
BFS executions is upper bounded by the final maximum flow value |f | which is equal to i+

∑
ℓ∈[γ] aℓ ∈ O(k). Hence the

total running time is bounded by O(k3).

Lemma D.3. The procedure computeRepresentativeDeltaRealization computes a representative-∆-realization for
the provided backbone (Π, η) that has the smallest ∆ possible. The produced origin mapping ψ : C → Π satisfy the
conditions of Definition 2.2.

Proof. Since f is a maximum flow in Hη of value i +
∑
ℓ∈[γ] aℓ, it corresponds to a feasible flow g in Gη of value at

most k; see (Kleinberg & Tardos, 2006) for details. Note that g equals f on the edges withinR and these value determine
which candidates are chosen to be in C. As the throughput of g at each node π of the first layer is in { 1, . . . , ηπ }, each set
{ e ∈ R | fe = 1 and tail(e) = π } contains that many elements yielding that

∣∣ψ−1(π)
∣∣ ∈ { 1, . . . , ηπ }.

All edges e ∈ R between the first and second layer of Hη (and therefore also of Gη) satisfy d(e) ≤ ∆. Hence, d(c, ψ(c)) ≤
∆.

Furthermore, the throughput of g at each node Xℓ in the third layer are in { aℓ, . . . , bℓ } for all ℓ ∈ [γ], which proves that C
satisfy the representative requirement. As g has a flow value of at most k, it holds that |C| ≤ k.

Finally, to see that the resulting representative-∆-realization minimizes ∆, suppose there would be another representative-
∆′-realization C ′ with origin mapping ψ′ : C ′ → Π but with ∆′ < ∆. We choose C ′, ψ′ to be point-wise as close as possible
to the original centers Π. More formally, we assume that there is no c ∈ C ′ and x ∈ X such that d(x, ψ′(c)) < d(c, ψ′(c))
and C̃ := (C ′ \ { c′ }) ∪ {x } is a representative-∆′-realization. (If that would be the case consider C̃ instead of C ′.)

If all edges (ψ′(c′), c′) for c′ ∈ C ′ would be present inR, then this leads immediately to a contradiction, as this solution
would correspond to a feasible flow in Gη , and hence, also a flow f ′ in Hη with flow value i+

∑
ℓ∈[γ] aℓ. As f ′ would not

use any edges e ∈ R with d(e) = ∆, this yields a contradiction to the fact that f is at all times a maximum flow in Hη .

Therefore, the only possibility is that there is a c′ ∈ C ′ and some π ∈ Π, such that (π, c′) /∈ R, or in other words, c′ was not
chosen to be a candidate for π (i.e., c′ /∈ Yπ) during the prepareEdges procedure. Let ℓ be the color-class of c′ and let
m = |Xℓ ∩ C| the number of new centers of that color.

If m = aℓ this leads to a contradiction as Yπ contains the aℓ points within Xℓ that are closest to π. If c′ is not one of them,
there is a closer y ∈ Yπ that was not chosen by other centers and d(π, y) < d(π, c′) contradicting the way we choose C ′.

If m > aℓ, the new center c′ could be replaced by any other candidate. As Yπ contains the k points that are closest to π
(never more than bq for any color class q ∈ [γ]), we again get a contradiction if c′ is not one of them, as we can find a closer
candidate y ∈ Yπ .

Finally, we can combine prepareEdges and computeRepresentativeDeltaRealization to obtain a procedure that
realizes a batch of backbones (sharing the same set of center Π) in O(nk + k4) time.

Algorithm 16 realizeBatchOfBackbones

Input: metric space (X, d), color classes X1∪̇X2∪̇ . . . ∪̇Xγ = X , lower and upper bounds (aℓ, bℓ) for ℓ ∈ [γ], total upper
bound k, batch of backbones (Π, η1), (Π, η2), . . . , (Π, ηi)

Output: distances ∆j and sequence of representative-∆j-realizations Cj with origin mapping ψj for j = 1, . . . , i
1 R ← prepareEdges((X, d), (Xℓ)ℓ∈[γ], (aℓ, bℓ)ℓ∈[γ], k,Π)
2 sortR in increasing order according to d(e) // takes O(k2 log k) time
3 for j = 1, . . . , i do
4 ∆j , Cj , ψj ← computeRepresentativeDeltaRealization((Xℓ)ℓ∈[γ], (aℓ, bℓ)ℓ∈[γ], k,R, (Π, ηj))
5 end
6 return (∆j , Cj , ψj)j∈[i]

Lemma D.4. If the number j of provides backbones satisfies j ≤ k and it holds that |Π| ≤ k, then the running time of
realizeBatchOfBackbones is given by O(nk + k4), where n = |X| is the total number of points.

Fair and Fast k-Center Clustering for Data Summarization

Proof. By Lemma D.1 prepareEdges takes O(n · k) time and sorting all edges (their number is bounded by k2) can be
done in a running time of O(k2 log k). By Lemma D.2 invoking computeRepresentativeDeltaRealization at most k
times take O(k4) time. Together this results in a running time of O(nk + k4).

E. Selecting the final set of centers.
At this point we described how to create q := k(k + 1)/2 backbones and computing a representative-∆-realization for all
of them providing q candidates of representative centers. It remains to select the best of them. Ideally, we would like to
compute for all these candidates the best private assignment and then simply choose the set of centers with the minimal
radius. Unfortunately, these candidates do not form a chain in general, which means that we would need to compute a
private assignment for each of them individually, which would lead to a total running time of O(q · nk2) = O(nk4). To
achieve a better running time we use the procedure selectFinalCenters in Algorithm 17 instead.

Algorithm 17 selectFinalCenters

Input: metric space (X, d), privacy-bound L,
for each batch i ∈ [k]: set of centers Πi, private assignments ϕi : X → Π, transfer thresholds (τ ji)j∈[i], transfer forests
(F ji)j∈[i], realization distances (∆j

i)j∈[i], representative-∆j
i -realizations (Cji)j∈[i], origin mapping (ψji)j∈[i]

Output: final set of centers C∗,
1 for i = 1, . . . , k do
2 j∗i ← argminj∈[i]

(
τ ji +∆j

i

)
3 ϕ̄i, r̄i ← privateAssignmentHeuristic((X, d), L,Πi, ϕi, τ

j∗i
i , F

j∗i
i , C

j∗i
i , ψ

j∗i
i)

4 end
5 i∗ ← argmini∈[k] r̄i

6 return Cj
∗
i∗
i∗

As a first step, we select only one backbone for each of the backbone-batches (which share the same Gonzalez prefix
Π = Ci), namely the one that minimizes the transfer threshold τ plus the realization distance ∆. Even though it might be
the case that the selected backbone will not have the best private-radius in the end (among all backbones of this batch), it is
the one that gives the best performance guarantee; see Appendix G.1. We end up with k candidates (given by Cj

∗
i
i), one

for each batch i. Still we cannot afford to compute the best private assignment for each of them. That is why we run a
heuristic for determining a private assignment, instead. privateAssignmentHeuristic as it is described below runs in
O(nk) time, and most importantly, will be good enough to satisfy the performance guarantee. After computing a private
assignment using privateAssignmentHeuristic for of the remaining k candidates, we choose the candidate that has the
assignment with the best radius.

The privateAssignmentHeuristic is given in Algorithm 18.

Algorithm 18 privateAssignmentHeuristic

Input: metric space (X, d), privacy-bound L, set of centers Π, private assignment ϕ : X → Π, transfer threshold τ ≥ 0,
transfer forest F , representative-realization (new centers) C, origin mapping ψ : C → Π

Output: new assignment ϕ̄ : X → C with radius r̄
1 i← |Π|
2 ϕ′ ← transferPoints((X, d), L,Π, ϕ, τ, F)
3 for π ∈ Π do
4 Xπ ← ϕ′−1(π)
5 Cπ ← ψ−1(π)
6 ϕ̄π ← reassignToNewCenters((Xπ, d), Cπ, L)

7 end
8 ϕ̄←

⋃
π∈Π ϕ̄π

9 r̄ ← maxx∈X d(x, ϕ̄(x))
10 return ϕ̄, r̄

Fair and Fast k-Center Clustering for Data Summarization

This procedure takes the original private assignment ϕi : X → Π and first executes the transferring of points in the transfer
forest F ij∗i . More precisely, the procedure transferPoints in Algorithm 19 does the same as computeTauAggregation
in Algorithm 13 except it really transfers points to the new centers, instead of only transferring the numerical remainder.
Since each point will be moved at most once this can be done in O(|X|) time (see Lemma E.1).

Afterwards, the points within each cluster Xπ should be reassigned to the new centers of the cluster Cπ (according to the
representative-∆-realization C), such that each new center c ∈ Cπ has at least L points assigned to it. Surely, this is possible
as C is a realization of the backbone (more precisely the τ -aggregation) (Π, η), where ηπ = ⌊|Xπ| /L⌋.

Algorithm 19 transferPoints

Input: metric space (X, d), privacy-bound L, set of centers Π, private assignment ϕ : X → Π, transfer threshold τ ≥ 0,
transfer forest F

Output: new assignment ϕ′ : X → Π
1 i← |Π|
2 nπ ←

∣∣ϕ−1(π)
∣∣ for all π ∈ Π

3 ϕ′ ← empty partial assignment (X → Π)
4 π1, . . . , πi ← topological sort Π w.r.t. the forest F . // can be computed by a BFS in O(|Π|) time
5 for j = 1, . . . , i do
6 ηπj ← ⌊nc/L⌋
7 if πj has parent in F then
8 π′ ← parent of πj in F
9 r ← (nπj

− L ·
⌊
nπj

/L
⌋
) // remainder

10 nc′ ← nc′ + r // remaining points could be transferred to parent
11 choose X ′ ⊆ ϕ−1(πj) with |X ′| = r that are closest to π′

12 ϕ′(x) := π′ for all x ∈ X ′ // transfer r many points to the parent cluster
13 end
14 ϕ′(x) = πj for all x ∈ ϕ−1(πj) \X ′ // all non-transferred points stay in the cluster
15 end
16 return ϕ′

There are many options to implement the heuristic reassignToNewCenters. In our implementation we do the following:
Consider a cluster (after transferring) Xπ := ϕ′−1(π) with new centers Cπ := ψ−1(π). Ideally, we would start with the
point x ∈ Xπ that maximizes d(x,Cπ) and assign them first to its nearest center argminc∈Cπ

d(x, c). As we cannot afford
the time to sort all distances between Xπ and Cπ , we actually only partially sort them into buckets of size L (again use the
linear-time selection algorithm; cf. Appendix B.2). As soon as a center c ∈ Cπ covers L points, we continue the process but
ignoring c (since assigning more points to them might lead to not enough points for the other centers). If all centers are
satisfied (they cover L points) we assign the remaining point greedily to their nearest center in Cπ .

Such a heuristic would lead to a running time of O(|Xπ| · |Cπ|) for each cluster π ∈ Π, which sums up to a worst-case
running time of O(|X| · |C|) in total. But also easier heuristic, e.g., iterating over all centers c ∈ Cπ and assign any
L unassigned points of Xπ to them, afterwards assign the remaining points to any center in Cπ, would suffice for the
performance guarantee.

Lemma E.1. transferPoints has a running time of O(|X|).

Proof. Determining the cluster sizes takes O(|X|) in total. The topological sorting via BFS can be done in O(|Π|) time.

Choosing X ′ out of ϕ−1(ϕj) (i.e., the r closest points to π′) can be done in O(ϕ−1(ϕj)) by using a partition-based
selection-algorithm with linear running time (e.g., quick-select with median-of-medians for pivoting). And reassigning the
points (defining ϕ′) also takes O(ϕ−1(ϕj)) time. Hence, summing up over all cluster gives us a running time of O(|X|),
which is also the running time of the whole procedure.

Lemma E.2. For |Π| ≤ |C| privateAssignmentHeuristic has a running time of O(|X| · |C|).

Proof. By Lemma E.1 transferPoints needs O(|X|) time. Our implementation of reassignToNewCenters takes
O(|Xπ| · |Cπ|) times. Since (Xπ)π∈Π form a partition of X and similarly (Cπ)π∈Π for a partition of C. all |Π|-many

Fair and Fast k-Center Clustering for Data Summarization

invocation of reassignToNewCenters sums up to a running time bounded by O(|X| · |C|)

Lemma E.3. selectFinalCenters has a running time of O(nk2) if |Πi| ≤ k and
∣∣Cij∣∣ ≤ k for all i ∈ [k] and j ∈ [i].

Proof. Note that we consider k batches and batch i consists of i ≤ k entries. Hence, by Lemma E.2 the running time of
each of the k privateAssignmentHeuristic invocations is O(nk) yielding a total running time of O(nk2).

F. Complete algorithm for PRIV-REP-KC
All building blocks have been defined and studied. It is time for the final algorithm.

Algorithm 20 PRIV-REP-KC-algorithm
Input: metric space (X, d), upper bound k, privacy bound L, color classes X1∪̇X2∪̇ . . . ∪̇Xγ = X , color-specific lower

and upper bounds (aj , bj) for j ∈ [γ]
Output: radius r∗, representative centers C∗, private assignment ϕ∗

1 (c1, . . . , ck)← gonzalez((X, d), k)

2 (ϕ1, r1), . . . , (ϕk, rk)← makePrefixesPrivate((X, d), L, (c1, . . . , ck))

3 for i = 1, . . . , k do
4 ((Πi, η

j
i), τ

j
i , F

j
i)j∈[i] ← createBackbones((X, d), L, { c1, . . . , ci } , ϕi)

5 end

6 for i = 1, . . . , k do
7 (∆j

i , C
j
i , ψ

j
i)j∈[i] ← realizeBatchOfBackbones((X, d), (Xℓ)ℓ∈[γ], (aℓ, bℓ)ℓ∈[γ], k, (Πi, η

j
i)j∈[i])

8 end

9 C∗ ← selectFinalCenters((X, d), L, (Πi, ϕi, τ
j
i , F

j
i ,∆

j
i , C

j
i , ψ

j
i)j∈[i])

10 ϕ∗, r∗ ← makePrivate((X, d), L, C∗)

11 return r∗, C∗, ϕ∗

Lemma F.1. Our final algorithm in Algorithm 20 has a running time of O(nk2 + k5), where n := |X| is the number of
points in the metric space.

Proof. Gonzalez’ algorithm (see Algorithm 2) runs in O(nk). By Lemma B.7 makePrefixesPrivate has a running
time of O(nk2). Each of the k invocation of createBackbones take O(k2), so in total O(k3) time; see Lemma C.6.
For big k the bottle-neck are the k invocations of realizeBatchOfBackbones. By Lemma D.4, each of them take
O(nk+ k4) time, so in total O(nk2 + k5). Our implementation of the privateAssignmentHeuristic leads to a running
time of O(nk2) for selectFinalCenters; see Lemma E.3. Finally, makePrivate (which just uses the more general
makePrefixesPrivate) takes O(nk2), as it is proven in Lemma B.7.

As all this steps are processed in sequence the overall running time is O(nk2 + k5).

G. Proof of Theorem 1.2.
In this section, we prove the main result of the paper.

We first argue about the running time. Our algorithm, presented in Algorithm 20 first runs gonzalez algorithm that
computes a family of k sets of centers in time O(nk), see Section 3.1 for details. Given a family of k sets of centers

Fair and Fast k-Center Clustering for Data Summarization

we run makePrefixesPrivate procedure that for every set of centers in the family, by Lemma B.7, computes a private
assignment in the overall running time O(nk2). Next, for each of k private assignments we obtained in the previous
step we run the createBackbones procedure, each of which, by Lemma C.6, has the running time of O(k2). In the
next step, one more time, for every Gonzalez prefix we run realizeBatchOfBackbones that, by Lemma D.4, has the
running time of O(nk + k4). Next, given k batches of backbones from the previous step, we run selectFinalCenters

that returns the solution for PRIV-REP-KC, by Lemma E.3, in time O(nk2). Finally, for representative centers computed
in previous steps, we run the makePrivate procedure that solves MIN-PRIV-RADIUS problem, to find even better
solution. By Lemma 3.2, the procedure runs in time O(nk2). Thus the total running time of Algorithm 20 is at most
O(nk + nk2 + k · k2 + k · (nk + k4) + nk2 + nk2) = O(nk2 + k5).

Now we prove the approximation guarantee. We start with proving Theorem 2.4.

G.1. Proof of Theorem Theorem 2.4.

Since the running time statement was proved at the beginning of Appendix G, thus in the following, we prove just the
approximation guarantee.

To prove the statement, we introduce the following definitions. For every Gonzalez prefix Ci = {c1, . . . , ci} for i ∈ [k] we
define ri := maxx∈X d(Ci, x). Moreover for every Gonzalez prefix Ci and a private assignment ϕi for i ∈ [k], computed
with the makePrefixesPrivate procedure, we define r̄i := maxx∈X d(ϕi(x), x).

Lemma G.1. Let (X, d, k, L) be a Private k-Center instance. For any L-private r-clustering (C, ϕ) there exists an index i
such that r̄i ≤ 2r.

Proof. First, we note that by Lemma B.8 the makePrefixesPrivate optimally solves the MIN-PRIV-RADIUS problem
for all Gonzalez prefixes. Thus it can be used as a procedure to solve MIN-PRIV-RADIUS problem in Algorithm 3. Since,
by Lemma 3.3, Algorithm 3 is a 2-approximation for the Private k-Center problem, this implies that there exists a Gonzales
prefix Ci, computed by Algorithm 3, such that r̄i ≤ 2r for any L-private r-clustering (C, ϕ) for the (X, d, k, L) Private
k-Center instance.

In the main Algorithm 20 proposed in this paper for the PRIV-REP-KC problem, after computing private assignments with
the procedure makePrefixesPrivate, for every Gonzalez prefix, we run the procedure createBackbones. For every
Gonzalez prefix, this procedure computes k transfer forests with the corresponding backbones. In the following three
lemmas, we prove the main properties of the transfer forest we will use for the proof of Theorem 2.4.

Lemma G.2. Let (X, d, k, L) be a Private k-Center instance. For any L-private r-clustering (C, ϕ) and transfer forest
(Ci, Fτ), for i ∈ [k], with transfer threshold τ ∈ R≥0 satisfying τ ≥ 2r̄i + r, it holds that, for any c ∈ C all the points
ϕ−1
i (B(c, r)) belong to the same connected component in the transfer forest (Ci, Fτ).

Proof. Consider a center c ∈ C and a connected component that contains the point ϕ−1
i (c). Clearly, we have that

d
(
c, ϕ−1

i (c)
)
≤ ri. We complete the proof by showing that for any other point x ∈ B(c, r), the point ϕ−1

i (x) lies in the
same connected component. Indeed, since d

(
x, ϕ−1

i (x)
)
≤ ri, we have

d
(
ϕ−1
i (c), ϕ−1

i (x)
)
≤ d

(
ϕ−1
i (c), c

)
+ d (c, x)) + d

(
x, ϕ−1

i (x)
)
≤ 2ri + r ≤ τ ,

where the first inequality follows by the triangle inequality. Hence, because the distance between ϕ−1
i (c) and ϕ−1

i (x) is
below the transfer threshold, both points must lie in the same connected component of the transfer forest.

Before we discuss the remaining two properties of transfer forests that we need, we introduce the following notation for
the objects that are computed by Algorithm 20. Let (X, d, k, L) be a Private k-Center instance. For a Gonzales prefix
Ci, a private assignment ϕi, a transfer threshold τ and a transfer forest (Ci, Fτ) with transfer threshold τ , let ψi,τ be an
assignment computed by the procedure transferPoints. Moreover, let ηi,τ be the corresponding τ -aggregation computed
with the procedure computeTauAggregation. The following lemma holds.

Lemma G.3. Let (X, d, k, L) be a Private k-Center instance. For any transfer forest (Ci, Fτ), for i ∈ [k], with transfer
threshold τ ∈ R≥0, and W ⊆ Ci such that W is a subset of a connected component in the transfer forest (Ci, Fτ), it holds

Fair and Fast k-Center Clustering for Data Summarization

that:

ηi,τ (W) =

⌊∣∣ψ−1
i,τ (W)

∣∣
L

⌋
.

Proof. First note that, by construction, for every center w ∈W that is not a root of the connected component of the transfer

forest (Ci, Fi) that contains W , we have ηi,τ (w) =
|ψ−1

i,τ (w)|
L . Moreover, for the center croot ∈ Ci that is the root of the

connected component of the transfer forest (Ci, Fi) that contains W , we have ηi,τ (croot) =
⌊
|ψ−1

i,τ (croot)|
L

⌋
. This implies as

desired ⌊∣∣ψ−1
i,τ (W)

∣∣
L

⌋
=

⌊∣∣ψ−1
i,τ (W \ {croot})

∣∣
L

+ 1croot∈W

∣∣ψ−1
i,τ (croot)

∣∣
L

⌋

=

∣∣ψ−1
i,τ (W \ {croot})

∣∣
L

+

⌊
1croot∈W

∣∣ψ−1
i,τ (croot)

∣∣
L

⌋
= ηi,τ (W) ,

where 1croot∈W is equal to 1 if croot ∈W and 0 otherwise.

To introduce the last property of transfer forests that we need, we use the notion of a parent of a vertex in the set of centers
Ci on which the forest (Ci, Fτ) is spanned, as defined and computed in the procedure computeTauAggregation. In words,
the parent of a vertex c ∈ Ci is the neighboring vertex of c closer to the root in the connected component of the transfer
forest that contains c. For simplicity, we use the convention that the parent of a root c is the root itself. For a subset W ⊆ Ci
we denote the set of parents of vertices in W by P (W).

Lemma G.4. Let (X, d, k, L) be a Private k-Center instance. For any transfer forest (Ci, Fτ), for i ∈ [k], with transfer
threshold τ ∈ R≥0, and W ⊆ Ci, it holds that

∣∣ϕ−1
i (W)

∣∣ ≤ ∣∣ψ−1
i,τ (W ∪ P (W))

∣∣.
Proof. First, note that for any center c ∈ Ci the procedure computeTauAggregation always transfers strictly less than L
points to the parent of c. Thus∣∣ψ−1

i,τ (W ∪ P (W)
∣∣ = ∣∣ϕ−1

i (W)
∣∣+ ∣∣ϕ−1

i (P (W))
∣∣− L · |P (W)| ≥

∣∣ϕ−1
i (W)

∣∣ ,

where the last inequality follows from the fact that ϕ is a private assignment, which implies that
∣∣ϕ−1
i (P (W))

∣∣ ≥
L · |P (W)|.

We are ready to prove Theorem 2.4.

Proof of Theorem 2.4. First, note that Algorithm 20 computes for every Gonzalez prefix Ci, for i ∈ [k], a private assignment
ϕi with procedure makePrefixesPrivate. Then, for every Gonzalez prefix Ci, the procedure createBackbones

computes up to k different transfer thresholds such that, for each τ ∈ R≥0, one of these transfer forests is a transfer forest
corresponding to the transfer threshold τ . Together with τ -aggregations computed with computeTauAggregation, this
leads to at most k backbones.

Now, let (X, d, k, L) be a Private k-Center instance, and let (C, ϕ) be an L-private r-clustering. By Lemma G.1 there exists
a Gonzalez prefix Ci such that r̄i ≤ 2r. Now, for the selected Gonzalez prefix we want to select a backbone. By Lemma G.2,
for every τ ≥ 2r̄i + r it holds that for any c ∈ C all the points ϕ−1

i (B(c, r)) belong to the same connected component of
the transfer forest (Ci, Fτ) with transfer threshold τ . Let

τ∗ := 2r̄i + r ≤ 5r ,

and consider, among the at most k computed transfer forests, the transfer forest (Ci, Fτ∗) that corresponds to a transfer
threshold of τ∗.

Next we prove that the backbone corresponding to Gonzalez prefix Ci and the transfer threshold τ∗ is a (7r, L)-backbone.
By the definition of the (ρ, L)-backbone, we have to show that there exists a 7r-clustering with centers in Ci that, for each
c ∈ Ci, assigns at least ηi,τ∗(c) points to c. To see that this holds, consider a point x ∈ X . We clearly have x ∈ ϕ−1(c)

Fair and Fast k-Center Clustering for Data Summarization

for some c ∈ C. Note that there exists a center c′ ∈ Ci such that x ∈ ϕ−1
i (c′) and, by Lemma G.1, d(x, c′) ≤ 2r. Let us

make the first attempt to construct the desired clustering with centers in Ci by assigning every point x ∈ X to ϕi(x). This
is a 2-clustering, however center in Ci might get more or less than ηi,τ∗ points assigned. The key observation is that the
τ∗-aggregation vector ηi,τ∗ that is created in computeTauAggregation outputs the same vector as the transferPoints
procedure, where the points are really reassigned to new centers. A point x ∈ X assigned to a center c′ ∈ Ci can be
reassigned to its parent P ({c′}). Note however that, in every step, at most L points from a cluster ϕ−1

i (c′) are reassigned to
the parent of the center c′. Since the initial assignment ϕi is L-private, every cluster has at least L points and thus every
point is reassigned at most once. Since for every point x we have d(x, ϕi(x)) ≤ 2r and d(ϕi(x), P ({ϕi(x)}) ≤ τ∗ ≤ 5r,
every point in the ψi,τ∗ assignment is at most 7r far from its center and thus ψi,τ∗ is a 7r-clustering with centers in Ci that,
for each c ∈ Ci, assigns at least ηi,τ∗(c) points to c.

It remains to show that C is an 8r-realization for the (7r, L)-backbone (Ci, ηi,τ∗). By the definition of the ∆-realization,
we have to show that there exists a map ψ : C 7→ Ci such that:

1. d(c, ψ(c)) ≤ 8r for each c ∈ C, and
2. |ψ−1(c′)| ∈ {1, . . . , ηi,τ∗} for each c′ ∈ Ci.

We show it by proving that there exists a b-matching in the bipartite graph G(U ∪ V,E) constructed as follows. Let U
be the set of centers C and let V be the set of centers Ci. We connect a center c ∈ C to a center c′ ∈ Ci with an edge if
and only if d(c, c′) ≤ 8r. To finalize the construction we want every center c ∈ C to be matched to exactly one center
c′ ∈ Ci and we want every center c′ ∈ Ci to be matched to at most ηi,τ∗(c′) centers in C. Hence this leads to a b-matching
problem in G. Note that the existence of a solution to this b-matching in G is equivalent to C being an 8r-realization of
the (7r, L)-backbone (Ci, ηi,τ∗). We prove the existence of a b-matching in G using the Hall’s theorem. More precisely,
we show that for every subset of center S ∈ C, it holds that |S| ≤ ηi,τ∗(N(S)), where N(S) is the set of centers in Ci
connected with at least one center in S.

To prove that Hall’s condition is satisfied, let W ⊆ Ci be defined by

W := {c ∈ Ci : ϕ−1
i (c) ∩ ϕ−1(S) ̸= ∅} .

Note that W ⊆ N(S). Thus |S| ≤ |ϕ
−1
i (W)|
L which, by Lemma G.4, is at most

|ψ−1
i,τ∗ (W∪P (W))|

L . This implies

|S| ≤

⌊∣∣ψ−1
i,τ∗(W ∪ P (W))

∣∣
L

⌋
= ηi,τ∗(W ∪ P (W)) ,

where the last inequality follows from Lemma G.3. Hence, Hall’s condition is satisfied because W ∪ P (W) ⊆ N(S), and
thus |S| ≤ ηi,τ∗(N(S)).

We highlight that the above proof also immediately implies Theorem 4.1.

Proof of Theorem 4.1. The theorem immediately follows by observing that the above proof of Theorem 2.4 only considers
backbones coming from the computed Gonzales prefixes.

G.2. Proof of Theorem 1.2.

In this subsection we want to prove that Algorithm 20 computes 15-approximate solution for PRIV-REP-KC. Note that
in Theorem 2.6 we proved that the simplified version of it, i.e., Algorithm 1, is a 15-approximation for PRIV-REP-KC. The
proof that Algorithm 20 is a 15-approximation follows the same line of reasoning. We show that the changes compared to
Algorithm 1 do not impact the approximation guarantee.

Theorem G.5. Algorithm 20 is a 15-approximation for PRIV-REP-KC.

Proof. Let (C, ϕ) be an optimal PRIV-REP-KC solution with radius r∗. By Theorem 2.4 we know that Algorithm 20
computes q ≤ k2 backbones (Π1, η1), . . . (Πq, ηq) one of which is a (7r∗, L)-backbone for which C is an 8r∗-realization.

For every Gonzalez prefix Algorithm 20 runs realizeBatchOfBackbones, that for each of at most k backbones
runs computeRepresentativeDeltaRealization. Procedure computeRepresentativeDeltaRealization for ev-
ery backbone (Πi, ηi) returns the set of centers Ci that is a ∆i-realization of (Πi, ηi). By Lemma D.3 procedure

Fair and Fast k-Center Clustering for Data Summarization

computeRepresentativeDeltaRealization solves the MIN-REP-REALIZATION problem and thus one of the set
C1, . . . , Cq is an 8r∗-realization of (7r∗, L)-backbone. Note, that similarly to Algorithm 20, by Observation 2.3 af-
ter solving MIN-PRIV-RADIUS for all the centers C1, . . . , Cq one of the solutions would be a 15-approximate for the
PRIV-REP-KC. However, this would not lead to an algorithm with the claimed running time. Instead, Algorithm 20
runs selectFinalCenters that for every Gonzalez index i first, among qi ≤ k backbones selects the one that cor-
responds to the smallest ∆j + τj , for j ∈ [qi]. Following the notation in the algorithm for selectFinalCenters
lets denote this index by j∗i . Note that since we chose the smallest ∆j + τj , for j ∈ [qi] for each Gonzalez index
i, among the selected backbones there still exists one backbone (Π, η) for which the computed set of centers with
computeRepresentativeDeltaRealization is an 8r∗-realization of the (7r∗, L)-backbone. Then Algorithm 20, for
every Gonzalez index i ∈ [k] runs privateAssignmentHeuristic. The procedure for given backbone (Πj

∗
i , ηj

∗
i), trans-

fer forest F j
∗
i , transfer threshold τ j

∗
i , set of centers Cj

∗
i computed with computeRepresentativeDeltaRealization

that is ∆j∗i -realization of the backbone (Πj
∗
i , ηj

∗
i) with the assignment ψj

∗
i : Cj

∗
i 7→ Πj

∗
i and a private assignment

ϕj
∗
i : X 7→ Πj

∗
i finds an assignments ϕi : X 7→ Πj

∗
i , with radius ri := maxx∈X d(x, ϕi) ≤ τ j

∗
i +∆j∗i . This implies that,

for ℓ := argmini∈[k] ri the set of centers Cj
∗
ℓ is an 8r∗-realization of the (7r∗, L)-backbone and the solution (Cj

∗
ℓ , ψℓ)

is a 15-approximate solution for the PRIV-REP-KC. Note, that for the selected set of centers Cj
∗
ℓ Algorithm 20 runs the

procedure makePrivate, to find even better assignment than the one given by ψℓ. Thus Algorithm 20 is a 15-approximation
for the PRIV-REP-KC.

The proof of Theorem 1.2 now follows by observing that Algorithm 20 has the claimed guarantees.

Proof of Theorem 1.2. The running time bound of O(nk2 + k5) of Algorithm 20 follows from Lemma F.1 and it is a
15-approximation due to Theorem G.5.

